An Edge Computing Based Smart Healthcare Framework for Resource Management

Soraia Oueida, Yehia Kotb, Moayad Aloqaily, Yaser Jararweh, Thar Baker

Research output: Contribution to journalArticlepeer-review

Abstract

The revolution in information technologies, and the spread of the Internet of Things (IoT) and smart city industrial systems, have fostered widespread use of smart systems. As a complex, 24/7 service, healthcare requires efficient and reliable follow-up on daily operations, service and resources. Cloud and edge computing are essential for smart and efficient healthcare systems in smart cities. Emergency departments (ED) are real-time systems with complex dynamic behavior, and they require tailored techniques to model, simulate and optimize system resources and service flow. ED issues are mainly due to resource shortage and resource assignment efficiency. In this paper, we propose a resource preservation net (RPN) framework using Petri net, integrated with custom cloud and edge computing suitable for ED systems. The proposed framework is designed to model non-consumable resources and is theoretically described and validated. RPN is applicable to a real-life scenario where key performance indicators such as patient length of stay (LoS), resource utilization rate and average patient waiting time are modeled and optimized. As the system must be reliable, efficient and secure, the use of cloud and edge computing is critical. The proposed framework is simulated, which highlights significant improvements in LoS, resource utilization and patient waiting time.
Original languageEnglish
Article number4307
JournalSensors
Volume18
Issue number12
DOIs
Publication statusPublished - 6 Dec 2018

Fingerprint

Dive into the research topics of 'An Edge Computing Based Smart Healthcare Framework for Resource Management'. Together they form a unique fingerprint.

Cite this