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Abstract 

Mathematical reasoning requires perseverance to overcome the cognitive and 

affective difficulties encountered whilst pursuing a reasoned line of enquiry. 

The aims of the study were: to understand how children’s perseverance in 

mathematical reasoning (PiMR) manifests in reasoning activities, and to 

examine how PiMR can be facilitated through a focus on children’s active 

goals. The article reports on children aged 10-11 from two English schools, 

purposively selected for their limited PiMR. Data relating to their cognitive 

and affective responses and the focus of their attention, a conative component, 

were collected by observation and interview. The study defines the construct 

perseverance in mathematical reasoning (PiMR). Conative characteristics of 

PiMR were used to analyse the cognitive-affective interplay during 

mathematical reasoning. It revealed the role that children’s active goals play in 

restricting and enabling PiMR. The article offers new approaches to designing 

pedagogic interventions and collecting and analysing data relating to 

perseverance in vivo.  
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Introduction 

The importance of reasoning in mathematics learning has been established; it is 

critical in forming and justifying mathematical arguments and is a basic skill on 

which children’s use of mathematics is founded (Ball & Bass, 2003). However, 

mathematical reasoning is not straightforward for children. In pursuing a line of 

reasoned enquiry, becoming stuck and having to change direction of thought is 

common (Mason, Burton, & Stacey, 2010), and can be accompanied by emotions 

such as frustration or bewilderment (Goldin, 2000). Perseverance, an aspect of 

conation, is required to overcome cognitive difficulties and associated feelings.  

The idea of learning perseverance has gained popularity in education. Drawing 

on the idea of growth mindset (Dweck, 2000) to develop effective learning 

behaviours, teachers place value on children’s effort and persistence. Their guidance 

commonly encourages children to push themselves and keep going. However, to 

support children to persevere in mathematical reasoning, is guidance to keep going 

sufficient? Given the importance of mathematical reasoning in children’s learning and 

the difficulty of persevering in reasoning, this study sought to better understand how 

perseverance manifests during mathematical reasoning activities. 
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The emotions associated with reasoning are not simply a by-product of 

cognition that can be isolated and disregarded. There is bi-directional interplay 

between cognition and affect, with thoughts impacting on feelings and vice versa (Di 

Martino & Zan, 2013; Hannula, 2011). Whilst Hannula (2011, p. 35) argues that in 

mathematical thinking thoughts and emotions are “intrinsically interwoven”, he 

laments that the processes involved in this are not well understood. To better 

understand this cognitive-affective interplay and its impact on primary (elementary) 

children’s perseverance in mathematical reasoning, the following research question 

was explored:  

How does the cognitive-affective interplay impact on the capacity of children 

aged 10-11 to persevere in mathematical reasoning?  

Conceptual framework 

Three key conceptual areas arose from the research question: the cognitive and 

affective aspects of mathematical reasoning and perseverance in mathematical 

reasoning. Definitions of the construct perseverance in mathematical reasoning 

(PiMR) are not evident in the literature so were formulated for this study, drawing on 

the conative domain. Conation describes the motivational and volitional aspects of 

behaviour, of which perseverance is an aspect (Huitt & Cain, 2005). Whilst the 

distinctions between the cognitive, affective and conative domains are “a matter of 

emphasis rather than a true partition” (Snow and Jackson III, 1997, p.1), a tripartite 

psychological classification (Figure 1) was valuable in this study; it provided a lens 

through which to understand and analyse children’s responses to activities involving 

mathematical reasoning. The conceptual framework is structured to reflect this. 



 

 

Figure 1: Tripartite psychological classification applied to mathematical reasoning 

Hannula (2011) notes the need to develop a coherent, shared understanding of 

affect in mathematics education and to relate new affect-related studies to this. 

Hannula’s (2012) metatheory for mathematics-related affect provides a framework 

(summarised in Table 1) to facilitate this shared understanding. 

Table 1: Hannula's (2012) three-dimensional metatheory for mathematics-related 

affect 

Dimension Illustration 

Physiological, 

psychological and 

social nature of affect 

 

This dimension reflects what Hannula describes as a system-

theoretical perspective to enable connections to be sought between 

neuroscientific, traditional psychological, and social frameworks. 

Hannula (2012) exemplifies these connections as follows: to 

establish a new social norm in a class (social framework), 

individual students change their behaviour (psychological 

framework) and this is echoed in neural connections 

(physiological framework). 

 

State and trait aspects 

of affect 

 

Hannula (2012) argues that emotions have both a rapidly 

fluctuating emotional state and a more stable emotional trait. For 

example, a student can experience many, rapidly changing 

emotions during mathematical tasks, e.g. pleasure, bewilderment 

(state emotion), but can tend to approach mathematical tasks with 

a more stable emotion, e.g. apprehension (trait emotion). 

 

Cognitive, 

motivational and 

emotional aspects of 

affect 

This dimension concerns psychological processes. Cognition 

concerns understanding, thinking and dealing with information. 

Motivation directs behaviour including goals and choices. 

Hannula (2012) argues that emotions (e.g. pleasure, shame) reflect 

success or failure in goal-directed behaviour and feedback to 

cognitive and motivational processes. 

Cognition 

Mathematical reasoning 

processes 

Conation 

Perseverance in 

mathematical reasoning 

(PiMR) 

Affect 

Emotions during 

activities involving 

mathematical reasoning 



 

 

In relation to these dimensions, my study focused on children’s psychological 

responses in individual mathematics lessons and hence concerned state rather than 

trait aspects of cognition and affect. My study also drew on the motivation aspect of 

Hannula’s third dimension. State-motivation concerns “active goals” (Hannula, 2011, 

p.45); these are “in-the-moment” goals that engage a child for short periods during 

lessons (Goldin, Epstein, Schorr, & Warner, 2011, p.550). Whilst motivation is an 

important aspect of conation (Huitt & Cain, 2005), perseverance is also characterised 

by two further conative components, striving and self-regulation (discussed later). 

Hence, to define PiMR, the motivation aspect of Hannula’s (2012) framework was 

extended to include characteristics from the broader conative domain. 

Mathematical reasoning: the cognitive domain 

I interpreted mathematical reasoning as: 

The pursuit of a line of enquiry to produce assertions and develop an argument to 

reach and justify conclusions. 

This draws on Pólya’s plausible reasoning and the inductive approaches involved in 

“mathematics in the making” (1959, p. 37). 

There is consensus in research literature regarding the mathematical reasoning 

processes involved in pursuing a line of enquiry (e.g., Ball & Bass, 2003; Mason, et 

al., 2010). From this corpus, I identified five key cognitive processes: specialising 

(making trials), spotting patterns/relationships, conjecturing, generalising and 

convincing. They were significant in this study because they are indicators of 

children’s mathematical reasoning. 



 

Conjecturing is the formation of an idea that appears reasonable but whose 

validity is not yet established (Mason, et al., 2010). Forming a conjecture requires a 

general rule to be inferred from specific examples, and spotting patterns is necessary 

in this. To create a situation in which patterns can emerge, examples need to be 

created. Initially, this is characterised by trying arbitrary examples using random 

specialisation (Mason, et al., 2010). This facilitates getting a feel for the problem 

when little is known. However, for patterns to emerge from which conjectures can be 

formed the data must be ordered and a systematic approach to specialisation (Mason, 

et al., 2010) supports this. This facilitates generalisation; the formation of statements 

about what is happening and the conditions for this. 

Mulligan and Mitchelmore (2012) highlight the importance of understanding 

the relationship between patterns and the underlying mathematical structures. 

Understanding mathematical structure is significant in constructing arguments about 

why patterns occur and why a generalisation might be true. In a primary (elementary) 

school context, mathematical arguments do not necessarily have to take the form of 

formal logic or proof (Stylianides & Stylianides, 2006), rather “sensible” (Lithner, 

2008, p. 257) reasons can support mathematical assertions. These include anchoring 

arguments in the mathematical properties being reasoned about (Lithner, 2008) and 

drawing on the mathematical data to validate the conclusion (Bergqvist & Lithner, 

2012). 

Mathematical reasoning: the affective domain 

Goldin (2000) describes two commonly experienced, idealised pathways of 

state emotion that could be experienced during mathematical reasoning in a problem-

solving context. Both pathways share a starting sequence in which students 

experience curiosity and puzzlement as they engage with a problem. This is followed 



 

by bewilderment as they seek effective problem-solving strategies. At this point, the 

pathways split. In one, students choose an appropriate strategy, which leads to 

feelings of encouragement. Further success results in pleasure and moments of elation 

as new insights emerge. Finally, students experience satisfaction in both the 

successful outcome and the approach taken. 

In Goldin’s alternative pathway, students’ bewilderment does not lead to 

choosing an effective strategy and frustration sets in. If a way forward is not found, 

emotions become increasingly negative, and anxiety, fear and even despair are 

experienced. At this point, students may endeavour to comply in order to alleviate 

uncomfortable emotions; this may lead to the use of rote procedures or avoidance 

strategies. In either case, the cognitive outcome is not mathematical reasoning. In 

Goldin’s (2000) idealised pathways, the cognitive-affective interplay during activities 

involving mathematical reasoning is evident. 

Perseverance in mathematical reasoning: a conative construct 

The conative psychological domain, discussed more commonly outside mathematics 

education literature, concerns volitional aspects of human behaviour (Hilgard, 1980; 

Snow & Jackson III, 1997). Perseverance is an aspect of the conative domain (Huitt & 

Cain, 2005) that involves staying power and striving to overcome difficulty or 

delayed success in achieving goals (Tait-McCutcheon, 2008). In this study, I 

interpreted perseverance in the contexts of learning and mathematical reasoning to 

articulate the components of PiMR. I used the notions of striving and staying power to 

overcome difficulty, in conjunction with my interpretation of mathematical reasoning, 

to define PiMR as: 



 

striving to pursue a line of mathematical reasoning, despite difficulty or delay in 

achieving success. 

The trait aspects of conation include internal motivation and volition (Huitt & 

Cain, 2005; Snow & Jackson III, 1997), and dispositions to strive and self-regulate 

(Tanner & Jones, 2003). The related state aspects include having active goals 

(Hannula, 2011), engagement and striving, and self-regulating (Huitt & Cain, 2005; 

Tanner & Jones, 2003). Each of these is an important aspect of PiMR; engagement 

and focusing attention on active goals give intent and purpose to striving, and self-

regulation facilitates effective monitoring of actions, to overcome difficulties and 

move towards active goals. This section discusses how these state aspects were 

interpreted in the context of mathematical reasoning. 

Children’s active goals during mathematical reasoning may be evident in the 

focus of engagement, for example, an active goal of creating as many solutions as 

possible might be inferred from observable engagement in repeatedly making 

solutions. Fredricks, Blumenfeld and Paris (2004) argue that engagement includes 

concentration, attention and contributing to class discussion. With a focus on 

mathematical reasoning, these can be interpreted as: 

 focusing attention on the mathematical: 

o concepts in which the reasoning is anchored (Lithner, 2008) 

o processes required to form a reasoned line of enquiry (e.g., Bergqvist 

& Lithner, 2012) 

 contributing to class/group discussions stimulated by the reasoning activity 

and the related concepts and processes. 



 

Striving requires effort and staying power; it is pro-active, goal-oriented (Huitt 

& Cain, 2005) and allied to the active goals that characterise the state aspect of 

motivation (Hannula, 2011). Striving towards the goal of reaching and justifying 

conclusions requires the formation of assertions and arguments. This results in 

successful PiMR in which there is observable movement between reasoning 

processes, from specialising and spotting patterns towards conjecturing, generalising 

and forming convincing arguments. Progressing from one reasoning process to 

another requires the learning from one process to be applied in the next; this 

necessitates “pro-active (not reactive or habitual) behaviour” (Tanner & Jones, 2003, 

p. 277). However, striving might also be interpreted as keeping going. Williams 

(2014) argues that keeping going, irrespective of the quality of each try, is a 

demonstration of persistence rather than perseverance. In mathematical reasoning, 

persistent behaviour may not lead to the productive use of the outcomes of trials; this 

could inhibit pattern spotting, conjecturing and generalising, resulting in limited 

movement between reasoning processes. Hence, repeated application of one or two 

reasoning processes is an indicator of persistence, whilst movement between 

reasoning processes is an indicator of PiMR. 

Pro-active behaviour requires effective self-regulation. When applied to 

mathematical reasoning, self-regulation of cognition includes reflection on both the 

information generated and the value of the processes and strategies employed to 

inform action (Özcan, 2016). This pro-active, focused reflection facilitates 

progression, from making trials, towards conjecturing, generalising and forming 

convincing arguments. 

Affect also has a self-regulatory, meta-affective component that concerns 

emotions about emotions and the cognitive monitoring of emotions (DeBellis & 



 

Goldin, 2006). Engagement with mathematical reasoning, including navigating being 

stuck, can be accompanied by emotions such as puzzlement or fear (Goldin, 2000). 

Emotional awareness can facilitate meta-affective responses that enable difficult 

emotions to be experienced differently for cognitive gain. For example, Debellis and 

Goldin (2006) reason that frustration during mathematical activity can be experienced 

as pleasure because it is indicative of enhanced interest and challenge; this enables 

alternative approaches to be sought. Malmivuori (2006) describes conscious 

monitoring of emotions and the subsequent cognitive actions taken as active 

regulation of affect. 

However, being aware of emotions is not an automatic catalyst for action, 

hence the expression of feelings relating to mathematical learning does not guarantee 

liberty from debilitating emotions nor progress in reasoning. Malmivuori (2006) 

describes an alternative meta-affective response, automatic affective regulation. This 

operates within a limited self-regulatory system in which habitual affective responses 

override self-regulation. For example, when becoming stuck, frustration may 

automatically be accompanied by fear, which impedes higher order mental processes. 

Malmivuori argues that automatic affective regulation can manifest in habitual 

behaviours such as defensive actions. 

Goswami (2015) argues that self-regulatory processes are important in 

facilitating strategic control over mental processes to consciously inhibit or develop 

thoughts, feelings and behaviours; this is significant in PiMR because it facilitates the 

adjustments needed to overcome difficulties or delays encountered in constructing a 

reasoned line of enquiry. Whilst self-regulation is important in the development of 

children’s PiMR, Goswami (2015) argues it is not easy for children in the primary 



 

(elementary) phase to develop and apply. Hence there is value in developing teacher 

interventions to support children’s self-regulation during mathematical reasoning. 

Pedagogic interventions 

The data reported in this article were part of a larger research project that sought to 

improve children’s PiMR through teacher interventions. The initial pedagogic 

intervention adopted a provisional approach. In computing, the provisional capability 

of programming facilitates provisional thinking by enabling users to make swift 

changes to code and test alternatives. Papert’s (1980) LOGO is illustrative of an 

environment in which provisional thinking is applied. Children create code to move a 

screen turtle, e.g. to form a triangle. The instructions are enacted dynamically on the 

screen, providing immediate, accurate feedback on the code. This can facilitate 

provisionality of thought through conjecturing, making trials and using the resulting 

data to improve the code. 

Provisional thinking also has affective impact; it fosters an attitude that 

mathematical thinking is fallible, that it concerns trial, improvement and conjecturing 

rather than the pursuit of right or wrong answers. Papert (1980) argues that this 

approach makes children less fearful of being wrong. 

In the intervention, I sought to facilitate a provisional, conjectural approach 

and create an enabling affective environment through giving children access to 

materials that could be used provisionally to: 

 construct and adapt physical and written representations 

 re-position representations in relation to each other. 

The intervention was augmented during the study to include two further aspects. The 

first sought to create an explicit focus on forming generalisations and convincing 



 

arguments about why these were true. For example, by incorporating a writing task to 

articulate generalisations. The second afforded more time, two one-hour lessons, 

rather than one, on consecutive days to act on and interpret the data arising from 

specialising and spotting patterns. 

The Study 

Study design 

The study took place in two year 6 classes (ages 10-11) in different schools in 

England and focused on eight children. This article draws on data from three children, 

who represent the range of cognitive, affective and conative responses of the study 

group at the end of the research. I worked alongside two teachers who had 

mathematical subject and pedagogic expertise; this provided a secure foundation for 

applying and developing the interventions. The study comprised a baseline lesson and 

two intervention cycles. The purposes of the baseline lesson were to: 

 validate the purposive selection of children by confirming that they 

demonstrated limited PiMR 

 evaluate children’s baseline PiMR by gathering data before the intervention 

outlined above began 

 familiarise the children with mechanisms for data collection. 

Table 2 details the mathematical activities and the interventions applied. The 

teachers and I chose activities that: 

 were appropriately pitched for the children in each class 

 afforded opportunities to pursue a reasoned line of enquiry 



 

 afforded opportunities for children to experience and respond to affect whilst 

engaging with activities involving mathematical reasoning. 

Table 2: Mathematical activities and pedagogic intervention 

Cycle Activity  Pedagogic intervention 

Baseline 

lesson 
Magic Vs1 
Arrange the numbers 

1–5 in a V so that each 

arm of the V sums to 

the same total. E.g.:  

Before intervention began 

Cycle 1 Paths around a pond 

A square pond is surrounded by a path that 

is 1 unit wide. Explore what happens as the 

pond changes size. 

Opportunities for children to use Cuisenaire 

rods in a provisional way 

Cycle 2 Number differences2 
Arrange the numbers 1-

9 on the grid so that the 

difference between 

joined squares is odd. 

  

Opportunities for children to use number 

cards in a provisional way 

Explicit focus on forming generalisations and 

convincing arguments. 

Provision of time to develop reasoning 

relating to one activity by affording two one-

hour lessons on consecutive days. 

1 NRICH (2015a), 2 NRICH (2015b) 

The teachers selected four children from his/her class to form the study group 

of eight. The teachers based their selection on their assessments of children who 

seemed to have limited PiMR, and then wrote baseline pen-portraits detailing the 

selected children’s PiMR. Table 3 shows the pen-portraits of the three children 

discussed in this article. 

Table 3: Baseline pen-portraits 

Child*  Teacher* 

School* 

Pen-portraits  

Alice 

 

Mr Hall 

Hilltop Primary 

Able but reluctant, often disinterested in maths. 

Always looks for quick fix. 

 

Ruby 

 

Struggles to verbalise reasoning. 

Will sit and wait rather than actively attack 

problem. 

Often seems to give up. 

 



 

 

Michelle 

 

Ms Parry 

Parkside Primary 

Quite nervy over maths. 

More abstract thinking worries her. 

*All pseudonyms  

 

Methods 

Collecting and analysing data relating to the state aspect of children’s cognition, 

affect and conation presented a challenge because these are internal mental responses 

that might be inferred through external behaviours. Whilst I sought observable 

indicators of each, exemplified in Table 4, there was no guaranteed correlation 

between internal process and external indicator. I sought to diminish the impact of 

this limitation by using multiple data collection approaches to enable triangulation. 

Data were generated using direct observation, audio records and photographs in 

mathematics lessons, and in post-lesson interviews. The resulting data were collated 

into synthesised transcripts. Table 4 summarises the data collection methods with 

examples of data generated using each method. 

Table 4: Summary of data collection methods and exemplification of data generated 

Data 

collection 

point 

Data 

collection 

method 

Examples of data 

Cognitive Affective Conative 

Lessons 

 
Observations 

Use of 

mathematical 

reasoning 

processes, e.g., 

specialising 

Facial expressions, 

e.g., raising 

eyebrows 

 

Body 

language/position, 

e.g., head close to 

work 

 

Pace of 

construction of 

representations 

Focus of 

engagement  

 

Actions relating 

to focus/change 

of focus 

 

Movement 

between/stasis 

within reasoning 

processes 



 

Audio 

records 

Dialogue relating 

to reasoning 

processes, e.g. 

generalising: “It's 

always… 

Oral expressions 

and utterances, e.g. 

groaning 

 

Tone/pace of oral 

expression 

 

 

Dialogue relating 

to: 

focus/change of 

focus, e.g. “let’s 

try and make….” 

self-regulation, 

e.g.: “That didn’t 

work, let’s try…” 

Photographs 
Mathematical 

representations 
  

Interviews 
Audio 

records 

Explanations of 

mathematical 

reasoning 

Discussions of 

emotions 

experienced during 

lessons 

Explanations of: 

focus, rationale 

for focus 

reasons for 

changing focus 

 

I applied the findings from literature on the tripartite psychological 

classification (Figure 1) to create three coding categories and related codes: 

1. Cognitive events - mathematical reasoning processes 

Codes: specialising, spotting patterns/relationships, conjecturing, generalising, 

convincing (Bergqvist & Lithner, 2012; Lithner, 2008; Mason et al, 2010; 

Mulligan & Mitchelmore, 2012) 

2. Affective events - emotions during mathematical reasoning 

Code: Demonstration of affect (Goldin, 2000) 

3. Conative events: PiMR 

Codes: striving, active goals, self-regulatory processes (Debellis & Goldin, 

2006; Hannula, 2011, 2012: Huitt & Cain, 2005; Malmivouri, 2006; Özcan, 

2016). 

The inferences made in encoding the data were theory and researcher dependent and 

hence open to interpretation. I sought to minimise the impact of sole-researcher 

interpretation by presenting and triangulating data from all sources. 

PiMR results in movement between reasoning processes in response to a 

mathematical challenge; to support the presentation and theorisation of findings, I 



 

created diagrams in the style of Figure 2 to illustrate the children’s movement 

between reasoning processes and their cognitive-affective-conative interplay. 

 

Figure 2: Representation of cognitive-affective-conative interplay during 

mathematical reasoning 

This study offers an interpretation of events that draws on the conceptual framework 

to illuminate children’s cognitive-affective-conative interplay during activities 

involving mathematical reasoning. Hence, whilst other interpretations of the data are 

possible, the analysis draws on particular examples to demonstrate the cognitive-

affective-conative interplay in order to be able to offer a framework for future 

empirical research. 

Findings 

Baseline lesson 

In this lesson, no intervention was used; the teachers applied their typical pedagogic 

practice. They introduced Magic Vs (Table 2) by displaying two sets of the numbers 

1–5 in V-formations (Figure 3), stating that one of the formations was magic. They 

asked their classes to: 

 identify which v-formation was magic with a rationale 

Mathematical 

challenge 
Reasoning 

process 

Reasoning 

process 

Reasoning 

process 

Active goal 
Active 

goal 

Affective 

response 

Affective 

response 

Affective 

response 

Active 

goal 

Cognition 

Affect 

Conation 



 

 explore how to create additional magic-Vs 

 form generalised statements with explanations as to why these were true. 

 

Figure 3: V-formations displayed on board 

In Parkside Primary, the reason for the V in Figure 3a being magic emerged 

during the initial whole class discussion. Following this, Michelle began by exploring 

how to create additional magic-Vs. She appeared to understand that one criterion was 

to use only the numbers 1–5 as she said to a peer: 

We have to do 1 to 5 

She then generated trials using random specialisation, which she believed to be 

successful as each arm of the V totalled the same value, but she used the numbers 1–

6, first omitting 4, then 2 (Figure 4). Michelle’s misapplication of the criterion to use 

the numbers 1–5 restricted her pursuit of a reasoned line of enquiry; her trials did not 

result in the emergence of patterns. Without the opportunity to notice patterns, she 

was not able to form conjectures or generalisations. 

 

Figure 4: Michelle's trials 
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In Hilltop Primary, the reason why the V in Figure 3a was magic did not 

emerge during the initial class discussion so this formed the focus for Alice and 

Ruby’s exploration. The girls explored which V might be magic and why. Their trials 

involved two ideas, summing the numbers within each V and considering the 

odd/even properties of this total and the numbers 1-5: 

Alice I think you need to work out the magic number - so that’s 15 

Ruby Why 15? 

Alice 15 is what it adds up to. But it can’t work because they’re both exactly 

the same 

Alice [Excited tones] Ah, I think I've got it [re-sums the numbers within one V]  

Ruby  [Excited tones] Oh, no, no, no, wait, you can add them  

Alice [Sharp intake of breath, excited gasp] I think I know what you mean by 

magic - we need to try to figure out a number which is both odd and even 

Alice There's more odds 

Both [In unison] than even 

Ruby [Sharp gasp] Oh we add them 

Ruby Then see if 15 is an odd or an even 

Alice 15 is odd 

Following this discussion, Mr Hall demonstrated to the class that the two arms 

of the V in Figure 3a sum to the same total, which makes it magic. However, this did 

not support Ruby and Alice to construct their own magic-Vs and they revisited their 

earlier ideas. When Mr Hall tried to focus their attention on the odd/even properties of 

the numbers in the V, they remained focused on summing the numbers and exploring 

the odd/even properties relating to the total: 

Ruby We added them, we worked out if they were odd or even, and there are 

more odd than even, so then we added the numbers up 

Alice We done, 5’s odd, 3’s odd, 1’s odd and 4 and 2 are even so only 2 even 

and 3 odd 

Mr Hall  I like that, so we've got 3 out of 5… 

Alice [Interrupting] And we're trying to find, we thought the magic number 

might be something that is both odd and both even. 10 goes into it and so 

does 5, and 10 is even and 5 is odd 

Alice and Ruby formed conjectures about the magic total being 15, and 15 

having both odd and even properties, and Alice realised the limitations of these: “it 

can’t work because they’re both exactly the same”; “15 is odd”. However, whilst 

Alice and Ruby formed conjectures and Michelle randomly specialised, none created 



 

examples that revealed patterns, generalise or form convincing arguments about a 

generalisation. 

All three girls strived throughout the activity and appeared to have active 

goals: Alice and Ruby focused on understanding the properties of a magic-V and 

Michelle focused on making further successful trials. However, all three demonstrated 

limited cognitive self-regulation. Michelle did not realise that, despite her apparent 

creation of magic-Vs, there were no emerging patterns, hence continued to misapply 

the criterion to use the numbers 1-5. Alice and Ruby repeatedly revisited their two 

conjectures despite realising their limitations. This apparent lack of cognitive self-

regulation may have inhibited their capacity to act on Mr Hall’s demonstration of the 

magic-V properties. 

The girls’ affective responses seemed to be predominantly characterised by 

pleasure. For Alice and Ruby, this was indicated in excited tones in their speech, 

sharp intakes of breath and speaking in unison. Michelle seemed to express pleasure 

through giggling after completing each V, which might have been founded on her 

belief that she had constructed successful trials. At the end of the lesson, Alice created 

the drawing in Figure 5: 

 

Figure 5: Alice's drawing 

In interview, she explained the meaning of the drawing: 



 

Alice [Laughs] well it stands for, at the beginning I was like what is going on? 

And at the end, I love it 

Researcher Why did you enjoy it? 

Alice Because it was difficult, it wasn't easy 

This expression of enjoyment of puzzlement arising from a difficult challenge seemed 

to be a meta-affect response. This may have enabled her to strive throughout the 

lesson despite making limited progress in mathematical reasoning. 

Figure 6 summarises the pathway of reasoning responses predominantly used 

by the girls, alongside their affective responses and active goals. It illustrates limited 

PiMR, evident in the lack of movement between reasoning processes, and their 

apparent pleasure despite this. In his idealised affective pathway, Goldin (2000) 

relates pleasure to the experience of success in mathematical problem-solving; 

consequently, these are surprising affective outcomes as the girls expressed pleasure 

despite being unsuccessful. One explanation for this is that the girls’ limited display 

of cognitive self-regulation and resulting lack of awareness about the limited extent of 

their reasoning may have impacted on their affective response and enabled them to 

experience pleasure, regardless of their limited PiMR. 

 

Figure 6: Cognitive-affective-conative interplay in baseline lesson 

First intervention cycle 

The teachers introduced Paths around the Ponds (Table 2) by modelling the 12 
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pond/path using images of Cuisenaire rods on the board (Figure 7). 

 

Figure 7: Activity introduction 

The intervention (Table 2) provided the children with opportunities to use rods 

provisionally to construct representations of ponds/paths. Following construction, 

they were given pencils and paper to record the corresponding numeric sequence. 

Initially Ruby and Alice specialised randomly by selecting four 10cm rods to 

represent the path and arranged these into an oblong (Figure 8). They continued this 

construction, creating successively smaller concentric oblongs inside the original: 

 

Figure 8: Ruby and Alice's first trials 

At this point, each girl seemed to self-regulate. Alice realised that these trials did not 

fit the activity criteria: 

That's really weird, it doesn’t work 

Ruby, in the post-lesson interview, reflected on her approach following these 



 

unsuccessful trials: 

I put the centre first and then the outside - I think I found it easier doing it that 

way 

This may have helped her to ensure the squareness of both pond and path. Following 

their initial exploration, they adopted Ruby’s idea and constructed the 92 pond using 

nine 9cm rods, surrounded by a square path constructed from four 10cm rods. They 

then proceeded to create nine representations of ponds/paths that were systematically 

constructed and arranged (Figure 9). 

 

Figure 9: Ruby and Alice’s systematic construction and ordering of trials 

Michelle’s initial approach was to construct the 12 example (Figure 7), then to 

specialise systematically to construct and order the 22-42 examples (Figure 10): 

 

Figure 10: Michelle's first trials 

Michelle, Ruby and Alice seemed to notice and apply structural patterns; this 

resulted in a systematic approach to the construction of trials whereby each pond was 

represented by n number of rods of length n, and each path by 4 rods of length n+1. 

The resulting trials were then systematically ordered. 



 

The children expressed pleasure and excitement when they spotted patterns: 

Alice They go up in steps [excited tones] 

Alice  I've got a pattern [cheers, claps] 

In the post-lesson interview, Michelle expressed enjoyment in the use of physical 

representations: 

[It was] really fun, because you got to like do it with props instead of just writing 

stuff on paper 

There was notable similarity in the children’s apparent affective responses in 

the baseline lesson and in cycle 1, with pleasure seemingly the predominant emotion. 

There was scant evidence of the children verbalising conjectures. However, in 

the post-lesson interview, Michelle and Ruby’s reflections indicate that they had 

formed a conjecture about the emerging colour pattern: 

Michelle On the pond before, the purple was the path, on the one before that green 

was the path that is now the pond. 

 

Ruby So the red's on the outside there [12 pond] so it’s on the inside there [22 

pond]. Then the green's on the outside so then it’s on the inside. 

During the activity, the active goal that all three girls invested their effort into 

and strived towards seemed to be the systematic construction of all possible examples 

from the Cuisenaire set. Alice again expressed pleasure at the experience of 

challenge: 

It was really fun because it was really challenging 

This meta-affective response may have supported her to remain focused on her active 

goals. 

Once the children’s constructions were completed, the teachers explained that 

they should now look for numerical patterns by representing the data in a table. None 

of the girls explored numerical patterns or attempted to construct a table of numeric 

data. Michelle sat passively for the remainder of the lesson and there was no further 

evidence of her striving towards any goal relating to mathematical reasoning. Ruby 



 

and Alice appeared to adopt a new active goal, unrelated to the activity, and 

constructed towers from the rods; this did not result in any further mathematical 

reasoning. When asked, in the post-lesson interview, why they built towers rather than 

exploring numerical patterns and recording these in a table, Ruby responded: 

I thought we didn't need to do it on the paper because we'd already done it 

Figure 11 summarises the pathway of reasoning responses predominantly used 

by the girls, alongside their affective responses and active goals. 

 

Figure 11: Cognitive-affective-conative interplay in cycle 1 

The provisional use of representations facilitated the creation of systematically 

constructed and ordered trials and supported the children to spot patterns; this seemed 

to be a source of pleasure and excitement. However, there were no observed instances 

of forming generalisations and convincing arguments about the sequence. Whilst 

there were instances of conjecturing, the pleasure and excitement gained from 

spotting patterns led to more specialising. When the girls had constructed the 12–92 

ponds/paths and were not able to make the 102 pond/path because of the absence of an 

11cm rod, they had achieved their apparent active goal to construct all examples. 

Their focus on the activity then ceased. There seems to be bi-directional interplay 

between creating trials and expressing pleasure; Ruby and Alice gained pleasure from 

constructing successful trials so wanted to continue construction with the rods. This 

may have created the conditions for them to persist in creating further trials and, when 
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avenues for this were exhausted, to continue to use the rods for construction, despite 

this being unrelated to the growing sequence. 

Comparison between Figures 6 and 11 shows the development in the 

children’s PiMR following the intervention and reveals a consistency in children’s 

affect across these lessons. 

Second intervention cycle 

The teachers applied the interventions detailed in Table 2 by providing:  

 opportunities to work provisionally using number cards 

 explicit focus on the formation of generalisations and convincing arguments  

 additional time by allocating two consecutive lessons to the activity  

The teachers introduced Number Differences (Table 2) with the goals of forming 

conjectures with convincing arguments: 

Mr Hall [You need to] identify and explain a successful pattern, so it's not just 

about saying those are my numbers, I'm done 

Ms Parry Figuring out why is the big focus of the puzzle we will be doing over the 

next two [lessons] 

In the first four minutes, Ruby and Alice created successful solutions and 

Ruby formed her first conjecture, expressed as an idea for specialising. When 

challenged by Alice, Ruby articulated a convincing argument as to why this would 

work that was anchored (Lithner, 2008) in the odd differences between adjacent 

numbers: 

Ruby We could just put them in order, 1, 2, 3, 4, 5… 

Alice  That’s not going to work 

Ruby  Yes it is because all of them [the differences] are 1 

The pair then appeared to form a conjecture that there needed to be an odd number in 

the middle, and their subsequent trials became increasingly systematic as they tested 



 

this: 

Alice Shall we try 9 in the middle? What number shall we put in the middle? 

What's odd? 

Ruby Put all the odd numbers in the middle 

Following initial explorations in manipulating the number cards, Michelle 

appeared to be able to use the odd/even properties of numbers to support placing the 

number cards. Having created one successful trial, Michelle appeared to form and test 

a conjecture about the odd/even property of the corner numbers by beginning with an 

even number in the top left corner (Figure 12). She realised that she was not able to 

use the remaining number 7 but needed an even number in the bottom right corner to 

maintain an odd difference between adjacent numbers, so she used a Numicon 21. 

However, she self-regulated by comparing this trial against the activity criteria and 

rejected this solution as it did not use the numbers 1–9. She then reverted to beginning 

the grid with an odd number in the top left corner. 

 

Figure 12: Michelle's trial positioning even numbers in the corners 

Following this exploration time to make trials, spot patterns and form and test 

conjectures, both teachers asked their classes to write explanations of what they had 

found that also explained why it worked. Mr Hall refocused the class to support their 

                                                 

1 Numicon are physical number shapes utilising a tens frame image (Griffiths, Back, 

& Gifford, 2017). 



 

movement towards generalising and convincing by using the number of successful 

trials as a signal to change focus: 

If you have 10 solutions and a pattern that works then your job is to explain that 

pattern and why it works. 

Ruby drafted a response to the first part, generalising how to create successful 

solutions: 

First we found out that the odd numbers go in the middle one by one. Then all 

the other odd numbers go in the corners, and the even numbers go in the spaces 

left [Ruby’s emphasis]. 

Alice’s draft written response (Figure 13) generalised the pattern and began to 

explain why this worked by anchoring her argument (Lithner, 2008) in the odd 

difference between odd and even numbers. Initially she drew on the odd/even 

property of the sum rather than the difference between adjacent numbers, but was able 

to notice and correct this. 

 

Figure 13: Alice's first draft 

Throughout this first part of cycle 2, the girls’ affective responses were not 

dissimilar to those in cycle 1. There was pleasure, perhaps in anticipation of the 

challenge to come: 

Ms Parry  I might tease you with the main event [reveals Number Difference grid] 

so you know what you are working towards 

Michelle  [Smiles] 



 

There were many expressions of pleasure in creating numerous successful solutions, 

e.g., this exchange: 

Alice We've done 12 

Ruby It's actually been quite fun 

Alice  [Laughs] 

However, the children’s pleasure in creating solutions shifted to disappointment when 

guided to move onto other reasoning processes: 

Mr Hall If you have 10 solutions and a pattern that works, then your job is to 

explain that pattern and why it works. 

Alice  [Groans] 

Having begun work on written explanations of the pattern and why it worked 

and despite guidance to create a maximum of 10 successful solutions, Ruby and Alice 

returned to creating solutions: 

Alice One more to go and then we’ve got 23 

In the second lesson of cycle 2, Alice and Ruby stopped making further 

solutions and refocused on explaining why the generalised pattern worked. In their 

final written responses all three girls explained that an odd number must be positioned 

adjacent to an even number to create an odd difference: 

the odds have to be in the corners and the middle because there is more odd 

numbers than even numbers. If 2 odds are next to each other the diference will 

be even and if 2 even numbers are next to ech other the difference will be even. 

So there needs to be an odd and an even next to each other [sic]. 

Michelle’s final written response (Alice’s response was similar) 



 

 

Figure 14: Ruby's final written response 

In addition, Alice and Michelle applied the generalisation that the difference between 

an odd and even number will always be odd, constructing a convincing argument. 

Ruby did not anchor her argument in the generalised differences between odd and 

even numbers; instead she used a counter-example to illustrate that if two even 

numbers were in adjacent positions, their difference would be even. Michelle was the 

only child to construct an argument about why the odd numbers also needed to be 

positioned in the corners and the middle of the grid. 

In the post-lesson interviews, the girls discussed their feelings about the 

lesson: 

Alice  Well we found out how we actually understood it.  

  [The difficulties were] trying to start it off, trying to get all those little 

bits of information and putting them into something bigger that explains 

more.  

  I’m proud, I’m over the moon with joy. 

Michelle  I feel really good. I understand it.  

  [I’m] happy and proud that I know how to do it.  

 

Ruby I'm happy actually 



 

Alice and Michelle expressed pride; there had been no expressions or 

indicators of pride in any lesson in the study preceding this. Their pride seemed to 

arise from their understanding of how to position the numbers so that the differences 

between adjacent numbers were odd and why this positioning worked. Ruby did not 

express feelings of pride at the end of cycle 2, rather, she expressed happiness with 

her work; this is consistent with the girls’ responses in the preceding lessons. In her 

final written explanation (Figure 14), Ruby fully articulated the pattern of the 

numbers but did not utilise the generalisations about differences between odd and 

even numbers in her explanation. Her doubts in the merit of her writing may have 

reflected her difficulty in this: 

I think mine’s all wrong [reviewing her writing] 

Ruby’s partial explanation of why the generalised pattern worked, in conjunction with 

her difficulty in utilising generalised differences between odd and even numbers in 

her reasoning, may have impacted on her affective response; it may have contributed 

to her expressing happiness with her work but, unlike Alice and Michelle, not 

describing feelings of pride. 

Michelle’s focus appeared to develop during the course of the activity; 

initially she seemed to strive towards specialising, then to establishing, generalising 

and applying a pattern and finally to explaining why it worked. This suggests that her 

overarching active goals across these foci were to establish what was happening and 

why. There is close alignment between these active goals and that presented by Ms 

Parry at the start of cycle 2: to “figure out why”. Alice and Ruby seemed to begin 

with similar foci to Michelle, specialising then establishing, generalising and applying 

a pattern. They may have adopted part of Mr Hall’s intended active goal, to identify 

the pattern, but once they had described the generalisation, they re-focused on 



 

applying this to create further solutions, with the apparent goal to make as many 

solutions as possible. Whilst pleasure and excitement are seemingly enabling affective 

responses, the pleasure Alice and Ruby appeared to gain from creating many trials 

may have focused their attention on this process and away from forming convincing 

arguments about their generalisations. In the second of the two lessons, Alice and 

Ruby were able to adopt the teacher’s intended goal and focused on constructing 

convincing arguments about why their generalisation worked. 

Figure 15 summarises the cognitive-affective-conative interplay 

predominantly observed in the girls during cycle 2. 

 

Figure 15: Cognitive-affective-conative interplay in cycle 2 

Discussion 

The small-scale nature of the study facilitated the collection of fine-grained data; this 

was valuable as it exemplified the conative aspects of children’s mathematical 

reasoning and teachers’ pedagogic interventions. Moreover, it illuminated how these 

might be identified and interpreted to understand cognitive-affective interplay and 

inform pedagogic intervention. 
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This study concurred with Di Martino and Zan (2013) in finding a bi-

directional interplay between cognition and emotion when engaging in mathematical 

activities involving reasoning. For example, in cycle 2: 

 the impact of Alice and Michelle’s cognition on emotions was evident; they 

constructed convincing arguments, which they connected to feelings of pride 

and satisfaction 

 the pleasure Ruby and Alice expressed when constructing successful solutions 

was subsequently followed by the creation of further solutions. 

The application of a tripartite psychological classification to data collection 

and analysis revealed that there is cognitive-affective-conative interplay, and 

children’s active goals, inferred through the focus of their engagement, impacted on 

cognitive-affective interplay. 

Pleasure appeared to be the predominant affective response, across all except 

the final lesson in the study, impacting on the children’s cognitive and conative 

responses. The children enjoyed engaging in activities involving challenge and 

mathematical reasoning and derived pleasure from creating multiple solutions. Their 

pleasure reinforced their active goal of creating trials. This led to persistent 

specialising and they did not display awareness that, as well as specialising, they were 

spotting patterns and conjecturing. Consequently, these processes remained incidental 

to their active goal. 

During the cycles of persistent specialising, the resulting pleasure experienced 

may have inhibited the girls’ capacity to reflect on both the value of the information 

gathered from specialising and the processes they were applying. This could have 

been the reason for their limited cognitive self-regulation. Their pleasure in creating 



 

solutions may also have impacted on their affective self-regulation; pleasure in these 

actions fostered further pleasure and excitement and these seemingly positive 

emotions may have impeded their capacity for meta-affective responses that could 

have led to higher order cognition. Debellis and Goldin (2006) argue that meta-

affective responses enable difficult emotions to be monitored for cognitive gain. 

However, if the impeding emotion is pleasure, this may mask the need to apply meta-

affective approaches to self-regulate. 

Goswami (2015) cautions that the development of self-regulatory processes is 

not easy in the primary (elementary) phase; this study has demonstrated that children 

with limited PiMR might be working within weak or developing self-regulatory 

systems, which can result in habitual actions and emotions. However, utilising 

pedagogic interventions that focus on moving students from specialising to forming 

generalisations and convincing arguments can support them in transcending their 

habitual cognitive and affective responses; in this study, this resulted in successful 

PiMR. If students have not yet developed the self-regulation required for successful 

PiMR, teachers’ interventions can provide them with active goals that focus their 

efforts and enable them to persevere in mathematical reasoning. 

Implications for practice 

Teachers’ assessments of children’s PiMR during lessons cannot be guided by their 

affective responses alone; whilst high levels of pleasure seem to be positive affective 

responses, pleasure is a poor indicator of PiMR. The following are more reliable 

indicators of PiMR and could be used to support teachers’ assessments: 

 movement between reasoning processes, rather than stasis in one or two 

processes 



 

 a focus on articulating a generalisation and why it is true 

 expressions of pride and satisfaction. 

To be alert to the reasoning processes that children are using, teachers need to 

be familiar with these and how PiMR results from movement between processes 

towards forming generalisations and convincing arguments. Diagrammatic 

representations of pathways of reasoning processes could be utilised by university 

mathematics education tutors to raise teachers’ awareness of reasoning processes, and 

the children’s application of and movement between these processes. This could help 

teachers to plan, enact and assess the impact of pedagogies that facilitate movement 

between reasoning processes and PiMR. 

Whilst persistence is seemingly of value, perseverance is more significant as it 

requires the development of self-regulating rather than habitual behaviours. Guidance 

to persevere, e.g. push yourself, keep going could be interpreted as keep persisting, 

irrespective of the outcome of the try. It is important that teachers are able to interpret 

perseverance guidance in the context of mathematical reasoning. Developing 

teachers’ awareness of the construct PiMR, with its focus on producing assertions, 

developing arguments and justifying conclusions, would support this. It could raise 

teachers’ awareness of the need to focus conative behaviours and active goals on 

these outcomes, rather than valuing behaviours that strive towards and focus on other 

goals, or valuing striving and high levels of engagement without consideration of the 

focus. Perseverance guidance needs to be augmented with a conative focus; e.g.: 

Push yourself to explain why the generalisation is true 

Keep going when things get difficult to convince yourself why this is true 

This might be extended to learning contexts beyond mathematics by augmenting the 



 

perseverance guidance to indicate the processes that the children should be using and 

identifying the active goals they should be striving for. 

Conclusions 

This study extended the motivation aspect of Hannula’s (2012) metatheoretical 

framework to include the broader conative domain. This enabled the construct PiMR 

to be defined and exemplified and offers a new approach to analysing the cognitive-

affective-conative interplay in children’s mathematical learning. 

The study revealed the role that the children’s active goals had on creating 

productive cognitive-affective interplay. Teachers’ interventions successfully 

impacted on guiding children’s active goals and this supported successful PiMR, even 

when children were operating within weak self-regulatory systems. 

The study offers a framework for future research in this field. Whilst small-

scale, it shows how the conative features of children’s mathematical responses and 

teacher’s interventions can be identified, and how these might be interpreted to 

support the development of productive cognitive and affective learning conditions. 
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