TY - JOUR
T1 - Glycerol enhances fungal germination at the water-activity limit for life
AU - Stevenson, Andrew
AU - Hamill, Philip G.
AU - Medina, Angel
AU - Kminek, Gerhard
AU - Rummel, John D.
AU - Dijksterhuis, Jan
AU - Timson, David
AU - Magan, Naresh
AU - Leong, Su-lin L.
AU - Hallsworth, John E.
N1 - © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd, This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
PY - 2016/11/13
Y1 - 2016/11/13
N2 - For the most-extreme fungal xerophiles, metabolic activity and cell division typically halts between 0.700 and 0.640 water activity (approximately 70.0-64.0% relative humidity). Here, we investigate whether glycerol can enhance xerophile germination under acute water-activity regimes, using an experimental system which represents the biophysical limit of Earth’s biosphere. Spores of a variety of species including Aspergillus penicillioides, Eurotium halophilicum, Xerochrysium xerophilium (formerly Chrysosporium xerophilum), and Xeromyces bisporus, were produced by cultures growing on media supplemented with glycerol (up to 189 mg glycerol g dry spores-1). The ability of these spores to germinate and their kinetics of germination were then determined in media designed to recreate stresses experienced in microbial habitats or anthropogenic systems (water-activities from 0.765-0.575). For A. penicillioides, E. amstelodami, E. halophilicum, X. xerophilium and X. bisporus, germination occurred at lower water-activities than previously recorded (0.640, 0.685, 0.651, 0.664 and 0.637 respectively). In addition, the kinetics of germination at low water-activities were substantially faster than those reported previously. Extrapolations indicated theoretical water-activity minima below these values; as low as 0.570 for A. penicillioides and X. bisporus. Glycerol is present at high concentrations (up to molar levels) in many types of microbial habitat. We discuss the likely role of glycerol in expanding the water-activity limit for microbial function in relation to temporal constraints and location of the microbial cell or habitat. The findings reported here also have critical implications for understanding the extremes of Earth’s biosphere; for understanding the potency of disease-causing microorganisms; and in biotechnologies that operate at the limits of microbial function.
AB - For the most-extreme fungal xerophiles, metabolic activity and cell division typically halts between 0.700 and 0.640 water activity (approximately 70.0-64.0% relative humidity). Here, we investigate whether glycerol can enhance xerophile germination under acute water-activity regimes, using an experimental system which represents the biophysical limit of Earth’s biosphere. Spores of a variety of species including Aspergillus penicillioides, Eurotium halophilicum, Xerochrysium xerophilium (formerly Chrysosporium xerophilum), and Xeromyces bisporus, were produced by cultures growing on media supplemented with glycerol (up to 189 mg glycerol g dry spores-1). The ability of these spores to germinate and their kinetics of germination were then determined in media designed to recreate stresses experienced in microbial habitats or anthropogenic systems (water-activities from 0.765-0.575). For A. penicillioides, E. amstelodami, E. halophilicum, X. xerophilium and X. bisporus, germination occurred at lower water-activities than previously recorded (0.640, 0.685, 0.651, 0.664 and 0.637 respectively). In addition, the kinetics of germination at low water-activities were substantially faster than those reported previously. Extrapolations indicated theoretical water-activity minima below these values; as low as 0.570 for A. penicillioides and X. bisporus. Glycerol is present at high concentrations (up to molar levels) in many types of microbial habitat. We discuss the likely role of glycerol in expanding the water-activity limit for microbial function in relation to temporal constraints and location of the microbial cell or habitat. The findings reported here also have critical implications for understanding the extremes of Earth’s biosphere; for understanding the potency of disease-causing microorganisms; and in biotechnologies that operate at the limits of microbial function.
U2 - 10.1111/1462-2920.13530
DO - 10.1111/1462-2920.13530
M3 - Article
SN - 1462-2912
VL - 19
SP - 947
EP - 967
JO - Environmental Microbiology
JF - Environmental Microbiology
ER -