Molecular structure of human galactokinase: Implications for type II galactosemia

James B. Thoden, David J. Timson, Richard J. Reece, Hazel M. Holden

    Research output: Contribution to journalArticlepeer-review


    Galactokinase functions in the Leloir pathway for galactose metabolism by catalyzing the MgATP-dependent phosphorylation of the C-1 hydroxyl group of α-D-galactose. The enzyme is known to belong to the GHMP superfamily of small molecule kinases and has attracted significant research attention for well over 40 years. Approximately 20 mutations have now been identified in human galactokinase, which result in the diseased state referred to as Type II galactosemia. Here we report the three-dimensional architecture of human galactokinase with bound α-D-galactose and Mg-AMPPNP. The overall fold of the molecule can be described in terms of two domains with the active site wedged between them. The N-terminal domain is dominated by a sis-stranded mixed β-sheet whereas the C-terminal motif contains six α-helices and two layers of anti-parallel β-sheet. Those residues specifically involved in sugar binding include Arg37, Gl43, His44, Asp46, Gly183, Asp186, and Tyr236. The C-1 hydroxyl group of α-D-galactose sits within 3.3 Å of the γ-phosphorus of the nucleotide and 3.4 Å of the guanidinium group of Arg37. The carboxyiate side chain of Asp186 lies within ∼3.2 Å of the C-2 hydroxyl group of α-D-galactose and the guanidinium group of Arg37. Both Arg37 and Asp 186 are strictly conserved among both prokaryotic and eukaryotic galactokinases. In addition to providing molecular insight into the active site geometry of the enzyme, the model also provides a structural framework upon which to more fully understand the consequences of the those mutations known to give rise to Type II galactosemia.

    Original languageEnglish
    Pages (from-to)9662-9670
    Number of pages9
    JournalJournal of Biological Chemistry
    Issue number10
    Publication statusPublished - 11 Mar 2005


    Dive into the research topics of 'Molecular structure of human galactokinase: Implications for type II galactosemia'. Together they form a unique fingerprint.

    Cite this