Intelligent Control and Security of Fog Resources in Healthcare Systems via a Cognitive Fog Model

Mohammed Al-Khafajiy, Safa Otoum, Thar Baker, Muhammad Asim, Zakaria Maamar, Moayad Aloqaily, Mark Taylor, Martin Randles

Research output: Contribution to journalArticlepeer-review

Abstract

There have been significant advances in the field of Internet of Things (IoT) recently, which have not always considered security or data security concerns: A high degree of security is required when considering the sharing of medical data over networks. In most IoT-based systems, especially those within smart-homes and smart-cities, there is a bridging point (fog computing) between a sensor network and the Internet which often just performs basic functions such as translating between the protocols used in the Internet and sensor networks, as well as small amounts of data processing. The fog nodes can have useful knowledge and potential for constructive security and control over both the sensor network and the data transmitted over the Internet. Smart healthcare services utilise such networks of IoT systems. It is therefore vital that medical data emanating from IoT systems is highly secure, to prevent fraudulent use, whilst maintaining quality of service providing assured, verified and complete data. In this article, we examine the development of a Cognitive Fog (CF) model, for secure, smart healthcare services, that is able to make decisions such as opting-in and opting-out from running processes and invoking new processes when required, and providing security for the operational processes within the fog system. Overall, the proposed ensemble security model performed better in terms of Accuracy Rate, Detection Rate, and a lower False Positive Rate (standard intrusion detection measurements) than three base classifiers (K-NN, DBSCAN, and DT) using a standard security dataset (NSL-KDD).

Original languageEnglish
Article number3382770
JournalACM Transactions on Internet Technology
Volume21
Issue number3
DOIs
Publication statusPublished - 16 Jun 2021

Bibliographical note

Publisher Copyright:
© 2021 Association for Computing Machinery.

Keywords

  • cognitive fog
  • Fog computing
  • fog security
  • medical data security

Cite this