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Abstract 

Susceptibility to adverse drug reactions (ADRs), multimorbidity, and frailty are associated 

with human ageing, yet there is wide variation in the severity and age at which individuals 

are afflicted.  Identifying genetic markers of increased risk of this phenotype would help 

stratify individuals to specialist interventions.  Nuclear factor erythroid derived-2 like 2 

(Nrf2) regulates a cell’s response to stressors, including the expression of enzymes involved 

in drug-metabolism.  Its expression has been shown to decline in animal ageing models.  In 

this study we tested the hypothesis that Nrf2 gene transcription/translation decline in human 

ageing, and that single nucleotide polymorphisms (SNPs) in the Nrf2 gene are associated 

with increased ADR risk, multi-morbidity, and frailty in older people.  Gene expression and 

protein levels were measured in peripheral blood mononuclear cells (PBMCs) donated from 

healthy patients aged 18-80 years old.  Nrf2 genotypes were determined at three loci in a sub-

population of patients recruited to the PRIME study (a multicentre prospective cohort study 

that followed older adults for 8-weeks post-discharge to determine ADR).  Both Nrf2 gene 

and protein expression declined significantly with age in human PBMCs.  In the PRIME sub-

study population, the rs35652124 Nrf2 SNP was associated with increased ADR risk, and 

decreased frailty and multi-morbidity scores. 
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1. Introduction 

Older people are the largest consumers of healthcare interventions and the recipients of the 

majority of prescribed medications.  As a population, they are characterized by 

multimorbidity, frailty, and polypharmacy, and suffer more adverse drug reactions (ADRs) 

requiring hospitalization than younger adults (1).  Recent studies have attempted to identify 

clinical and social predictors of this phenotype, notably multimorbidity, frailty, and an 

increased susceptibility to ADRs, in an attempt to build models to predict those in need of 

early, or specialist intervention.  For example, several tools have been developed which use 

clinical factors to identify older patients at risk of developing an ADR (2-4).  However, it is 

clear that clinical and social factors alone do not explain all variation in the populations 

studied. Uncertainty remains regarding why some individuals, with limited exposure to 

known risk factors, still develop marked multimorbidity, frailty and increased susceptibility 

to ADRs in old age. 

 

Oxidative stress is at the core of many theories of ageing (5).  Indeed, Reactive Oxygen 

Species (ROS) are thought to play a central role in the pathology of several age-related 

diseases such as Parkinson’s disease (6) and cognitive impairment (5, 7) where they are 

thought to disrupt signaling pathways and cause cellular damage.  Organisms have, however, 

evolved an elaborate system to protect against oxidative damage.  Under conditions of acute 

oxidative stress, the transcription factor Nuclear Factor (Erythroid Derived 2)-Like 2 (Nrf2) 

becomes activated and induces the expression of a myriad of antioxidant genes.  However, 

recent evidence from rodent models shows that the activity of Nrf2 declines with age, along 

with a decrease in downstream anti-oxidant protein levels (8), increasing susceptibility to 

age-related diseases and the signs of ageing (9-13).  What is particularly interesting is that 

Nrf2 not only induces the expression of antioxidant proteins, but also enzymes and 
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transporters involved in Phase I and II drug-metabolism, such as glutathione-s-transferase, 

and p-glycoprotein (14).    If a decline in Nrf2 activity is mirrored in human ageing, not only 

could this provide an explanation for increasing multi-morbidity and frailty, but also for the 

increased risk of ADR and altered pharmacokinetics seen in human ageing.  Interestingly, 

there is some emerging evidence that both the nuclear concentration of Nrf2 protein, and its 

activity are reduced with age in human bronchial epithelial cells (15).  Whether a reduction is 

Nrf2 levels during ageing is exhibited in other human cells types, and whether it is the cause 

of the ageing phenotype has yet to be elucidated. 

 

There are several Single Nucleotide Polymorphisms (SNPs) in the promoter region of the 

human Nrf2 gene which affect the expression of Nrf2 in vivo.  These SNPs have been shown 

to associate with specific age-related diseases, including Acute Lung Injury (16), impaired 

forearm vasodilator response (17), and Parkinson’s Disease (18).  We might hypothesize 

therefore, that in the context of an age-related decline in Nrf2, individuals possessing a 

variant allele may be more sensitive to the adverse effects of medicines, have a greater 

number of co-morbidities, and are frailer.  This explorative study therefore has two main 

aims: (1) to test for an age-related decline of Nrf2 transcription and translation in peripheral 

blood mononuclear cells (PBMCs), and (2) to establish whether common SNPs in the 

promoter region of the Nrf2 gene are associated with an increased susceptibility to ADRs, 

multimorbidity, and frailty in older individuals. 
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2. Methods 

2.1 Ethical approval 

Ethical approval was granted by the University of Brighton Tier 2 Research Ethics committee 

(CRECLHPS-16-063) and by the South Central – Berkshire B Research Ethics Committee 

(16/SC/0240). 

 

2.2 Changes to the expression of Nrf2 with age 

2.2.1 Participants 

A convenience sample of healthy individuals (volunteers), ≥ 18-years-old were recruited over 

an 8-month period from a population of University students and staff.  Participant’s age, 

gender, details of regular medicines used, details of chronic medical conditions, and smoking, 

alcohol and recreational drug taking behaviour were recorded.  Each participant donated 6 

mL blood.  To detect a medium to large effect size (Cohen’s f) of age on Nrf2 expression, 

with 80% power at a significance level of 0.05 we calculated the required sample size to be in 

the region of 80 participants. 

 

2.2.2 Isolation of peripheral blood mononuclear cells (PBMCs) 

PBMCs were isolated from donated whole blood by density gradient centrifugation (Ficoll-

Paque Plus (GE Healthcare Life Sciences, UK)) within 4 hours of donation according to 

established protocols.  Isolated PBMCs were split into two microcentrifuge tubes for 

determination of Nrf2 gene and protein expression. 

 

2.2.3 Extraction of messenger RNA 

Messenger RNA (mRNA) was extracted from PBMC pellets within 2 hours of isolation using 

a RNeasy Mini Kit (Qiagen, Hilden, Germany) in accordance with the manufacturer’s 
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instructions.  Extracted mRNA was immediately converted to cDNA using QuantiTect 

Reverse Transcriptase (Qiagen, Germany).  cDNA samples were then stored at -20oC until 

later analysis. 

 

2.2.4 Quantitative real time polymerase chain reaction (q-rtPCR) 

Quantitative real time polymerase chain reaction (q-rtPCR) was carried out using a Rotor-

Gene Q 5plex PCR machine (Qiagen, Germany).  Separate cDNA samples from each 

participant were mixed with SYBR green MasterMix (Qiagen, Germany) along with forward 

and reverse primers (Eurofins Genomics, Germany) for either Nrf2 (gene of interest), 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or 18s ribosomal subunits (both 

housekeeping genes).  Each participant sample was run in duplicate.  Primer sequences are 

listed in Table 1.  The conditions for q-rtPCR were: initial denaturation 95oC for 15 mins, 

followed by 40 cycles at 94oC for 15 s, 55oC for 30 s, and 72oC for 30 s. 

 

The log abundance, and log fold change of Nrf2 was determined using the Matz analytical 

method (MCMC.qpcr package) (19) in the statistical software program R (20). 

 

2.2.5 Determination of Nrf2 protein levels in PBMC samples 

Expression of Nrf2 protein was carried out using enzyme-linked immunosorbent assay 

(ab207223; Abcam, UK).  Isolated PBMCs were suspended in lysis buffer, and then prepared 

for the assay according to the manufacturer’s instructions.  Absorbance was measured using 

an Elisa Plate Reader at a wavelength of 450 nm with a reference set at 665 nm. 
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2.3 Association of Nrf2 genotype / haplotype with adverse drug reactions, multimorbidity 

and frailty 

 

2.3.1 Participants and recruitment 

A subset of older patients who had recently participated in the PRIME study (4, 21) were 

invited to send a cheek-swab of genetic material to establish their genotype at three Nrf2 SNP 

loci (rs35652124, rs6706649 and rs6721961) and to provide consent for study co-ordinators 

to access participant data collected during the original PRIME study .  The PRIME study was 

a large multi-centre study investigating the incidence and cost-implications for medication-

related harm (including ADR) in older people 8 weeks post-hospital discharge.  Inclusion 

criteria were: (1) prior participation in the PRIME study.  Exclusion criteria were: (1) PRIME 

participants who measured <7/10 on the abbreviated mental test score (AMTS) during the 

PRIME study, or those who during a follow-up phone call were deemed to have insufficient 

capacity and (2) deceased following participation in PRIME study (as determined by 

examination of hospital electronic records). 

 

2.3.2 PRIME study participants and dataset 

The PRIME study recruited 1280 older adults at hospital discharge from 5 hospitals in 

England between 2013 to 2015 (21).  Patients were assessed for the presence of an ADR over 

an 8-week period by a senior pharmacist using the Narajo algorithm (22).   A frailty index 

was developed and internally validated (23) based on the Rockwood approach (24).  This 

index included 55 age-related deficits from multiple domains (e.g. morbidity, cognition, 

mood, strength and mobility, nutrition, daily function).  Each patient’s disease burden was 

calculated by (1) a summation of comorbidities and (2) calculating a Charlson Index score 

using established criteria (25). 
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2.3.2 Sample size 

In a study investigating the association of the -617 (rs6721961) single nucleotide 

polymorphism (SNP) with Acute Lung Injury, Marzec et al. (16) demonstrated the SNP to 

increase the odds of disease by approximately 6-fold.  If we consider the odds ratio of Nrf2 

SNPs on the ageing phenotype to be similar to this value, and if we assume the population 

ADR rate to be around 10%, then this equates to an effect size of w=0.280.  By setting the 

significance level to 0.05 and power to 0.8, we therefore estimated a suitable sample size to 

be 100 participants. 

 

2.3.3 Genotyping of genetic material 

Genomic DNA was extracted from donated cheek swabs (Isohelix SK-1S; Isohelix, UK) 

using DNeasy Blood and Tissue Kits (Qiagen, Germany).  Isolated gDNA was checked for 

purity using a Nanodrop® Lite Spectrophotometer (Sigma, UK), before storage at -20oC 

prior further analysis.  DNA deemed to be of insufficient quality or quantity was discarded 

(e.g., yield < 1 ng/microL and A260/A280 < 1.4). 

 

Isolated gDNA samples were amplified using HotStar Taq Mastermix Kit (Qiagen, Germany) 

with forward and reverse primers for the Nrf2 gene (Eurofins Genomics, Germany; Table 1).  

Polymerase Chain Reaction conditions were as follows: 95oC for 4 mins (initial 

denaturation), then 35 cycles of 95oC for 45 s, 56oC for 45s and 72oC for 45 s, followed by a 

final elongation step at 72oC for 10 mins. PCR products were sequenced by Sanger 

sequencing.  Genotype was determined by visual analysis of the electropherogram at the 

rs35652124, rs6706649 and rs6721961 loci. 
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2.4 Data and statistical analysis 

When testing for age-related changes to Nrf2 gene expression, participants were stratified in 

age categories (18-29, 30-39, 40-49, 50-59, 60-69, >70). Log abundance and log-fold change 

of Nrf2 as a function of age category were then analysed using the Markov Chain Monte 

Carlo (MCMC) analytical method described by Matz et al. (MCMC.qpcr R statistical 

package, 2013) (19).  The MCMC.qpcr package uses a generalised linear mixed model based 

on lognormal-Poisson error distribution, that is fitted using MCMC.  Data from the qPCR 

experiments (gene of interest, and house-keeping genes) were organised according to 

participant and age-category.  Results were tested for significance using a One-way ANOVA 

with Dunnet’s post-hoc correction for multiple comparisons.  The Changes in Nrf2 protein 

expression were compared between participants aged <30 and >30 years old using an 

unpaired Student’s t-test. 

 

Genotype and haplotype association studies across all ages were conducted using Haploview 

software (Broad Institute, www.broadinstitute.org/haploview).  The software uses  a two 

marker expectation maximisation (EM) algorithm to estimate the maximum-likelihood values 

of the four gamete frequencies (26), given as Chi2 with significance at 5%.  Odds ratios and 

95% confidence intervals were determined from 2x2 contingency tables for single gene or 

haplotype of interest in cases and controls.  Single gene association analyses were conducted 

on the whole cohort, and then on a sub-population of participants aged 65-79 years old.  

Mann-Whitney tests were used to test for significance in single gene association analyses as 

the data followed a non-Gaussian distribution.  

 

Data handling was conducted in Microsoft® Excel.  Descriptive statistics and statistical 

testing (Chi2, analysis of variance (ANOVA), Student’s t-test, Mann-Whitney U test and 
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post-hoc analyses) were carried out using Graphpad Prism for Mac Version 6.00 (Graphpad 

Software, La Jolla California, USA).  Sample and power analysis, and Monte Carlo Markov 

Chain q-rtPCR analysis were conducted in R (R Core team, 2014 (20)), using the ‘pwr’ and 

‘MCMC.qpcr’ packages respectively.  Statistical significance was accepted if p<0.05.  Data 

are presented as mean ± standard deviation unless indicated otherwise. 



 11 

Results 

2.5 Changes to the expression of Nrf-2 with age 

2.5.1 Participant demographics 

A total of 55 healthy volunteers provided consent and were enrolled into this part of the 

study.  The median age was 30 years (range 18-75), with 25 male participants (45%).  

Twenty-two participants (40%) self-reported at least 1 chronic medical condition, with the 

same number taking at least 1 regular medication.  Seven participants reported smoking at 

least 1 cigarette regularly each week, and thirty-nine participants (71%) reported consuming 

alcohol regularly, with a median of 4.0 units consumed each week (range 0-16).  As might be 

expected, we found a significant relationship between age category and both the number of 

reported chronic medical conditions, and the number of regular medications taken by 

participants (Chi2 test, p<0.001 and p<0.01 respectively).  A breakdown of the sample 

characteristics according to age category is provided in Table 2. 

 

2.5.2 Nrf-2 gene expression changes with age 

Using the Markov Chain Monte Carlo analytical method described by Matz et al. (2013) 

(19), we found that the Log abundance of Nrf2 is significantly lower in those aged >70 

compared to all younger age groups (p<0.0001, One-way ANOVA with Dunnet’s post-hoc 

correction for multiple comparisons; Figure 1A).  Similarly, we found that the negative Log-

fold change in Nrf2 is significantly greater in the >70-year-old age-group compared to all 

other ages (p<0.0001, One-way ANOVA with Dunnet’s post-hoc correction for multiple 

comparisons; Figure 1B).  Despite recruiting fewer participants than our target sample size, 

post-hoc analysis revealed a larger than anticipated effect-size of f=0.64, and power (β-

1)=0.95. 
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2.5.3 Nrf-2 protein levels changes with age 

To test whether translation of the Nrf2 gene is reduced with age, we measured Nrf2 protein 

levels in PMBCs extracted from volunteers.  The reason for looking at both Nrf2 mRNA and 

protein levels is because the basal level of Nrf2 protein is determined by a combination of 

both proteasomal degradation of Nrf2 protein, and Nrf2 gene transcription / translation.  A 

decrease in Nrf2 protein levels coupled with a decrease in Nrf2 gene expression will tell us 

that the mechanism is primarily transcription related, whereas a reduction in protein levels 

without a decrease in gene-expression will suggest that the mechanism is translation / 

degradation related.   

 

Unfortunately, several protein samples were used up from our original sample of 55 which 

meant that we were unable to compare protein levels across our originally determined age-

categories (as several categories contained only single measurements).  Instead, we compared 

Nrf2 protein expression between volunteers aged <30 years old (n=9) to those aged >30 years 

old (n=9) in two equally sized groups.  We found that Nrf2 protein expression was 

significantly lower in the >30-year-old age-group compared to the younger group (0.065 ± 

SEM 0.013 vs. 0.033 ± SEM 0.006 AU in <30-year-old and >30-year-old respectively; 

p<0.05, unpaired Student’s t-test; Figure 1C), in line with changes observed in gene 

transcription.  
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2.6 Association of Nrf-2 genetic polymorphisms with characteristics of ageing 

2.6.1 Participant demographics 

In this part of the study we tested the hypothesis that in the context of an age-related decline 

in Nrf2 expression, individuals possessing a variant Nrf2 allele would show increased 

susceptibility to ADR, and greater multimorbidity and frailty.  One hundred and thirty-one 

older patients from a sub-population of the PRIME study provided consent and donated 

genetic material.  Four of the 131 patients were deemed to have insufficient capacity during a 

follow-up telephone call (i.e. they were unable to recall details of the study upon questioning) 

and were removed from the study.  Genetic material that was supplied by a further 15 patients 

was of unsatisfactory quality to allow further processing and so these individuals were also 

excluded from the study.  A total of 112/131 patients had their Nrf2 gene successfully 

sequenced and genotyped at all 3 loci.  Table 3 provides a description of the demographics of 

these 112 patients.  One SNP was found to be in Hardy-Weinberg equilibrium (rs6721961)1, 

but two, the rs35652124 and the rs6706649, deviated significantly from equilibrium 

(p<0.0001; Chi2 test).  The frequencies of the alleles for the three loci studied in the Nrf2 

promotor region are shown in Table 4.   

 

2.6.2 Adverse drug reactions 

3.2.4.1 Single gene associations 

The ADR rate across our study population (when classified as either definite, probable or 

possible on a modified Naranjo algorithm) was found to be 34% (38/112).  We found that 

there was a significantly higher frequency of ADRs in individuals who were homozygous for 

G at the rs35652124 locus, compared to those who were either heterozygous or homozygous 

for A (p<0.05, Chi2 test, n=112).  Tables 5 provides details of the numbers of the sub-

population of patients who developed an ADR during the original PRIME study according to 
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genotype. When a stricter definition is used to classify ADR (i.e. only definite/probable on 

the modified Naranjo algorithm) we found the association between ADR and genotype was 

lost (Table 5).  The ADR rate in the total population when this definition was used was found 

to be 19.6% (22/112).  No associations were found between ADR and genotype at the other 

two loci (rs6721961 or rs6706649). 

 

4.2.4.2 Haplotype associations 

Due to their close physical proximity on the genome, and the potential for these loci being in 

linkage disequilibrium, we thought that it would be of value to explore whether certain 

combinations of Nrf2 alleles were associated with ADR.  Using our stricter definition of 

ADR (probable/definite according to the Naranjo algorithm), we found that the CGA 

haplotype (rs6721961, rs35652124 and rs6706649 respectively) showed increased odds of 

ADR compared with other haplotypes (OR 12.9, CI 1.01-166.0; p=0.01, Chi2 test).  The wide 

confidence intervals reflect the fact that the haplotype concerned was rare (n=3) in our 

population sample. 

 

2.6.3 Multimorbidity 

2.6.3.1 Single allele associations 

We found a significant relationship between genotype at the rs35652124 locus and 

multimorbidity.  Patients that were homozygous for the A allele typically had more co-

morbidities than AG/GG individuals (3 [interquartile range 2-5] vs. 3 [interquartile range 1-

4], AA vs. AG/GG respectively; p<0.05, Mann-Whitney U test; Figure 1A).  However, we 

found no significant difference between median Charlson Index scores when comparing both 

genotypes across the entire age-range (1 [interquartile range 1-3] vs. 1 [interquartile range 0-

2], AA vs AG/GG respectively; p>0.05 Mann-Whitney U test; Figure 1A). 
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To probe the effect of age further, we split our cohort into two groups: those aged 65-79, and 

those aged >80.  The value of this approach is that it allows us to look at the >80-year-old 

group separately, as these individuals are a poorly studied age-group, typically referred to as 

the oldest-old, and who may have a different underpinning physiology to the ‘younger’ old.  

In doing so, we found that there was no difference in multi-morbidity between genotypes in 

the >80-year-old age group.  Interestingly however, individuals aged between 65-79 who had 

the AG/GG genotype had significantly fewer co-morbidities (3 [interquartile range 2-5] vs. 2 

[interquartile range 1-4] AA vs. AG/GG respectively; p<0.01, Mann-Whitney U test; Figure 

2A), and lower Charlson Index scores when compared to AA individuals (1.50 [interquartile 

range 1.00-2.75] vs. 1.00 [interquartile range 0.00-1.00] AA vs. AG/GG respectively; p<0.01, 

Mann-Whitney U test; Figure 2B).   

 

In addition to comparing the number of co-morbidities and Charlson Index scores across 

genotypes, we also performed association analyses comparing the numbers of individuals 

across each genotype with a score of ≥3 on the Charlson Index (a score of ≥3 corresponded to 

being in the 90th percentile of the sample population).  We found that in patients aged 65-79, 

those with the rs35652124 A allele showed increased odds of having a Charlson index score 

of ≥3 (OR 9.03 95%CI 1.16-70.2, p=0.0127).  This corresponds to a positive predictive value 

of 0.59 conditional on carrying an A allele.  This is compared to a priori probability of 

having ≥3 co-morbidities in the 65-79 age group (without knowledge of genotype) of 0.13.  

We found no relationship between the number of co-morbidities, or the Charlson Index score 

for either the rs6706649 or rs6721961 SNP. 
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2.6.3.2 Haplotype associations 

When we examined the 65-79 age-group, we found that the CGG haplotype is associated 

with lower odds of multimorbidity (a score of ≥3 on the Charlson Index ) compared to other 

haplotypes (OR 0.11, CI 0.01-0.87; p=0.01, Chi2 test).  No association was found in the ≥80-

year-old age group. 

 

2.6.4 Frailty 

3.2.3.1 Single gene associations 

We found that individuals carrying the G allele (AG/GG) at the rs35652124 locus had a 

significantly lower frailty score compared to homozygous A patients across the whole cohort 

(0.109 [interquartile range 0.073 to 0.161] vs. 0.091 [interquartile range 0.055 to 0.127] AA 

vs. AG/GG respectively; p<0.05, Mann-Whitney U test; Figure 2C).  As with the 

comparisons of multi-morbidity, the effect of this genotype appears to be enhanced when 

comparing patients aged between 65-79 years old (0.107 [interquartile range 0.072 vs. 0.163] 

vs. 0.074 [interquartile range 0.036 to 0.108] AA vs. AG/GG; p<0.05, Mann-Whitney U test; 

Figure 2C).  No significant relationship was found in the ≥80-year-old group between frailty 

score and rs35652124 genotype.  No significant relationship was found between either the 

rs66706649 or rs6721961 genotype and frailty score. 
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3. Discussion 

To our knowledge, this is the first human s yestudy to show an association between a single 

nucleotide polymorphism in the Nrf2 gene and characteristics of the ageing phenotype.  It is 

also the first to show an age-related decrease in both Nrf2 gene, and protein expression in 

PBMCs of human volunteers.  Nrf2 gene expression appears to decline late in life, whereas a 

decline in Nrf2 protein expression potentially precedes this.  Further work is necessary to 

build on these observations to understand the mechanism and precise chronology behind 

these events. Together, these data may be useful in the design of tools that enable risk 

stratification of patients as they enter old age. This personalised approach is in line with a 

common agenda of using genetic and bio-psychosocial determinants to individualise 

treatment options to older people across Europe (27).  However, due to the relatively small 

sample size of this study, and the limited diversity of its participants, further work in this area 

should be conducted to demonstrate the generalisability of these findings.  

 

Our interest in investigating the role that this gene plays in multi-morbidity, frailty and 

susceptibility to ADRs stemmed from its important regulatory effect on a number of key anti-

oxidant and xenobiotic response genes.  There is a substantial amount of evidence that 

oxidative stress is a contributory factor in the ageing process of certain tissues / organ 

systems (5).  Specifically, recent work shows that oxidative stress (induced by mutations to 

superoxide dismutase) is strongly correlated with frailty in mice (28).  Furthermore, there is 

evidence in humans that frailty is associated with lower expression of stress response genes 

including Nrf2, and superoxide dismutase-2 (29).  Interestingly, it is known that oxidative 

stress can trigger the release of a cocktail of pro-inflammatory cytokines and chemokines 

which, on a chronic time-scale, may lead to inflammageing – a condition that is associated 

with frailty and cardiovascular disease (30).  A reduction in Nrf2 expression with age, 
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coupled with a polymorphism which decreases the gene’s expression may therefore lead to 

signs and symptoms of ageing (e.g. frailty) and an increased risk of developing an ADR due 

to decreased downstream phase I and phase II enzyme expression.   

 

The three SNPs that we investigated in this study are all found in the promoter region of the 

Nrf2 gene (16, 31).  Both the rs6721961 (-617) and rs6706649 (-651) minor alleles (C→A, 

and G→A respectively) have consistently been shown in vitro to reduce the expression of 

Nrf2 (16, 32); we might therefore expect to see the strongest phenotypic associations with 

these particular variants.  However, no significant associations were found between the minor 

alleles at these two loci and any of our outcome measures.  One possible reason for this may 

be the low frequency of minor alleles observed in our cohort at these two loci, which limits 

the variation in our sample population.  It is interesting to note that the minor allele frequency 

(MAF) of the rs6721961 was substantially lower than those observed in 3 recent studies 

(4.0% in our study vs. 31.2, 24.4, and 12.9%, by Song, Yu and Ran et al. (32-34)).  The MAF 

at rs6706649 locus was however in line with those observed previously at approximately 

5.4%.  It should also be noted that the observed genotype frequencies at both the rs6706649 

and the rs35652124 loci deviated significantly from Hardy-Weinberg equilibrium.  There are 

a number of possible explanations for this, however, the most likely is that our sample 

population consisted of a number of smaller sub-populations.  Indeed, it appears that the 

deviation of our observed genotype frequencies from the expected frequencies reaches 

significance at the rs6706649 locus because of one extra individual with the rare AA 

genotype.  Similarly, at the rs35652124 locus, significant deviation from Hardy-Weinberg 

equilibrium appears to have been achieved by an extra 3 heterozygotes (who were expected 

to have been AA, and 2 x GG).    
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In contrast to the rs6271961 and rs6706649 SNPs, the rs35652124 locus did show an 

association with our various outcome measures.  For example, we observed an association 

between the minor G allele at this particular locus, and increased ADR risk, which is 

consistent with our hypothesis.  However, the presence of the same G allele in an individual’s 

genotype was shown to provide some protection from frailty and multi-morbidity, which 

appears to be at odds with the previous finding.   

 

In light of these data, we might therefore want to ask: what effect does the presence of the 

rs35652124 G allele have on Nrf2 gene expression and functionality.  In fact, there is 

conflicting data regarding the influence of the rs35652124 SNP on Nrf2 expression.  Yu et al. 

(2012) compared luciferase activity and Nrf2 mRNA expression at all 3 loci in the promotor 

region and showed a significant reduction in Nrf2 gene expression for the rs35652124 G 

allele.  Marczak et al. (2012) showed that under conditions of oxidative stress, the G allele 

showed decreased Nrf2 expression compared to the A allele (17).  Conversely, Song et al. 

(2016), demonstrated significantly increased luciferase activity with the minor G allele insert 

compared to the major A allele (33).  Both Marzec et al. (2007) and Ran et al. (2016) showed 

a minimal effect of the -653 SNP on luciferase activity and mRNA expression respectively 

(17, 34) under basal conditions.   It is unclear why such differences in the effect of the 

rs35652124 SNP exist – both Yu et al. and Song et al. used the same cell type (human 

embryonic kidney 293 T cells) for their expression assays.  However, it may be the case that 

cell culture conditions, and exposure to stressors play an important role in vitro.  

Furthermore, in vivo (patients), it may be the case that the rs35652124 SNP behaves 

differently in different tissue types according to which transcription factors are expressed.  A 

number of studies have reported that the Nrf2 promoter region is a target for several 

transcription factors (TFs), including Nrf2 itself.  Some of these TFs may bind preferentially 
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to the A allele variant, and others (expressed in different tissues) to the G allele, resulting in 

different expression patterns throughout the human body.   

 

If, however, we take the view that the rs35652124 G allele is associated with decreased Nrf2 

expression, one other possible explanation for the increased risk of multi-morbidity and 

frailty associated with the AA genotype, is that elevated Nrf2 levels are pathogenic for some 

diseases.  Indeed, Nrf2 knockout mice show reduced atherosclerotic plaque area compared to 

controls (35).  Furthermore, in humans the rs35652124 AA genotype is associated with 

significantly increased risk of high blood pressure and cardiovascular mortality (36).  It could 

therefore be the case in our study that the higher multi-morbidity and frailty scores are driven 

by cardiovascular pathology. 

 

In conclusion, we have shown that rs35652124 genotype is a contributory factor to frailty, 

multi-morbidity and the risk of ADR in later life.  Whilst the G variant is a marker of ADR 

risk, it is paradoxically associated with a lower risk of multi-morbidity.  Although our sample 

population was not necessarily reflective of the entire PRIME study cohort, it does offer an 

important insight in to the role Nrf2 plays in the ageing phenotype in humans.  However, 

further work needs to be conducted to determine the generalisability of these results.  

Additionally, experiments should be conducted to establish whether Nrf2 expression and 

downstream phase I and phase II enzyme expression are altered in carriers of the rs35652124 

A allele, and also whether genotype can improve current models that aim to predict ADR, 

frailty and multi-morbidity risk. 
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Gene Direction Reaction type Sequence 
Nrf2 Forward 

Reverse 
q-rtPCR 5′-GAGAGCCCAGTCTTCATTGC-3′  

5′-TGCTCAATGTCCTGTTGCAT-3′ 
GAPDH* Forward 

Reverse 
q-rtPCR 5’-ACCCACTCCTCCACCTTTGAC-

3′  
5’-TCCACCACCCTGTTGCTGTAG-
3′ 

18s ribosomal 
subunit* 

Forward 
Reverse 

q-rtPCR 5’-GTAACCCGTTGAACCCCATT-3′  
5’-CCATCCAATCGGTAGTAGCG-
3′ 

Nrf2 Forward 
Reverse 

PCR / Sanger sequencing 5’ 
CTTTTATCTCACTTTACCGCCC 
3’ 

  

Table 1.  Primer sequences for q-rtPCR, and PCR / Sanger sequencing of Nrf2 gene.  

*Housekeeping genes 
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Age 
category 
(years) 

Proportion 
female (n) 

Chronic 
medical 
condition 
(n) 

Consume 
regular 
medication 
(n) 

Regular 
smoker 
(n) 

Median units 
of EtOH 
consumed 
weekly 

Median age 
(range) 

18-29 15/27 4/27 6/27 3/27 3 (0-16) 22(18-28) 
30-39 3/8 4/8 5/8 2/8 0 (0-15) 33.5 (30-38) 
40-49 6/7 4/7 2/7 1/7 4 (0-10) 42 (41-47) 
50-59 5/9 6/9 5/9 1/9 6 (0-10) 53 (50-57) 
60-69 1/2 2/2 2/2 0/2 8 (6-10) 62 (60-64) 
≥70 0/2 2/2 2/2 0/2 8.75 (7-10.5) 73.5 (72-75) 
Sig. p=0.2955 p=0.0045** p=0.0292* p=0.8802 p=0.2024  

 

Table 2. Demographics of volunteers for according to age-category.  Differences between 

age-groups were tested using Kruskal-Wallis test for continuous, non-parametric data, or the 

Chi2 test for categorical data. 
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 Median (range) 
Age 75.5 (65-92) 
Female (%) 62 (55.4%) 
Number of co-morbidities 3 (0-9) 
Charlson index 1 (0-5) 
Number of regular medicines 7.5 (1-19) 
Frailty index 0.091 (0-0.29) 

 

Table 3.  Demographics of patients enrolled from sub-population of the PRIME study. 
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  rs6721961 
(-617) 

 rs35652124 
(-653) 

 rs6706649 
(-651) 

Frequency of 
genotypes and 

alleles (%) 

AA 0 (0%) AA 45 (40%) AA 2 (2%) 
AC 9 (8%) AG 61 (55%) AG 8 (7%) 
CC 103 (92%) GG 6 (5%) GG 102 (91%) 
A 9 (4%) A 151 (67%) A 12 (5%) 
C 215 (96%) G 73 (33%) G 212 (95%) 

Hardy-Weinberg  p>0.05  p<0.05*  p<0.05* 
 

Table 4.  Genotype and allelic frequencies for the three single nucleotide polymorphisms 

studied.  Deviation from Hardy-Weinberg equilibrium was considered if the observed 

frequencies of genotypes differed significantly (p<0.05 by Fisher’s exact test) from the 

expected frequencies, based on the frequencies of alleles observed in the sample population. 
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Naranjo algorithm: ADR=definite/probable/possible 
 ADR No ADR Frequency 

ADR 
Sig. (Chi2) 

rs35652124 (-653)     
AA 14 31 0.31 p=0.031* 
AG 19 42 0.31  
GG 5 1 0.83  
rs6721961 (-617)     
CC 35 68 0.34 p=0.969 
CA 3 6 0.33  
rs6706649 (-651)     
GG 35 67 0.34 p=0.770 
GA 2 6 0.25  
AA 1 1 0.50  

Naranjo algorithm: ADR=definite/probable 
 ADR No ADR Frequency 

ADR 
Sig. (Chi2) 

rs35652124 (-653)     
AA 7 38 0.15 p=0.137 
AG 12 49 0.20  
GG 3 3 0.50  
rs6721961 (-617)     
CC 21 103 0.20 p=0.502 
CA 1 8 0.11  
rs6706649 (-651)     
GG 19 83 0.19 p=0.502 
GA 2 6 0.25  
AA 1 1 0.50  

 

Table 5.  ADR frequency according to genotype.  An ADR has been classified if it scored as 

definite/probable/possible (top half of table), or definite/probable (bottom half of table) 

according to the Naranjo algorithm.   
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Figure legends 

 

Figure 1. Changes to Nrf2 gene expression and protein levels with age in healthy volunteers.  

A Log Nrf2 mRNA abundance vs. age (n=55) and B Log-fold Nrf2 mRNA change compared 

to 18-29 year-olds (n=55).  B Changes to Nrf2 protein levels with age in heathy volunteers 

(n=30).  *p<0.05 (Student’s t-test), ****P<0.0001 (One-way ANOVA). 

 

Figure 2. Association of the rs35652124 SNP with Co-morbidities (A), Charlson Index (B), 

and Frailty (C) across the whole PRIME sub-population, and those aged between 65-79 years 

old.  *p<0.05, **p<0.01, Mann-Whitney U-test; data are presented as median, 25-75 

percentiles and range. 


