Abstract
One of the purposes of the project was to develop the method of preparation of 3D
macroporous hydrogel with a structure of interconnected pores by the use of noncovalent interactions. The combination of chitosan and noble-metal complexes was investigated as cross-linking agents for the preparation of ionic cryogels (ICs). Furthermore, the treatment of the ICs containing gold complex by glutaraldehyde results in spontaneous formation of gold nanoparticles (AuNPs) and chemical cross-linking of the cryogel. The characterization of prepared macroporous materials was carried out by the use of FTIR, SEM, TEM techniques, and texture analyzer. A new strategy for control of size distribution of AuNPs was suggested. The size distribution of obtained AuNPs and their population inside of walls of cryogels was estimated.
macroporous hydrogel with a structure of interconnected pores by the use of noncovalent interactions. The combination of chitosan and noble-metal complexes was investigated as cross-linking agents for the preparation of ionic cryogels (ICs). Furthermore, the treatment of the ICs containing gold complex by glutaraldehyde results in spontaneous formation of gold nanoparticles (AuNPs) and chemical cross-linking of the cryogel. The characterization of prepared macroporous materials was carried out by the use of FTIR, SEM, TEM techniques, and texture analyzer. A new strategy for control of size distribution of AuNPs was suggested. The size distribution of obtained AuNPs and their population inside of walls of cryogels was estimated.
Original language | English |
---|---|
Pages (from-to) | 2246-2255 |
Journal | Biomacromolecules |
Volume | 15 |
Issue number | 6 |
DOIs | |
Publication status | Published - 9 May 2014 |
Keywords
- cryogel
- gold complex
- catalysis
- gold nanoparticles
- chitosan