Abstract
The natural characteristics of a catchment provide a template that controls the background rates of geomorphological processes operating within that catchment, which in-turn determines the background physico-chemical and hydro-morphological characteristics of the catchment's surface waters. Large differences in the natural characteristics of catchments (e.g. geology, topography, climate), lead to unique physico-chemical and hydro-morphological conditions that support unique freshwater communities. However, this uniqueness is not always recognised in international water quality guidelines, which often attempt to apply blanket water-quality guidelines to ‘protect' a wide range of ecosystems. In this paper we investigate the natural characteristics that control background concentrations of suspended particulate matter (SPM - including nano-scale particles to sand-sized sediments), which is a well-known cause of ecological degradation. At present, the management of SPM is hampered by a lack of understanding of the SPM conditions that water quality managers should aim to achieve in contrasting environments in order to support good ecological status. To address this, in this paper we examine the SPM preferences of contrasting biological communities that are in reference condition (minimal anthropogenic disturbance and high ecological status). We analyse historical SPM data collected on a monthly basis from a wide range of reference-condition temperate environments (638 stream/river sites comprising 42 different biological community-types). This analysis reveals that there are statistically significant differences (One-way ANOVA p < 0.001) between the background SPM concentrations observed in contrasting communities that are in reference condition. Mean background SPM concentrations for contrasting communities ranged from 1.7 to 26.2 mg L-1 (i.e. more than a 15-fold difference). We propose a model for predicting environment-specific water quality guidelines for SPM. In order to develop this model, the 638 reference-condition sites were first classified into one of five mean background SPM ranges (0.00-5.99, 6.00-11.99, 12.00-17.99, 18.00-23.99 and >24.00 mg L-1). Stepwise Multiple Discriminant Analysis (MDA) of these ranges showed that a site's SPM range can be predicted as a function of: mean annual air temperature, mean annual precipitation, mean altitude of upstream catchment, distance from source, slope to source, channel width and depth, the percentage of catchment area comprised of clay, chalk, and hard rock solid geology, and the percentage of the catchment area comprised of blown sand/landslide material as the surface (drift) material. Although the model is still being improved and developed, this research highlights the need to link water quality guidelines to the natural characteristics of catchments and the physico-chemical preferences of the biological communities that would naturally inhabit them.
Original language | English |
---|---|
Pages | 0-0 |
Number of pages | 1 |
Publication status | Published - 1 Dec 2012 |
Event | American Geophysical Union, Fall Meeting December 2012 - San Francisco, California, 2012 Duration: 1 Dec 2012 → … |
Conference
Conference | American Geophysical Union, Fall Meeting December 2012 |
---|---|
Period | 1/12/12 → … |