TY - JOUR
T1 - Effects of Iron Oxide Nanoparticle Supplementation on the Growth Performance, Serum Metabolites, Meat Quality, and Jejunal Basal Morphology in Broilers
AU - Basharat, Sara
AU - Tahir, Sajid Khan
AU - Majeed, Khalid Abdul
AU - Yousaf, Muhammad Shahbaz
AU - Hussain, Khalil Khadim
AU - Rashid, Muhammad A.
AU - Zaneb, Hafsa
AU - Rehman, Habib
A2 - Tellez-Isaias, Guillermo
A2 - Lohakare, Jayant
A2 - Abdel-wareth, Ahmed
PY - 2023/12/27
Y1 - 2023/12/27
N2 - Simple Summary: Iron is a necessary micronutrient in animal feed. Iron is an important component of hemoglobin, myoglobin, and the enzymes participating in redox reactions. The aim of the current study was to assess the effects of iron oxide nanoparticle supplementation on production performance, organ development, blood biochemistry, redox status, meat quality, and jejunal histology in broilers. The results indicated that iron oxide nanoparticle supplementation improved the feed conversion ratio, pectoral muscle, and jejunal histology. However, iron oxide nanoparticle supplementation showed no effects on visceral organ development, blood metabolites, redox status, and carcass traits. Abstract: The current research aimed to evaluate the supplemental effects of iron oxide nanoparticles (IONPs) on production performance, viscera development, blood metabolites, redox status, meat quality, and jejunal histology in broilers. A total of 300 day-old broilers were randomly divided into six groups with five replicates per group. Birds were fed on a corn soybean-based diet supplemented with 0, 20, 40, 60, or 80 mg/kg IONPs or 80 mg/kg of FeSO4 for 35 days. The feed conversion ratio (FCR) was improved in birds supplemented with 60 mg/kg IONPs. The pH24h was lower in birds supplemented with 40 mg/kg IONPs compared to that of the bulk group. Pectoral muscle fascicle diameter and fiber density were significantly increased in 20 mg/kg IONP-supplemented birds compared to those of the bulk group, respectively. The muscle fiber diameter was higher in 40 mg/kg IONP-supplemented birds compared with the bulk group. The jejunal villus height, crypt depth, and villus surface area were significantly increased with 60 mg/kg IONP supplementation, whereas villus width was decreased in birds supplemented with 40 mg/kg IONPs. The villus-height-to-crypt-depth ratio was lower in IONP-supplemented birds compared to the bulk group. IONP supplementation improved the FCR, jejunal, and pectoral muscle morphology without affecting the carcass characteristics and redox status of broilers.
AB - Simple Summary: Iron is a necessary micronutrient in animal feed. Iron is an important component of hemoglobin, myoglobin, and the enzymes participating in redox reactions. The aim of the current study was to assess the effects of iron oxide nanoparticle supplementation on production performance, organ development, blood biochemistry, redox status, meat quality, and jejunal histology in broilers. The results indicated that iron oxide nanoparticle supplementation improved the feed conversion ratio, pectoral muscle, and jejunal histology. However, iron oxide nanoparticle supplementation showed no effects on visceral organ development, blood metabolites, redox status, and carcass traits. Abstract: The current research aimed to evaluate the supplemental effects of iron oxide nanoparticles (IONPs) on production performance, viscera development, blood metabolites, redox status, meat quality, and jejunal histology in broilers. A total of 300 day-old broilers were randomly divided into six groups with five replicates per group. Birds were fed on a corn soybean-based diet supplemented with 0, 20, 40, 60, or 80 mg/kg IONPs or 80 mg/kg of FeSO4 for 35 days. The feed conversion ratio (FCR) was improved in birds supplemented with 60 mg/kg IONPs. The pH24h was lower in birds supplemented with 40 mg/kg IONPs compared to that of the bulk group. Pectoral muscle fascicle diameter and fiber density were significantly increased in 20 mg/kg IONP-supplemented birds compared to those of the bulk group, respectively. The muscle fiber diameter was higher in 40 mg/kg IONP-supplemented birds compared with the bulk group. The jejunal villus height, crypt depth, and villus surface area were significantly increased with 60 mg/kg IONP supplementation, whereas villus width was decreased in birds supplemented with 40 mg/kg IONPs. The villus-height-to-crypt-depth ratio was lower in IONP-supplemented birds compared to the bulk group. IONP supplementation improved the FCR, jejunal, and pectoral muscle morphology without affecting the carcass characteristics and redox status of broilers.
KW - jejunal histology
KW - health biomarkers
KW - production performance
KW - trace minerals
KW - poultry
U2 - 10.3390/ani14010099
DO - 10.3390/ani14010099
M3 - Article
SN - 2076-2615
VL - 14
JO - Animals
JF - Animals
IS - 1
M1 - 99
ER -