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Abstract. Euler diagrams are used for visualizing categorized data,
with applications including crime control, bioinformatics, classification
systems and education. Various properties of Euler diagrams have been
empirically shown to aid, or hinder, their comprehension by users. There-
fore, a key goal is to automatically generate Euler diagrams that possess
beneficial layout features whilst avoiding those that are a hindrance.
The automated layout techniques that currently exist sometimes pro-
duce diagrams with undesirable features. In this paper we present a novel
approach, called iCurves, for generating Euler diagrams alongside a pro-
totype implementation. We evaluate iCurves against existing techniques
based on the aforementioned layout properties. This evaluation suggests
that, particularly when the number of zones is high, iCurves can outper-
form other automated techniques in terms of effectiveness for users, as
indicated by the layout properties of the produced Euler diagrams.

1 Introduction

Visualizing data can be highly effective due to the human brain processing visual
information significantly quicker than textual information [19]. Data items that
are grouped into sets can be visualized by a variety of techniques, including Line-
Sets [1] and linear diagrams [9, 18], with by far the most prominent being Euler
diagrams [2]. They are widely used for visualizing sets in numerous application
areas, including genetics [11], crime control [6], education [10] and classification
systems [24]. The Euler diagram in Figure 1 conveys information about mod-
ules being studied by students. For instance, those who study Web also study
Architecture and those who study Logic all study Maths but not Architecture
or Programming. This diagram has features that are known to be effective for
cognition, such as circular curves each of which is a unique colour [3]. Empiri-
cal studies have identified (in)effective features (further details are given later)
including their so-called well-formedness properties [16], that are topological in
nature, as well as their graphical properties [3]. In the context of automated lay-
out tools, the difficulty of producing visualizations is compounded by the desire
to produce effective drawings.

Given the extensive practical uses of Euler diagrams, it is unsurprising that
many automated layout techniques exist for drawing them, with the first one



Fig. 1. An Euler diagram.
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Fig. 2. Venn-4: iCircles. Fig. 3. Venn-4: GED-L.

being produced in 2002 [7]. However, all existing methods have limitations, such
as not being able to represent all data sets, producing diagrams that inaccu-
rately represent the data, or breaking well-formedness properties. Indeed, it is
impossible to exactly visualize some sets in a completely well-formed way [7].
Consequently, layout methods have to prioritise which desirable features to en-
force in their layouts and which to compromise. It is unknown which Euler
diagram layout method produces the most effective diagrams.

The contribution of this paper is two-fold. Firstly, we introduce a new general
Euler diagram drawing technique, called iCurves, that aims to ensure desirable
properties hold (the diagrams are well-formed) at the expense of sometimes
introducing extra zones into the diagrams. Secondly, we empirically compare
the diagrams produced by iCurves against selected state-of-the-art techniques
to gain insight into their relative effectiveness. Section 2 gives a brief summary of
effective layout properties and existing techniques for automated Euler diagram
layout. In section 3 we cover the concrete (drawn) and abstract Euler diagram
syntax. Section 4 presents the theoretical underpinning of our method, iCurves,
which we have implemented. A comparative evaluation of iCurves with existing
techniques, using real-world data, is given in section 5. We conclude and discuss
future work in section 6. The iCurves software and the diagrams on which our
evaluation is conducted can be found at https://github.com/AlmasB/d2018.

2 Euler Diagrams: Background

As indicated in the introduction, effective Euler diagrams should be well-formed
and possess other desirable graphical properties such as the use of circles and
colours that are perceptually distinguishable. Five well-formedness properties
have been identified and established to impact user understanding [16], which
are as follows. Simple curves: no curve self-intersects. Non-concurrent curves: no
parts of the curves run along the same path. Only two-points: whenever a point
is passed through by curves, it is passed through at most twice; points that
fail this condition are called triple points. Connected zones: all of the zones3

in the diagram are connected components of the plane; a zone which is not

3 A zone is a maximal region of the plane inside a subset of the curves and outside
the remaining curves.



connected is called disconnected. Distinct labels: no two curves have the same
label; curve labels that occur more than once are called duplicated curve labels.
An example with duplicated curve labels is in Figure 2, which depicts Venn-4
(a Venn diagram representing four sets) using two curves for the set P ; it was
drawn using iCircles [21], with labels manually added for readability. A diagram
which does not break any well-formedness property is called well-formed.

Rodgers et al. performed two comparative user studies which revealed that
Euler diagrams with duplicated curve labels gave rise to significantly worse
performance than those without [16]. They also found that disconnected zones
caused significantly worse performance than the remaining properties. Thus, it
is particularly important that drawing algorithms avoid disconnected zones and
duplicated curve labels. The remaining well-formedness properties were shown
to cause significantly worse performance using diagrams as compared to those
which are well-formed. So, they should also be avoided where possible, but not
at the expense of disconnected zones or duplicated curve labels. Therefore we
can see, from the perspective of well-formedness, that Figure 2 is less desirable
than Figure 3, which was generated using the General Euler Diagram drawing
method in [15] extended to include a library of simple cases [17]; we call the
extended method GED-L.

It has been suggested that the use of curves of particular geometric shapes
impacts effectiveness [3]: circles were found to be more effective than ellipses,
squares or rectangles. The choice of shape is a core part of layout algorithms,
as well as routing the curves in order to display the correct set of zones. This
is certainly no easy task and the resulting efficacy of the drawn diagrams is
inherently intertwined with the design of the algorithms. By contrast, the use of
colour applied to a diagram’s curves is easily altered post-layout. Therefore, in
this paper we will judge the efficacy of diagram layouts, in section 5, by focusing
on the five well-formedness properties that impact understanding and the use
of circles. We acknowledge that this does not take into consideration diagram
aesthetics but there are currently no comprehensive results that indicate users’
aesthetic preferences. One of our goals is to provide insight into the relative
effectiveness of the diagrams produced by automated layout tools using known
results concerning task performance, not user preference.

Fig. 4. Venn-4: Bubble Sets. Fig. 5. Venn-4: iCurves.



As well as iCircles and GED-L, a large number of other layout tools for Euler
diagrams have been provided, such as [5, 14, 20, 23]; see [2] for a comprehensive
overview. All of these techniques have problems. For example, the first Euler dia-
gram drawing method only produces well-formed diagrams but many sets cannot
be visualised in this way [7]. Moreover, Bubble Sets [5] produces concurrency and
disconnected zones (see Figure 4). Ultimately, there is no ‘ideal’ technique and
it is necessary to accept some ineffective features in Euler diagram layouts. The
ambition should be to minimise the ineffective features, whilst ensuring the dia-
gram represents the desired sets. Our technique, iCurves (see Figure 5), sets out
to avoid layout features known to be detrimental to task performance.

3 Euler Diagrams

We present prerequisite theory for iCurves. The definitions are the same as, or
adaptations of, the material, found in [21–23]. An Euler diagram is a collection
of closed curves, each of which has a label from some given set of labels, L.

Definition 1. An Euler diagram is a pair, d = (C, l), where C is a finite set
of closed curves drawn in the plane, each curve has a non-empty interior, and
l : C → L is an injective function that returns the label of each curve.

Note that this definition is, for simplicity, more strict than some given for Euler
diagrams, such as [21], which do not require non-empty curve interiors or l to
be injective (i.e. when duplicated curve labels are allowed).

The closed curves partition the plane into minimal regions, which are con-
nected components of the plane. In Figure 6, the eight minimal regions are enu-
merated. Another important concept is that of zones. A zone is a set of minimal
regions that is inside certain curves (possibly none) and outside the remaining
curves [23]. In Figure 6, minimal regions 7 and 8 form a single (disconnected)
zone, inside P and Q, but outside R, representing the set (P ∩ Q)\R. In total,
there are seven zones. A minimal region is a purely topological notion related to
a drawn Euler diagram, whereas zones represent the intersection of sets.

Euler diagram drawing techniques, including iCurves, produce diagrams from
descriptions. A description includes a list of abstract zones, where each abstract
zone describes a zone. For example, in Figure 6, the zone formed from minimal
regions 7 and 8 is described by {P,Q} since it is inside P and Q only.

Fig. 6. Minimal regions and zones. Fig. 7. A nested Euler diagram.



Definition 2. A description, D, is a pair, (Z,L), where L is a subset of L and
Z ⊆ P(L) such that ∅ ∈ Z and each label in L appears in at least one abstract
zone in Z. We define Z(D) = Z and L(D) = L.

In Figure 7, the diagram, d, has a zone inside the curve P only, described by
the abstract zone {P}, and a zone inside precisely P and Q, described by {P,Q}
and so on. So the description, D, of d has labels L = {P,Q,R} and abstract
zones Z = {∅, {P}, {Q}, {P,Q}, {Q,R}}, where ∅ describes the zone outside all
curves. We say that d is a drawing of D. Furthermore, we will abuse notation
for conciseness and write D as {∅, P,Q, PQ,QR}.

Some automated layout techniques, such as iCircles, draw diagrams with
additional zones which are not indicated in the description. Such extra zones
can be shaded, following the use of shading in Venn diagrams [25], to show that
they represent empty sets. Our technique, iCurves, includes extra zones and uses
shading in this way.

The concept of nesting is of use to us [8]. If the curves of an Euler diagram,
d, form more than one connected component of the plane, as in Figure 7 where
the curve R is separate from P and Q, then d is nested, otherwise d is atomic
(as in Figure 6). Each connected component is called an atomic component [22].
So Figure 7 has two atomic components, whereas Figure 6 has one. Given a
description, D, it is possible to identify abstract atomic components [22]. These
abstract components correspond to atomic components in some drawing of D. In
Figure 7, the two atomic components have the following (atomic) descriptions:
{∅, P,Q, PQ} and {∅, R}. Whilst this identification is an essential part of our
drawing algorithm, we omit the (complex) theoretical details. What is important
here is that the abstract atomic components can be computed. Our algorithm
draws the atomic components separately and combines them to form the final
diagram. We will refer to atomic and nested descriptions in the obvious way.

4 The iCurves Euler Diagram Generation Technique

The goal of the iCurves method is to draw well-formed diagrams, using circles
where possible and with extra zones if needed. The drawing process of an abstract
atomic component is described by the following sequence of steps:

1. Produce a decomposition of the abstract atomic component.
2. Draw the first curve as a circle.
3. Draw the next curve either as a circle or using a modified dual graph of the

diagram so far. Repeat this step until all curves are drawn.

Given a description, D, a decomposition of D is a sequence of descriptions,
(Dn, ..., D0), each with one fewer curve label than the previous, where Dn = D
and L(D0) = ∅. In addition,Di = (Zi, Li) is formed fromDi+1 = (Zi+1, Li+1) by
removing a curve label, λi+1, from Li+1, (so Li = Li+1 \ {λi+1}) and from each
abstract zone in Zi+1 to give Zi; we write Di = Di+1−λi+1. One of our goals is
to sensibly choose a decomposition that allows us to build an effective diagram.



A reversed decomposition is called a recomposition and corresponds to the order
of curve addition described in step 3 above. The use of a decomposition in Euler
diagram generation is not new [21, 23], but the order of curve label removal can
have a profound impact on the effectiveness of the final diagram, as can the
method used to draw the curves. We introduce a new strategy for producing a
decomposition that takes into account the process by which we draw curves. We
also introduce a new technique for drawing the curves themselves.

4.1 Drawing Curves in Euler Diagrams

Here, we demonstrate how to draw a new non-circular curve given an existing
drawing of an atomic Euler diagram, d. This process constructs a modified dual
graph [23] of d and then finds an appropriate cycle for curve addition. To illus-
trate, given Figure 8, we produce an Euler graph [4], shown in Figure 9. From
this a dual graph is created, shown in Figure 10. The dual is modified to yield
the graph in Figure 11. The cycle highlighted in Figure 11 can be used to add a
new curve, S, as shown in Figure 12.
Constructing a Modified Dual Graph First, we obtain an Euler graph, EG(d),
from an Euler diagram, d: vertices are points at which the curves cross and
the edges are the curve segments that connect the vertices. Next, we obtain a
(standard) dual, EGD(d), of an Euler graph. Finally, from EGD(d) we obtain a
modified Euler dual, MED(d): for each edge, e, incident with the vertex, v∅, in
the zone outside all of the curves, a new vertex is placed onto e; v∅ is deleted
along with its incident edges; new edges are added which join the newly inserted
vertices, so that the new vertices together with these new edges form a simple
cycle that properly encloses the Euler graph.
Using a Cycle for Curve Addition Cycles in MED(d) are used to add curves. In
essence, a cycle’s edges become curve segments which combine to form a curve.
Our method is to use a simple cycle, s, to add new curves: a simple cycle does
not pass through any vertex more than once.

Definition 3 (adapted from [23]). Let d = (C, l) be an atomic Euler diagram
with a modified Euler dual MED(d). Let s be a simple cycle in MED(d) and let
λ be a label not already used in d. Then d extended by s and λ is an Euler
diagram, denoted d+ (s, λ), where d+ (s, λ) = (C ∪ {c}, l ∪ {(c, λ)}) such that c
is a closed curve, not in C, that traverses the cycle s and has label λ.

Fig. 8. Venn-3. Fig. 9. An Euler
graph.

Fig. 10. A dual. Fig. 11. A mod-
ified dual.

Fig. 12. Added
S.



Of course we cannot use any simple cycle to add a curve, since we have a de-
scription that we are aiming to draw. Consider

D = {∅, P,Q,R, PQ,QR,PR, PQR,PS, PQS,QS,QRS, PRS}

which will be used as a running example; it is drawn, with an extra zone, PQRS,
in Figure 12. Any decomposition of D is of the form (D4, D3, D2, D1, D0),
where D4 = D. Suppose that the first label we remove is S, giving D3 =
{∅, P,Q,R, PQ,QR,PR, PQR}. A drawing, d3, of D3 can be seen in Figure 8,
alongside its modified Euler dual, Figure 11. We now illustrate how we find a
cycle in MED(d3) to create a drawing (with an extra zone) of D4:

1. Identify the abstract zones inD4 that contain S: {PS, PQS,QS,QRS, PRS}.
Remove S from these abstract zones to give {P, PQ,Q,QR,PR}. These ab-
stract zones necessarily occur in D3.

2. Identify vertices in MED(d3) (Figure 11) that are placed in the zones with
descriptions {P, PQ,Q,QR,PR}.

3. Next, seek a cycle that passes through at least these vertices. No cycle passes
through exactly these vertices, but the cycle, which we call s, highlighted in
Figure 11, passes through them all. Use s to add the curve, seen in Figure 12.

We call the diagram, d4, in Figure 12, a relaxed drawing of D4, as it contains an
extra zone; iCurves will shade this non-required zone.

Definition 4. Let d be an atomic Euler diagram. Let ZON be a non-empty set
of zones in d. Let s be a simple cycle in MED(d). If (i) vertices that arise from
zones in ZON are in s and (ii) all vertices in s that are located in the zone
outside all curves form one path in s then s is a curve-adding cycle for d
respecting ZON .

Importantly, curves added using curve-adding cycles ensure that the result-
ing diagram is well-formed, provided the diagram to which the curve is added
is also well-formed. In our running example, the cycle used to create d4 (Fig-
ure 12) respects ZON , where ZON contains the five zones with descriptions
{P, PQ,Q,QR,PR}. In Figure 11, in addition to the cycle we used to add the
curve S, we observe that there exist other curve-adding cycles for d3 respect-
ing {P, PQ,Q,QR,PR}. The choice of cycle profoundly impacts the layout of
the final diagram. For example, using an alternative cycle to add the new curve
could result in the diagram d′4, in Figure 13, which contains three extra zones.
We note that the more vertices included in the chosen cycle, the more extra
zones the resulting diagram will have. Therefore, iCurves strategically chooses a
cycle respecting ZON which has few vertices. We now formalize the notions of
a super description and a relaxed drawing.

Definition 5. Let D1 = (Z1, L) and D2 = (Z2, L) be descriptions. If Z1 ⊆ Z2

then D2 is a super description of D1.

Definition 6. Let D1 be a description with super description D2. If d2 is a
drawing of D2 then d2 is a relaxed drawing of D1.



Fig. 13. A relaxed drawing. Fig. 14. A non-valid cycle. Fig. 15. A Hamiltonian
dual.

H-extendible Euler diagrams It is important that iCurves can draw any descrip-
tion. Yet some curve-adding cycles respecting a given ZON set need not ensure
we can add the next curve to the resulting diagram. We observe that given a
pair of descriptions, (Di, Di+1), in a recomposition, the existence of a Hamil-
tonian cycle in the Euler graph dual of di (a relaxed drawing of Di) ensures
we can find a cycle in the modified Euler dual to add a curve that splits each
zone in two and ensures the resulting Euler graph dual is Hamiltonian. Once a
curve is added using a Hamiltonian cycle, we can shade any extra zones to give
a relaxed drawing of Di+1. Clearly, we want to use our curve adding strategy to
minimize the number of extra zones. So the chosen cycle need not be Hamilto-
nian. However, the presence of a Hamiltonian cycle guarantees that there exists
at least one curve-adding cycle and, thus, ensures the drawability of any Di+1

given (Di, Di+1). We want to ensure that the Hamiltonian property is preserved.

Definition 7. Let d be an atomic Euler diagram. If an Euler graph dual of d is
Hamiltonian then d is H-extendible.

In this context, we place an additional constraint on curve-adding cycles.
Such cycles partition the plane into two subspaces: bounded and unbounded. A
vertex, v, is inside s if v is in the bounded subspace. It is possible for cycles that
have vertices inside them not to give rise to diagrams with Hamiltonian duals.
For example, in Figure 14, if we use the highlighted cycle to add a new curve
then the resulting diagram will not have a Hamiltonian dual.

In addition, we place a stronger condition on edges of curve-adding cycles,
which guarantees that, after adding a curve, the resulting diagram has a Hamil-
tonian dual. In Figure 15, the Euler graph dual includes a Hamiltonian cycle,
shown using dashed (red) edges. A curve-adding cycle, s, in the Euler graph
dual is highlighted by a semi-translucent path (in yellow). If s is used to add a
new curve, the Euler graph dual would need to be updated for the new diagram.
The resulting new edges and vertices are shown in grey. The dashed grey edges
together with the dashed red edges, excluding e, form a Hamilitonian cycle in
the new Euler graph dual. Notice the edge e and how its incident vertices are



used to join the red and grey paths to form the new Hamiltonian cycle thus
extending the Hamiltonian property to the new dual. The presences of e in a
Hamiltonian cycle is important: it ensures that we can join the dashed paths
together using its incident vertices to create a new Hamiltonian cycle. In gen-
eral, the existence of an edge in both a Hamiltonian cycle in EGD(d) and in the
curve-adding cycle, is sufficient to ensure that a Hamiltonian cycle exists in the
new dual after adding a curve.

Definition 8. Let d be an atomic Euler diagram. Let ZON be a non-empty set
of zones in d. A curve-adding cycle, s, for d respecting ZON is valid if there
are no vertices inside s and there is an edge, e, in s such that there exists a
Hamiltonian cycle in EGD(d) that contains e.

Lemma 1. Let d be an atomic Euler diagram that is H-extendible. Let ZON be
a non-empty set of zones in d. Then there exists a valid curve-adding cycle for
d respecting ZON .

It follows that at each step in our diagram generation process we want to
generate an H-extendible diagram, so that there exists at least one valid curve-
adding cycle for the next step.

Theorem 1. Let (Di, Di+1) be a pair of descriptions in a recomposition. Let
di = (C, l) be an H-extendible Euler diagram which is a drawing of Di. There
exists an H-extendible relaxed drawing, di+1, of Di+1 and obtained from di by
adding a curve using a valid curve-adding cycle.

We can readily show that given any description, D, there exists a relaxed
drawing of D by appealing to Venn diagrams, which are known to have Hamil-
tonian duals [13]. For example, in Figure 16 we can shade any zone in a Venn-5
diagram and obtain a relaxed drawing of any description with five curve labels.

Lemma 2. Let D be a description. There exists an atomic Euler diagram that
is H-extendible which is a relaxed drawing of D.

In summary, to guarantee drawability using iCurves, we select the shortest
valid curve-adding cycles respecting ZON which ensures the resulting diagram
is H-extendible. Shortest cycles lead to fewer extra zones being introduced when
producing a relaxed drawing. The validity and H-extendible conditions ensure
that we can continue adding curves to create a well-formed relaxed drawing of
the required description.

4.2 Producing a Decomposition

We have now seen how iCurves adds curves, taking into account extra zones and
drawability. The choice of decomposition also impacts on the quality of the final
diagram. We present our strategy that leads to a particular choice for the order of
curve label removal. Note that given an atomic description, D, iCurves draws an
atomic diagram. Our strategy ensures that all descriptions in the decomposition
of D are atomic. This is achieved by always choosing to remove a label that
results in an atomic description, i.e. a non-disconnecting label.



Fig. 16. Venn-5. Fig. 17. A bad choice of de-
composition.

Fig. 18. A good choice of
decomposition.

Lemma 3. Let D be an atomic description. There exists a label, λ, in D that,
when removed, results in an atomic description.

This is an important part of our strategy, since removing disconnecting la-
bels, yielding a nested description, necessarily leads to extra zones being included
when drawing the diagram. For example, in Figures 17 and 18, the diagrams
were generated from the same description. In Figure 17 the diagram has four
extra zones and was drawn using a decomposition which first removed label S,
giving a nested diagram; iCurves will not produce this layout as the decomposi-
tion violates our strategy. Figure 18 was drawn with iCurves using only atomic
descriptions in the decomposition and has no extra zones. Our decomposition
strategy to remove a label from Di+1 to give Di is as follows:

1. If there is only one non-disconnecting label in Di+1, remove it.
2. Else, see if any non-disconnecting label might be drawable as a circle that

‘cuts across’ one curve: for each non-disconnecting label, λ, see if {az ∈
Z(Di+1) : λ ∈ az} = {az , az ∪ {λ1}} for some az ∈ Z(Di+1) and λ1 ∈
L(Di+1). If there are such labels, randomly choose one of them to remove.

3. Else, see if any non-disconnecting label might be drawable as a circle that
‘cuts across’ two curves, possibly adding one or two extra zones: for each
non-disconnecting label, λ, see if {az ∈ Z(Di+1) : λ ∈ az} ⊆ {az , az ∪
{λ1}, az ∪{λ2}, az ∪{λ1, λ2}} for some az ∈ Z(Di+1) and λ1, λ2 ∈ L(Di+1).
If there are such labels, randomly choose one of them to remove.

4. Else, remove a label whose addition is likely to introduce the fewest ex-
tra zones: for each non-disconnecting label, λ, first compute n = |{az ∈
Z(Di+1) : λ ∈ az ∧az \{λ} /∈ Z(Di+1)}|, which gives the number of abstract
zones that contain λ and do not have neighbours4. Next, compute m by find-
ing the smallest set of abstract zones, Z ′, where Z ′ ⊆ Z(Di+1−λ) such that
the graph (V,E), defined by V = {az ∈ Z(Di+1−λ) : az ∪{λ} ∈ Z(Di+1)}∪
Z ′ and E = {{az , az ′} : az = az ′ ∪ {λ′}} for some λ′ ∈ L(Di+1 − λ), is a

4 Two abstract zones are neighbours if their symmetric difference has one element.



Fig. 19. d1. Fig. 20. d2. Fig. 21. d3. Fig. 22. d4.

simple cycle; set m = |Z ′|. Remove the label with the smallest n+m; if there
is a choice, randomly choose one of them to remove.

A decomposition of our running example, D, can be formed by removing S,
then R, followed by Q and P . The drawings of D1-D3 are in Figures 19-21. The
diagram d4, in Figure 22, is a relaxed drawing of D4 and, therefore, of D. In
D, all four labels are non-disconnecting and cannot be identified as (possibly)
drawable with circles. Hence, we compute n +m for each label. The value of n
for P is 2 since there are two abstract zones, PS and PRS, where corresponding
abstract zones, S and RS, are not in D. To compute m for P , we obtain the set
V , which is formed from two sets V ′ ∪ Z ′, where V ′ arises from abstract zones
in D that contain P . So, we have V ′ = {QR,R, ∅, Q,QS, S,RS}. The smallest
set that can be added to V ′ to give a simple cycle is {QRS}. Thus, m for P is
|{QRS}| = 1 and we have n+m for P is 3. Similarly, n+m for Q, R and S is 3,
2 and 1 respectively. S has the smallest n+m and, so, is removed from D. Next,
P , Q and R can be removed in any order as they are all drawable as circles.

4.3 Drawing Algorithm

To generate an atomic Euler diagram from an atomic description, D, using
iCurves, call Algorithm 1 (page 12) with D as input.

Theorem 2. Let D be an atomic description. Applying Algorithm 1 to D pro-
duces an atomic Euler diagram, d, that is a relaxed drawing of D.

To draw a nested description, D, iCurves starts by splitting D into its atomic
parts, say D1, D2, ..., Dn. Each Di is then drawn using Algorithm 1. The di-
agrams are then displayed appropriately, reflecting the nested properties of D;
the formal details are omitted due to space constraints. An example of a nested
diagram drawn by iCurves can be seen in Figure 23. We are now in a position
to state our main theorem:

Theorem 3. Let D be a description. Then iCurves produces an Euler diagram,
d, that is a relaxed drawing of D.



Algorithm 1: Draw atomic component.

Input : An atomic description, D.
Output: An atomic Euler diagram, d, which is a relaxed drawing of D.
begin

Set dec(D) = (Dn, ..., D0), removing labels using the strategy given above.
D0 has no labels and D1 has a single label, λ1. Draw the first curve as a
circle with label λ1. Call the resulting Euler diagram d1. Trivially, d1 is
atomic, H-extendible and a drawing of D1. Set i = 1.

while i < n do
Set λi+1 to be the label such that Di = Di+1 − λi+1.
if i == 1 then

Add a circle with label λi+1 to di, resulting in di+1.
else

Set ZON = Fi(IN (Di, Di+1)), where IN (Di, Di+1) is the set
{az ∈ Z(Di) : az ∪ {λi+1} ∈ Z(Di+1)} and Fi maps abstract zones
of Di to zones of di in the obvious way.

Construct MED(di).
if |ZON | = 2 and the zones in ZON are adjacent and the edge
between the zones is in a Hamiltonian cycle in EGD(di) or
|ZON | = 2 and we can add two extra zones to ZON to form a valid
curve-adding cycle or |ZON | = 3 and we can add one extra zone to
ZON to form a valid curve-adding cycle or |ZON | = 4 and the
zones in ZON form a valid curve-adding cycle then

Add a circle with label λi+1 to di, resulting in di+1.
else

Set si to be a valid curve-adding cycle for di respecting ZON ,
selected using the strategy given above.

Set di+1 = di + (si, λi+1).
end

end
di+1 is atomic and a relaxed drawing of Di+1.
Increment i by 1.

end
To finish, set d = dn.

end

5 Evaluation

We now set out to evaluate the layouts produced by iCurves against competing
state-of-the-art techniques. It is not possible to evaluate against all implemented
techniques as there are a large number of them. We selected techniques such that
(a) the software is freely available, and (b) they could theoretically draw any
description, even though the implementation may fail. So, the methods selected
for comparison with iCurves are: Bubble Sets [5], GED-L [17], and iCircles [21].

We selected a stratified random sample of 40 data sets from the SNAP (Stan-
ford Network Analysis Project) collection, which are derived from Twitter ego-
networks [12]. The 40 data sets had between four and eight sets. The number of



Fig. 23. A nested Euler di-
agram with 8 curves. Fig. 24. iCircles. Fig. 25. iCurves.

Fig. 26. GED-L. Fig. 27. Bubble Sets.

zones varied too: for each number of sets, we randomly selected two data sets
from each quartile based on the number of zones. For example, the eight-set data
sets in the SNAP collection had between 8 and 48 zones, with ‘number of zones’
quartiles 8− 12, 13− 14, 15− 18 and 19− 48; we randomly chose two data sets
from each quartile. This approach to sampling was designed to provide insight
into how the effectiveness of the layouts changed as the complexity of the data
changed, as measured by the number of sets and the number of zones.

Each selected data set was drawn using each of the four techniques. We
counted the number of times each well-formedness property was broken. For
each curve label, we counted the number of ‘extra’ times it was used. For each
disconnected zone we counted the number of extra minimal regions it comprised
(i.e. one fewer than the number of minimal regions of which the zone comprised)
on the basis that one minimal region per zone is needed. For concurrency, we
counted the number of cases where two or more curve segments run along the
same path and we also counted the number of triple points. There were no occur-
rences of non-simple curves. We also counted the number of non-circular curves.
These counts provide a measure of the relative effectiveness of the diagrams.
Lastly, we counted the number of extra zones present in the diagrams (i.e. zones
whose abstraction is not in the drawn description). Sometimes the techniques
failed to draw a given description, so our discussion below accounts for that.

The diagrams generated from the data sets, using all four techniques, are
available from https://github.com/AlmasB/d2018. They are marked to show
how we counted violations of the well-formedness properties. For example, Fig-
ures 24-27 illustrate the same data set drawn using each of the four techniques



Techniques iCircles (40) Bubble Sets (40) GED-L(29) iCurves (38)

c a n c a n c a n c a n

Duplicated Labels 45 1.1 17

Disconnected Zones 146 3.7 21 2 0.1 2

Concurrency 51 1.3 12 12 0.4 5

Triple Points 36 0.9 15 20 0.7 7

Non-circles 240 6.0 40 46 1.6 7 11 0.3 8

Extra Zones 5 0.1 2 87 2.2 20 63 1.7 15
Table 1. Total counts and averages for the diagram features broken by the techniques.
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Fig. 28. The averages for the diagram features broken by the techniques.

(the labels are manually added for readability). In Figure 24 there are two dupli-
cate curve labels. In Figure 25 there are two extra zones. In Figure 26, there is
one case of concurrency and two triple points. In Figure 27, there are two cases
of disconnected zones, one triple point and one case of curve concurrency.

The data we collected are summarised in Table 1. The column headings show
how many of the 40 data sets the technique successfully drew; GED-L failed to
generate 11 diagrams out of 40 and iCurves failed to generate 2. In most of
the failed drawing attempts the number of zones was high. For each property,
the total count, c, is given, together with the average number, a, of violations
for each drawn diagram, and the number of diagrams, n, in which the violation
occurs. When the count is 0, no entry is given to avoid clutter.

The data are also displayed in line charts in Figure 28. The two charts on the
left show the average number of violations of the five well-formedness properties
plus the average number of non-circular curves; one graph is by number of sets,
the other by quartile. The other two charts show the number of extra zones by
number sets and quartile respectively. Bubble Sets often produces diagrams with



disconnected zones and extra zones. Furthermore, none of the curves are circles.
In iCircles all of the curves are circles, but as the number of zones increases
iCircles produces duplicated labels and GED-L produces curve concurrency and
triple points. Unsurprisingly, as the diagrams increased in complexity, as indi-
cated by number of sets or zone quartile, the diagrams produced by all four
techniques exhibited an increasing number of bad properties.

In summary, we can see that iCircles and Bubble Sets have particularly prob-
lematic features, such as duplicated curve labels and, respectively, disconnected
zones. These data suggest that GED-L and iCurves strongly outperform iCircles
and Bubble Sets based on these two well-formedness properties. GED-L often
breaks other well-formedness properties (although not as many times as Bubble
Sets) unlike iCurves. Considering effectiveness based just on the well-formedness
properties, these data suggest that iCurves should be used rather than GED-L.
In addition, iCurves more often used circular curves than GED-L, again point-
ing favourably towards iCurves. Of course, we must be mindful that the effective
features of iCurves come at the expense of extra zones being present.

6 Conclusion and Future Work

Our technique, iCurves, generates well-formed diagrams, in contrast with other
techniques. The evaluation has shown that iCurves can outperform other tech-
niques with respect to layout features that are detrimental to task performance.

In the future, it would be beneficial to determine the effects of extra zones
on diagram comprehension. Understanding the effects would allow us to gain
deeper insight into the trade-off between duplicated labels and extra zones, for
example in Figures 24 and 25. Moreover, whilst GED-L did not break any par-
ticularly problematic properties, the overall aesthetic qualities of the diagram
were questionable. As can be seen from Figure 26, use of jagged lines makes the
diagram convoluted. Currently there are no clear aesthetic criteria we can use to
evaluate the diagrams, but properties such as symmetry and curve smoothness
can be considered. Finally, we plan to extend iCurves to include graphs, so we
can visualize grouped network data (elements joined with lines). Extending the
technique in a way that primary spatial rights [5] are not assigned to either the
sets or the network represents a considerable challenge.
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