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Ground motion in urban environment is modified by the presence of buildings, mainly this is due to the radiation 

energy emitted from a vibrating structure in the soil that alters the seismic free field motion. This effect is part of 

the bigger phenomenon referred to as site-city-interaction. Furthermore, ground response modifications induced by 

the site-city-interaction effect inside the city may also contaminate the ground motion outside the city because of 

the wave field radiated from the buildings. Traditional stochastic ground motion models used for the seismic design 

of structures and infrastructures take into account the soil deposit only, disregarding the presence of existing 

buildings nearby. This study is a first attempt to propose a ground motion analytical model able to take into account 

the influence of the urban environment. A simplified discrete model is developed so to consider its influence on the 

free field ground motion. Comparison in terms power spectral density functions and peak ground acceleration 

determined from the proposed ground motion model and those derived by conventional approaches are carried out. 

Numerical results will show the potentiality of the proposed approach to capture this complex phenomenon in the 

design process by improving the accuracy of the estimation of the response of structures to ground motion in the 

proximity of another building of above 30%. 
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1. Introduction  

Modelling of the earthquake induced ground motion is a still open public safety issue that need to be 

addressed to better predict the probability of failure of structure and infrastructure and to protect 

ultimately human lives. There is nowadays no universal recognized earthquake ground motion model 

although progresses have been made in the last few decades toward the refinement of stochastic models 

encompassing physical and/or seismological parameters (see e.g. Deodatis, 1996; Pousse et al. 2006, 

Spanos et al. 2007; Zerva,  2009; Rezaeian and Der Kiureghian 2010; Cacciola and Deodatis 2011; 

Cacciola and Zentner, 2012). It has to be emphasized, that those approaches currently proposed in the 

literature focus on the modelling of the free field ground motion, hence, without considering the 

influence of the urban environment. However, during an earthquake, a vibrating building emanates 

waves travelling through the ground over large distances. In an urban environment, the presence of 

several buildings in close proximity to one another generates the occurrence of multiple interactions 

that are referred to as seismic site-city interaction. Numerical studies on site-city interaction (see e.g. 

Clouteau and Aubry, 2001, Kham et al.,2006, Isbililiroglu et al. 2015), showed that the presence of 

buildings modifies significantly the energy of the seismic waves in the underlying soil layers resulting 

in decrement of the ground motion energy in some areas and increment in others.  Therefore, the 

consequent ground-motion acceleration at the free-field used for designing civil engineering structures 

can be significantly different from the predicted one out-side the urban area or as so-called, free field 

motion. Several methods can be used to simulate site-city interaction effects. A recent review of 

structure-soil-structure interaction problem can be found in Menglin et al. (2011). Guéguen and Bard 

(2002) showed the effect of the city can be accounted for by modelling the structures as simple 

oscillators. Tsogka and Wirgin (2003) used omogenized blocks to study the seismic response in an 

idealized city. An homogenization method has been used also by Boutin and Roussillon (2004) to 

determine the multiple interactions between buildings. Groby et al. (2005) studied the seismic response 

of idealized 2D cities using a continuum viscoelastic medium. Ghergu and Ionescu studied the 

collective behavior of the buildings in a city like environment through a partial differential equation 

coupled with an ordinary differential equation through a special class of boundary conditions. More 

recently Isbililiroglu et al. (2015) used a finite element approach using parallel-computing code to 



simulate the ground motion during the 1994 Northridge earthquake and taking into account the coupled 

responses of multiple simplified building models located within the San Fernando Valley. The role of 

basing shapes and city density in the site-city interaction effect on the ground motion characteristics has 

been studied by Sahar et al. (2015). In this paper, a ground motion model for urban environment is 

proposed. The model aims to couple the traditional ground motion stochastic models defined at the free 

field and analytical attenuation law models to consider the impact of a vibrating structure on the 

surrounding free field ground motion. Verification of the proposed model is carried out by comparison 

of the results in terms of 50% fractile peak acceleration with pertinent Monte Carlo study conducted on 

a selected finite element model. Finally, an application shows the improvement of the prediction of the 

peak response acceleration with the propose ground motion model against the traditional approach 

based on the free field model. 

 

 

2. Stochastic formulation of Ground Motion Model for Urban Environment 

 

During an earthquake event, buildings of urban areas such as those shown in Figure 1, are experienced 

by dynamic vibrations  induced by the joint effect of the  free field motion  of the soil deposit, UFFM, 

with the mutual interactions among foundations, Uf(s,ω), where s is the spatial coordinate. The latter 

is referred to as Structure-Soil-Structure interaction (SSSI), or site-city interaction. Therefore, the 

seismic wavefield is altered by the presence of the buildings that can be interpreted as vibrating 

obstacles, inducing scattering to the ground motion waves. In order to analyse this phenomenon, the 

mechanical model illustrated in Figure 2 is herein proposed. The model is able to simulate the scattering 

of the seismic wavefield around a building by coupling a discrete model of a SDOF superstructure 

founded on compliant base with the analytical attenuation formulation proposed by Dobry and Gazetas 

(1988). The simple discrete model (Figure 2a) comprises a SDOF superstructure characterized by 

structural stiffness, 𝑘str, and mass at the top of the superstructure, 𝑚str, and a foundation-soil system, 

fully defined by stiffness, 𝑘𝑆𝑆𝐼 for capturing soil-structure interaction effects and mass at foundation 

level, 𝑚f. Only the horizontal absolute components of the structure and foundation displacements, U 

and Uf, respectively, are considered by this proposed formulation. 

 

Figure 1 Seismic response of buildings in urban environment 

 

Consider the discrete model of Figure 2a, the frequency transfer function of the foundation 

displacement, Uf(ω), against  the input motion at the base of the foundation, usually referred to as 

foundation input motion, UFIM(ω), is readily derived as follows: 



Hf (ω) =
Uf(ω)

UFIM(ω)
=

ω̃f
2(ω2−ω̃0

2)

(ω̃0
2−ω2)(ω2−ω̃f

2)+ω2(k̃str mf⁄ )
        (1) 

  

where  

ω0
2 = (

𝑘str

𝑚str

)           (2) 

is the squared circular natural frequency of the fixed base SDOF superstructure and, 

ωf
2 = (

𝑘SSI

𝑚f

)            (3) 

is the squared circular natural frequency of the soil-foundation system. The use of the tilde accent 

indicates that the related quantity is amplified by the term (1 + iη), where i = √−1
2

is the imaginary 

unit and, η is the loss factor. Once Hf (ω) is determined, the wavefield at ground level in the city, 

Ug
c(S,ω), induced by the motion of the foundation Uf(ω) at a certain distance S need to be determined. 

By approximating the foundation of the structure to an equivalent cylindrical shape the wavefield, 

Ug
c(S,ω) approximating the foundation can be expressed as follows 

Ug
c(S,ω) = α(S,ω)Uf(ω)          (4) 

in which α(S,ω) is the attenuation function obtained by Dobry and Gazetas (1988) that adopt the 

formulation of the asymptotic cylindrical waves propagating from a cylinder subjected to harmonic 

signal defined by Morse and Ingard (1986): 

α(S, ω) =
Ug
c(S, ω)

Uf(ω)
= √

r

S
exp (−

ηωS

Vw
) exp⁡[−iω (

S

Vw
)] 
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where t is the time, r is the equivalent radius of the foundation, η is the hysteretic damping of the 

soil,⁡Vw is the velocity of the outgoing waves. The velocity of the waves,  Vw, depends on the relative 

position of the considered field point as shown in Figure 2b; if the alignment between the foundation 

and the field point is perpendicular of the propagation of the travelling waves, i.e., it is in the upper or 

lower quadrant, Vw ≅ Vs, in which Vs is the shear wave velocity of the soil, otherwise, if it is the left or 

right quadrant, Vw ≅ VLa, where VLa = (3.4Vs) [π(1 − ν)]⁄  is the Lysmer’s analogue velocity and ν is 

the Poisson coefficient. 

 

Figure 2 Coupled system to derived wavefield around a structure a) structural discrete model and b) attenuation model (after 

Dobry and Gazetas, 1988) 
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3. Stochastic response to Gaussian bedrock ground motion 

 

Consider the scenario described in Figure 3 defined by structure at the location A subjected to the free 

field motion, Ug(ω). Because of the vibrations induced by the earthquake excitation, the structure 

emanates outgoing waves on the surrounding wavefield. At a certain distance S, the surface ground 

motion Ug
c(S,ω) is hence, given by the superposition of the free field motion at the point B, Ug(ω), and 

the scattered motion, α(S,ω)Uf
rel(ω) or equivalently, α(S,ω) (Uf(ω) − Ug(ω)); therefore, the seismic 

wavefield Ug
c(S,ω) is expressed as follows: 

Ug
c(S,ω) = Ug(ω) + α(S,ω) (Uf(ω) − Ug(ω))        (6) 

The absolute foundation displacement, Uf(ω), is derived by Eq. (1). It is worth emphasizing that for 

normalized frequencies, 𝑎0 =
𝜔𝑟

Vs
< 0.2~0.25 or for shallow foundations (Jennings and J. Bielak, 1973, 

 

Figure 3 Seismic wavefield surrounding a building induced by bedrock excitation 

Bielak, 1975, Wolf, 1985, Carbonari et al., 2018), the foundation input motion, UFIM(ω), is assumed 

comparable with the free field motion, Ug(ω), i.e. Ug(ω) ≅ UFIM(ω). Therefore, Eq. (6) can be 

rewritten by using Eq. (1) as follow: 

Ug
c(S,ω) = Ug(ω) + α(S,ω)(Hf (ω) − 1)Ug(ω)              (7) 

or equivalently: 

Ug
c(S,ω) = [1 + α(S,ω)Hf

rel(ω)]Ug(ω)        (8) 

where Hf
rel(ω) is the transfer function of the foundation in relative displacement, defined as Hf

rel(ω) =

Hf (ω) − 1. 

The free field motion at the ground surface,⁡Ug(ω), in Eq. (8), is obtained directly by adopting ground 

motion models for specific soil types or through local site response analysis in which the following 

relation holds: 

Ug(ω) = HSoil(ω)Ub(ω)         (9) 

where HSoil(ω) is the transfer function of the soil deposit (Kramer, 1996) and Ub(ω) is the ground 

motion at the bedrock. The latter is herein modelled for simplicity sake by a Gaussian monocorrelated 

Uf(ω) A B 

U𝑏  

Ug
c(s, ω) 

Superstructure 1 



zero-mean stationary process defined by the power spectral density function (PSD) of the ground 

displacement GUbUb
(ω) Therefore, using Eq. (8) and Eq. (9) the stochastic ground motion wavefield is 

derived as follows: 

GUg
cUg

c(S,ω) = |1 + α(S,ω)Hf
rel(ω)|

2
|HSoil(ω)|

2GUbUb
(ω) (10) 

or, equivalently,  

GÜg
cÜg

c(S,ω) = |1 + α(S,ω)Hf
rel(ω)|

2
GÜgÜg

(ω) (11) 

 

where GÜgÜg
(ω) is the ground motion acceleration power spectral density at the free field that can be 

determined using traditional models proposed in literature (e.g. Clough and Penzien, 1975), or by a 

spectrum compatible power models (e.g., see Cacciola 2010, and Giaralis and Spanos, 2012) . The 

power spectral density function defined by Eq. (11) defines the ground motion in the proximity of a 

vibrating building through a Gaussian stationary model. The more the distance S increases (and 

α(S,ω)⁡decreases)  the smaller will be the influence of the vibrating building to the earthquake induced 

ground motion so to converge to the traditional free field ground motion models. 

4. Stochastic response to incoherent bedrock ground motion 

The proposed stochastic ground motion model in the proximity of a vibrating building of Eq. (11) is 

herein extended to take into account an incoherent ground motion at different point of the free field. 

The excitation at the bedrock induced by an earthquake event with source far away from the soil deposit 

is due to seismic waves travelling through the rigid bedrock underneath a soil deposit. This phenomenon 

referred to as wave passage effect, results in a difference of arrival time at separate ground surface 

locations and hence, to a loss of coherency of the ground motion. Therefore, the ground motion at the 

bedrock, Ub(s,ω) , as a function of the spatial coordinate,  s , is more conveniently expressed as 

Gaussian stationary stochastic vector process (see e.g. Deodatis 1996). Let us consider the scenario in 

Figure 4, Ub(s,ω) can be expressed as a vector of the two location taken into account, as follows: 

𝐔b(ω) = [
Ub(0, ω)

Ub(S,ω)
] = [

Ub
A(ω)

Ub
B(ω)

].       (12) 

Therefore, a system of equations can be derived by using Eq. (6) at the location A (𝑠 = 0) and B (𝑠 =

S) as follows: 

{
Ug
c,A(0,ω) = Uf(ω) = Hf (ω)Ug

A(ω)

Ug
c,B(S, ω) = Ug

B(ω) + α(S,ω) (Uf(ω) − Ug
A(ω))

     (13) 

or in matrix notation under the assumption the soil transfer functions  underneath point A and B are the 

same HSoil
A (ω) = HSoil

𝐵 (ω) = HSoil(ω): 

[
Ug
c,A(S,ω)

Ug
c,B(S,ω)

] = [
Hf (ω) 0

α(S,ω)Hf
rel(ω) 1

] [
Ub
A(ω)

Ub
B(ω)

]HSoil(ω)      (14) 

and after simple algebra the following expression is achieved: 



𝐆Ug
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α(S,ω)Hf
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] |HSoil(ω)|
2𝐆UbUb

(ω) [
Hf (ω) 0
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]

∗

       (15)

            

 where  

𝐆UbUb
(ω) = [

GUbUb

AA (ω) GUbUb

AB (ω)

GUbUb

BA (ω) GUbUg

BB (ω)
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is the power spectral density matrix of the ground motion at the bedrock and 

𝐆Ug
c(S,ω) = [

GUg
c

AA(S,ω) GUg
c

AB(S,ω)

GUg
c

BA(S,ω) GUg
c

BB(S,ω)
]        (17) 

is the power spectral density matrix of the wavefield around a considered building. 

Equation (15) can be expressed in terms of a correction the free field ground motion vector in analogy 

of equation (11) in the following form. 

𝐆Üg
c(S,ω) = [

Hf (ω) 0

α(S,ω)Hf
rel(ω) 1

] 𝐆ÜgÜg
(ω) [

Hf (ω) 0

α(S,ω)Hf
rel(ω) 1

]

∗

⁡     (18) 

So to be used in conjunction with well know stochastic ground motion vector processes (see e.g. 

Deodatis 1996; Zerva 2009; Cacciola and Deodatis 2011) 

 

Figure 4 Seismic wavefield surrounding a building induced by incoherent bedrock excitation 

 

5. Numerical results 

 

 5.1 Validation of the proposed analytical model  

In this section the proposed ground motion model presented in Eq. (11) is validated through the study 

of the numerical finite element model illustrated in Figure 5. It comprises a superstructure located at 

the point A, defined by the stiffness, 𝑘𝑠𝑡𝑟, and mass, 𝑚𝑠𝑡𝑟 founded on an embedded foundation of 1m-

deep and 2m-wide, characterized by soil-foundation stiffness, 𝑘SSI, and foundation mass, 𝑚f . Values 

evaluated from the finite element model, are reported in  

Uf(ω) A B 

Ug(S, ω) 

Ug
c(S, ω) 

Superstructure 1 

Ub(S, ω) 

Ug(0,ω) 



Table 1. The soil domain, characterized by average shear wave velocity, Vs = 400𝑚 𝑠⁄ ,  is 30m-deep 

and 800m-wide in order to avoid reflections of the waves on the lateral free boundaries of the domain. 

The soil domain is modelled with 9-Node Quadrilateral Elements under plane strain conditions without 

vertical degree of freedom. A Rayleigh-type damping is applied by considering a loss factor, 𝜂 = 0.1, 

for both structural and soil domain. Seismic excitation is applied as prescribed acceleration to the 

bottom of the soil deposit. Monte Carlo simulation is performed by considering 15 Gaussian white noise 

signals with 500Hz cut-off frequency. The average PSDs obtained on the surface at the location A (𝑠 =

0) and B (𝑠 = S) are then compared to the proposed analytical PSD defined by Eq. (11) on Figure 6. It 

can be seen that the proposed curve matches well the average PSD obtained by MCS up to 10-15 Hz as 

mentioned in the previous section, i.e. for normalized frequencies 𝑎0 < 0.2~0.25. This limitation is 

acceptable for seismic excitations since the energy is usually restricted to the range 0-10Hz. On the 

same Figure 6, the PSD of the free field motion Ug(ω) obtained from Eq. (9), indicated through a 

dashed line, is superimposed in order to visualize the effect of the wave scattering of the wavefield 

induced by the superstructure. 

 

Figure 5 Close-up of the Finite Element Model used to analyse the impact of a structure on the surrounding soil 

 

Table 1 Mechanical parameters used for the proposed discrete model 

 𝑘𝑠𝑡𝑟 𝑚𝑠𝑡𝑟 𝑘SSI 𝑚f 

Structure 1 𝑘𝑠𝑡𝑟 = ω0
2𝑚𝑠𝑡𝑟 Var. 693525300 N/m 15400 kg 

 

Soil Superstructure 
𝑘𝑠𝑡𝑟  A B 

𝑚𝑠𝑡𝑟  



 
 

Figure 6 PSDs at a)point A and b) point B at 20m distance obtained by the proposed PSD and comparison with MCS 

 

5.2 Parametric Analysis 

In this section the influence of the structure on the surrounding soil is evaluated. The proposed ground 

motion model of Eq. (11) also depends on the structural characteristics of the superstructure through 

Eq. (1) such as the natural circular frequency ω0 or equivalently, the structural period T =
2𝜋

ω0
 which 

can be made explicit in the proposed PSD such as GUg
cUg

c(T, s,ω). In order to study the effect of the 

wave scattering as a function of the structural period T, the fractile of order p of the distribution response 

of peek acceleration of the wavefield is obtained by means of the first crossing problem: 

X𝑈̈(T, s) = 𝜂𝑈̈√𝜆0,𝑈̈ (19) 

where 𝑇𝑠 is the time observing window; ⁡ 𝜆0,𝑈 is the zero-order response spectral moment and⁡𝜂𝑈̈ is the 

peak factor (see e.g. Vanmarcke and Gasparini 1977)  given by  

𝜂𝑈̈ = √2 ln {2𝑁𝑈̈ [1 − exp [−𝛿𝑈̈
1.2√𝜋 ln(2𝑁𝑈̈)]]} 

(20) 

with 

𝑁𝑈̈ =
𝑇𝑆

−2π⁡ln 𝑝
√
𝜆2,𝑈̈
𝜆0,𝑈̈

 

(21) 

and 

𝛿𝑈 = √1 −
𝜆1,𝑈̈
2

𝜆0,𝑈̈𝜆2,𝑈̈
 

(22) 

where the response spectral moments 𝜆𝑖,𝑈 are given by the following equation: 

𝜆𝑖,𝑈̈(T, s) = ∫ 𝜔𝑖GÜgcÜgc(T, s,ω)𝑑𝜔
+∞

0
. (23) 

An amplification index, AI, is then obtained by normalizing Eq. (19)  to the response of the free field 

motion as follows: 

𝐆
U
f(
0
,ω

)  
[m

2
s-3

] 

𝐆
U
gc
( S
,ω

)  
[m

2
s-3

] 



AI(s, T) =
X𝑈̈(T, s)

X𝑈̈FFM
(s)

 
(24) 

 

Figure 7 shows the normalized response, AI(s, T), of the 50% fractile of the peak acceleration (p = 0.5) 

for increasing distances, 𝑠 from a vibrating structure with fundamental periods, T. In Figure 7a, the 

amplification index is obtained by considering a structure with mass, 𝑚str = 200000kg; it worth 

mentioning that there are zones where the structure has a damping effect on the surrounding soil by 

decreasing the peak response and sectors where the structure induced a detrimental effect by increasing 

the maximum response of the soil. In particular, beneficial effects of about -11% are observed for 

natural structural periods close by the natural period of the site deposit (Tsoil = 0.3s) whereas for 

structural period shorter than the soil period amplifications of the response are obtained up to +30%, 

similarly as observed by Kobori et al. (1974). Figure 7b shows the same analysis done previously with 

a heavier mass, 𝑚str = 500000kg; it could be observed higher deamplifications of the response for a 

broader range of structural periods and distances. Remarkable, reductions up to 23% are obtained for 

structural periods close to the natural period of the site deposit and amplifications higher than 90% of 

the free field motion are achieved. 

  
Figure 7 Normalized amplification wavefield of the 50% peak acceleration fractile around a structure with a) 𝑚𝑠𝑡𝑟 

=200,000kg and b)⁡𝑚𝑠𝑡𝑟 =500,000kg 

 

Use of the proposed ground motion model for structural design 
Finally, an application of the proposed ground motion for structural design is shown. Consider the 

scenario in Figure 8 in which it is aimed to calculate the response of the structure 2 located at the point 

B influenced by the adjacent building 1 at location A placed at a distance, S = 3m. The two structures 

are characterized by the mechanical parameters given in  

Table 1 determined for a structural period T𝐴 = 0.2s and mass 𝑚str
𝐴 = 500000 kg and   structural 

period T𝐵 = 0.5s 𝑚str
𝐵 = 200000 kg  for structure 1 and 2, respectively. A Monte Carlo Simulation 

with 30 stationary Gaussian white noises is performed. The average peak acceleration of the structure 

2 at location B is equal to about 16.64 
𝑚

𝑠2
. The 50% peak acceleration fractile obtained by the proposed 

PSD is 17.36 
𝑚

𝑠2
, hence, with a small error of  4.33% with respect the numerical analysis because of the 

neglected interactions between the buildings. 
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It is worth noting that by using a conventional approach where the influence of the nearby vibrating 

building is neglected on the building, namely by considering the structure 2 by itself, the average peak 

structural acceleration would be 12.27 
𝑚

𝑠2
, hence, 35.69% smaller than the actual dynamic peak response. 

 

 

 

Figure 8 Close-up of the Finite Element Model used to analyse the dynamic response in urban environment. 

 

Table 2 Analytical and Numerical results of the application on the proposed PSD for design in urban environemnt 

Structure 2 

(Location B) 

MCS – coupled 

system 

Analytical – 

coupled system 

MCS – single 

structure 

Relative Error 

using 

conventional 

procedure 

Relative 

Error using 

proposed 

procedure 

Median Peak 

acceleration 
𝑚

𝑠2
 

16.64 17.36 12.27 -35.69% -4.33% 

 

 

6. Concluding remarks 

 

In this paper, a stochastic ground motion model for simulating the seismic wavefield in the proximity 

of a vibrating building is proposed. A discrete model of structure on compliant foundation simulating 

the soil-structure interaction effects has been coupled with an analytical model of cylindrical wave 

propagation to capture the attenuation effects with distance of the vibrations induced by a building. It 

has been observed that during an earthquake, the joint effect of the seismic waves with these emitted 

scattered waves may produce amplifications or reductions of the free field motion. In particular, for 

small-medium distances, amplifications of the seismic wavefield has been observed when the structural 

natural frequency is lower than the natural frequency of the soil deposit, and vice-versa. Relevant 

amplifications over 90% of the free field motion have been obtained. Results obtained by the proposed 

ground motion model in urban environment has been verified through MCS of a numerical finite 

element model. Finally, an application of the proposed model has been carried out to show its relevance 

for seismic design purposes.   The proposed model was able to well predict the dynamic response of a 

building collocated at a distance of 3m from another building with a small error of 4% while a relative 

A B 

Superstructure 1 

Distance: 3m 

Superstructure 2 



error of about 36% has been obtained through traditional approach. This proves the importance of using 

specific ground motion models for urban environment for a reliable seismic design. Further studies will 

focus on the wavefield around more than two structures by extending the proposed model through a 

superposition approach.  
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