Abstract
Global and local biological motion processing are likely influenced by an observer’s perceptual experience. Skilled athletes anticipating an opponent’s movements use globally distributed motion information, while less skilled athletes focus on single kinematic cues. Published reports have demonstrated that attention can be primed globally or locally before perceptual tasks; such an intervention could highlight motion processing mechanisms used by skilled and less skilled observers. In this study, we examined skill differences in biological motion processing using attentional priming. Skilled (N = 16) and less skilled (N = 16) players anticipated temporally occluded videos of volleyball attacks after being primed using a Navon matching task while parietal EEG was measured. Skilled players were more accurate than less skilled players across priming conditions. Global priming improved performance in both skill groups. Skilled players showed significantly reduced alpha and beta power in the right compared to left parietal region, but brain activity was not affected by the priming interventions. Our findings highlight the importance of right parietal dominance for skilled performers, which may be functional for inhibiting left hemispheric local processing or enhancing visual spatial attention for dynamic visual scenes. Further work is needed to systematically determine the function of this pattern of brain activity during skilled anticipation.
Original language | English |
---|---|
Article number | 1204 |
Number of pages | 18 |
Journal | Brain Sciences |
Volume | 13 |
Issue number | 8 |
DOIs | |
Publication status | Published - 15 Aug 2023 |
Keywords
- General Neuroscience