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Abstract

The increase in mean human lifespan since 1900 has been an incredible feat; however, ageing
is a challenging issue faced by society. CNS ageing is accompanied by cognitive decline and
is the major risk factor for conditions such as Alzheimer’s disease. The understanding of the
neuronal ageing process in mammalian species has been significantly hampered due to the
complexity of the mammalian brain and restrictions of non-invasive experimental techniques

in humans.

Many of the changes associated with neuronal ageing are evolutionarily conserved, which
raises the possibility of using simpler organisms to investigate this process. This study utilised
the pond snail, Lymnaea stagnalis, to perform a top-down analysis of the effects of age on
Lymnaea feeding behaviour with a focus on age-related changes to voltage-gated outward

currents in an identified pair of neurons, known as the cerebral giant cells (CGCs).

The observed decrease in feeding frequency with age was accompanied with reduced
spontaneous and evoked CGC firing frequency, an increase in the after-hyperpolarisation,
hyperpolarisation of the resting membrane potential and narrowing of action potentials. These
changes were associated with underlying alterations to the kinetics and voltage sensitivity of
the A-type K* current. Ageing suppressed a previously uncharacterised voltage-gated
outward chloride current and enhanced a newly discovered voltage-gated TEA/4-AP/NPPB
insensitive outward current in the CGCs. There were no age-related changes to the
conductance of the delayed rectifier or recently identified inward rectifier. The use of
selective pharmacological channel blockers inferred that many of the age-related changes to
CGC action potential waveform could be explained by the altered A-type K* current. Ageing
of the CGCs was also associated with an increase in MDA and protein carbonyl levels in the
CNS, which suggested that oxidative stress might be an important determinant of these
changes. Acute exposure to AAPH, a pro-oxidant generator, in young Lymnaea altered
feeding frequency and mimicked many of the age-related changes to CGC firing properties
that could be prevented or reversed with the antioxidant combination of Vitamins C and E.
Furthermore, acute AAPH treatment remarkably replicated the effects of age on the voltage-

gated outward currents in the young CGCs.

In conclusion, this study has characterised the age-related changes to CGC firing properties
and has shown that many of these changes can be explained by alterations to the A-type K*
current. These changes can be largely mimicked by acute AAPH treatment in young CGC:s,

which strongly suggests that oxidative stress is a major driver of CGC ageing.
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Chapter 1: Introduction

1.1 Ageing

In multicellular organisms, the moment of conception signals the commencement of
growth and development leading to a stage of reproductive competence during adulthood
(Figure 1.1). With time, however, facets associated with a process described as ageing
begin to emerge. Ageing is commonly defined by biologists as the deterioration of
physiological integrity, resulting from the accumulation of deleterious changes with
advancing age!#8]. In humans, ageing is a familiar aspect of life that is characterised by a
progressive decline in function, loss of fecundity, increased risk of disability, chronic or

degenerative diseases and eventually death as the final end point!333],

AYte

Figure 1.1| Human Ageing. The ageing process is an intrinsic process that occurs in

every individual and leads to a physiological decline!*’!.,

1.1.1 The ageing population dilemma

The increase in human lifespan expectancy is one of the most remarkable achievements
of the 20" century. In fact, in most developed countries including the United Kingdom
(UK) there has been more than a doubling in life expectancy!””l. Before 1900, most
individuals did not exceed the age of 50 years old- a trend that had changed very little
since the times of the Roman Empire. Mortality was exceptionally high, particularly
during childhood because of infectious diseases!334275]. By mid-19™ century, however,
improvements in sanitation and medical advances such as the development of antibiotics
aided the control of infectious diseases and led to a significant decrease in childhood
mortality and improvement in life expectancy. In the UK in 1985, only 15% of the
population was aged 65 years old and over!?’5. At present, this figure has increased to
24%, which is approximately 11 million people in the population. It is projected that by
2035, 16 million people (29%) will be aged 65 years old and over. The ‘oldest old’,
individuals aged 85 years old and over, have seen the fastest increase of more than a

doubling in their population from 0.7 million in 1985 to over 1.5 million people in 2010.



By 2035, it is expected that 3.5 million people (or 5%) will be aged 85 years old and over
in the UKP347741 The number of centenarians (those aged 100 years old and over) has
also increased significantly over the last 30 years from 2,500 in 1985 to 13,350 in
201241, Improvement in health, decreases in birth rate and ageing of the ‘baby boomers’
has been so significant that for the first time in history the proportion of individuals aged

65 years old and over in the UK is larger than the under 16 years old age group!®l.

This accomplishment of human lifespan extension in the developed world has been
accompanied by a transition in mortality- from a great reduction in childhood mortality
caused by poor infection control to a rise in adulthood mortality (as well as morbidity)
caused by chronic and degenerative diseases such as cancer and Alzheimer’s disease
(AD). For example, it is estimated that around 800,000 people aged 65 years old and over
are currently suffering from dementiall. It is projected by 2025, this figure will increase
to 1.14 million people!*. Undoubtedly, this will have a huge economic and social impact.
Currently two-thirds of patients receiving medical care on the NHS are 65 years old and
over. In 2012, ~ £9.4 billion of the NHS budget was spent on elderly care®381. With the
NHS suffering from its worst ever financial crisis there are deep concerns about the
quality of care that the elderly will receive. To compound the situation, government cuts
in social care has increased the burden on the NHS to care for the elderly population.
Indeed, a recent report published by Sir Michael Marmot at University College London
highlighted that the rise in life expectancy may actually be grinding to a halt due to this

recession of governmental funding to health and social care for the elderly population!?%1,

Whilst the government has pledged to increase the NHS budget by £10 billion in 2021
for the care of elderly patients they will also need to heavily invest in ageing research to
prevent the collapse of the NHS in future'l. Ageing research is very important
especially as no cures currently exist for a large number of age-related conditions such as
AD. Thus, gaining an understanding of the ageing process will facilitate the future
development of therapeutics that may delay or prevent the progression of age-related

diseases and potentially ageing itself.

1.2 Normal brain ageing

Normal brain ageing is an intrinsic process that occurs in every human%l. A decline in
cognitive and motor functioning as well as balance impairment and hearing loss are some

of the common phenotypic changes associated with normal brain ageing. The extent of



these manifestations varies between individuals and in some, these phenotypes may not
even be obvious. Typically, these impairments are not serious enough to cause disability
and in fact over 60% of the population aged 65 years old and over are considered as

ageing normally (or healthy)[3621,

1.2.1 Learning and memory changes during normal brain ageing

Memory impairment is the clinical condition that is most frequently observed during
normal brain ageing and is specifically referred to as age-associated memory impairment
(AAMI). The diagnostic criteria for AAMI include the following: 1) Individual aged 50
years old and over; 2) Score 1 SD (standard deviation) lower in memory test than the
mean for young adults, and; 3) absence of dementia and other conditions such as
depression*?11. 1t has been found that AAMI affects approximately 38% and 80% of the
elderly population aged 65-80 years old and >80 years old, respectively21:238]
Interestingly, AAMI appears to be a relatively evolutionarily conserved feature of ageing
as invertebrate species such as Aplysia californica, Lymnaea stagnalis and Drosophila

melanogaster also exhibited such behavioural changes!163:149:228:477]

Long-term memories are those that can last for days, months and years and are categorised
as either explicit or implicit. Explicit (or declarative) memories involve the conscious
retrieval of information such as facts (semantic memories) and events (episodic
memories). In contrast, implicit (non-declarative) memories are those that are stored and
retrieved without conscious recollection and is evident while performing tasks such as

walking or riding a bike!3%],

It has been well established from explicit memory tasks in humans that older individuals
encounter difficulties in their ability to remember information learned recently, whereas
younger subjects do not experience such difficulties*’>?8], In particular, it has been
observed that episodic memory performance begins to display signs of impairment from
middle age onwards. Semantic memory remains relatively stable from middle age to
young elderly, but performance is hindered in very old individuals"’?l. Implicit memory

appears to be unaffected by the ageing process4751.

1.2.2 Neuroanatomical changes during normal brain ageing

It has been consistently found in humans that there is a reduction in the volume and/or

weight of the brain during normal ageing, particularly in the frontal lobes and

3



hippocampus!!33431, This decrease in volume was previously attributed to neuronal death;
however, advances in stereological techniques have shown that neuronal loss is actually
very minimal (approximately 10%) in healthy old individuals!!S!, For example, Gémez-
Isla et al. (1996) used stereological cell-counting techniques in human post-mortem
brains and discovered that in the entorhinal cortex there was no neuronal loss in this
region with age. However, in brains from AD patients there was a neuronal loss of ~50%
in this region when compared to the healthy age-matched controls!'3]. Indeed, numerous

studies in ageing mammalian models have now corroborated such findings153-328:343,151

With neuronal loss being very small in the healthy ageing brain, it is therefore only
responsible for a small reduction in brain volume. Due to such findings, the focus has
shifted to examine whether decreases in brain volume arise as a result of morphological
alterations to neurons with age. Investigations in the hippocampus have shown via
immunoblot and proteomic experiments that the levels of synapse-specific proteins
decreases with age. Canas et al. (2009), for example, showed that the presynaptic
terminal protein, synaptophysin and SNAP-25, were significantly reduced in old rats
when compared to young rats!%3l. Such findings indicate that there is a decrease in the
number of pre- and post-synaptic terminals with age. Studies using electron microscopy
with synaptic immunolabeling have supported these findings by illustrating the loss of
synaptic terminals and even a decrease in perforated synapses in the ageing
hippocampus[304345:1001 - Tnterestingly, the animals used in all these studies displayed
deficits when performing learning and memory tasks such as the Morris water maze and
it has been shown that the magnitude of synaptic terminal loss is correlated with the

severity of memory impairment[304345,100]

Other studies in mammals have shown that in the ageing neocortex, hippocampus,
cerebellum and substantia nigra there is a decrease in the density of dendritic spines by
approximately 20-40%1%. This loss of spines is accompanied with a decrease in
axospinous synapses3451001 In ageing rats it has been reported that decreases in dendritic
spines in the hippocampus is associated with impairment of spatial memory tasks, as
young rats with intact memory did not exhibit such morphological changes!'®!. Shorter
apical dendrites and reduced dendritic arborisation have also been observed in CAl
hippocampal neurons and neocortical neurons in old mice, monkeys and
humans19%:1003421  Stryctural image analysis in the cerebellum and substantia nigra have
shown not only is there a regression of dendritic arbors, but that there is also atrophy of

the neuronal soma in old mammalian models100],



Interestingly, morphological changes to neurons with increasing age is a conserved
evolutionarily feature as such alterations have also been documented in invertebrate
species. For example, in Caenorhabditis elegans (C. elegans) it has been found that there
is ectopic branching from the soma and axonal blebbing with increasing ageing!437-74l, In
the pond snail, Lymnaea stagnalis, Janse et al. (1999) demonstrated axonal branching

was significantly reduced in ageing neuroendocrine caudodorsal cells!S?81,

1.2.3 Age-related changes in neuronal firing

A decline in neuronal firing frequency is commonly associated with ageing of neurons
and is believed to be a contributing factor underlying AAMIB643101 For example,
Kaczorowski et al. (2009) demonstrated the relationship between an age-related decrease
in neuronal firing and alterations to learning and memory?!l. In this study, mice were
trained on a fear conditioning task to assess memory formation and it was observed that
old mice displayed a mild specific deficit in spatial learning when compared to young
micel?15], Furthermore, current clamp recordings from CA1 hippocampal neurons in these
old mice revealed that there was a significant decrease in neuronal firing frequency that
was accompanied with an increase in the amplitude and duration of the after-

hyperpolarisation (AHP)[2151,

Numerous studies involving invertebrate species have also shown that hypoexcitability is
an evolutionarily conserved manifestation of the ageing process. For example,
investigations by Patel et al. (2006) and Scutt et al. (2012) in the cerebral giant cells
(CGCs) of ageing Lymnaea, revealed that there was as significant decrease in both
spontaneous and evoked firing rates®¥3-3361_ This, as often reported in ageing mammalian
neurons, was accompanied with an increase in the AHP duration. Experiments conducted
by Hermann et al. (2013) and Watson et al. (2012) not only showed that neuronal firing
rates decreased in Lymnaea with age, but also found that old snails were unable as a

consequence to consolidate learned behaviour into LTMI754771,

A clear consistent finding from both ageing mammalian and invertebrate species is that
the decrease in neuronal firing is accompanied with an increase in the AHP. This
contributes to the slowing of neuronal firing frequency by increasing the inter-spike
intervall393:292:364.3251  The AHP is composed of three distinct components. The initial
component is the fast AHP (fAHP) that lasts for ~2-10 ms, this is followed immediately
by the medium AHP (mAHP) that lasts ~50-100 ms and finally the slow AHP (sAHP),



which has a time course of seconds!?*?l. Specifically, changes to the mAHP and sAHP
duration have typically been reported in studies examining the decline in neuronal firing

frequency with age!393:503,364,292]

Generation of the AHP is partly mediated by calcium (Ca®*)-activated potassium K*
currentsi3642921 Indeed, it has been well recognised that Ca**-activated K* currents are
vulnerable to the ageing process particularly due to the dysregulation of Ca’*
homeostasis#474431. This is often reflected as an increase to their conductance, which has

partially been able to explain the increase to the AHP duration with agel352392:292],

It is also known, however, that other conductances such as voltage-gated K* currents can
have an important role in regulating the AHP[?12:146:457416] Gych currents have not been
as extensively examined in relation to the age-related increase of the AHP duration. The
likely reason for this is that they are not dependent on Ca>* and therefore, often presumed
to be unaffected by alterations to Ca®* homeostasis with age381511. This also appears to
have led to a general assumption that ionic currents not dependent on Ca’* are not
significantly impaired with age, irrespective of the knowledge that they could be affected
indirectly by altered Ca?>* homeostasis and/or altered by other detrimental processes

involved in ageing such as oxidative stress (OS) and inflammation!398:399,364],

1.2.4 Age-related changes in synaptic transmission

In addition to a decline in neuronal firing, subtle alterations occurring at the synapse with
age are also believed to lead to the development of AAMI. Synapses are specialized cell-
to-cell junctions that enables neurons to communicate with each other and thus, mediate

a variety of cognitive processes in the brain such as learning and memory!431:464],

The process of synaptic transmission begins at the presynaptic terminal following the
arrival of an action potential. This depolarisation stimulates Ca?* influx via voltage-gated
Ca2* channels (VGCCs), which subsequently triggers the migration and fusion of synaptic
vesicles to the active zone of the terminal. Neurotransmitters released from the vesicles
during exocytosis diffuse across the synaptic cleft and bind to their target receptors
located on the postsynaptic membrane. Excitatory neurotransmitters will cause the
membrane potential to depolarise and thus propagate the electrical signal, whilst
inhibitory neurotransmitters will hyperpolarise the membrane potential to attenuate the

propagation of electrical signalsi*4l. Synaptic transmission is perhaps the most



fundamental process in the brain that enables it to achieve all of its functions and

therefore, any alterations to this process can have detrimental ramifications!464],

So, what happens to synaptic transmission with age? In relation to glutamate
neurotransmission, a few studies have observed that glutamate uptake is significantly
reduced in the ageing hippocampus and cerebral cortex of rodents!384243%41 This has been
cited as one of the principle factors impeding glutamate neurotransmission3%4482,3501
Another study by Latour ef al. (2012), for example, demonstrated that glutamate release
was also altered with age®3]. In this study, the paired-pulse facilitation ration (an index
of change in presynaptic glutamate release) was higher in the ageing hippocampus of rats
and thus, suggesting that there is a reduction in presynaptic glutamate release!?>5.
Furthermore, Western-blot analysis also showed significant decreases in the vesicular
glutamate transporters, VGlut-1 and VGlut-2, in the presynaptic membranes of these

older animals255],

Even in simpler models of ageing there have been a few studies examining changes to
neurotransmission. For example, Patel ef al. (2012) utilised carbon fibre amperometry to
investigate serotonin (5-HT) release from the CGCs in the ageing Lymnaea CNSI33¥7, It
was observed that there was an increase in spontaneous 5-HT release and a decrease in 5-
HT clearance in the old CGCsB3*”). This reduction in clearance, as reflected by an increase
in the time constant of decay (), may have been due to dysfunction of the serotonin
transporter (SERT)3%71. Interestingly, it was found that blocking SERT in old CGCs with
fluoxetine decreased #3371, However, it would have been expected that inhibiting SERT
would further increase ¢ in the old CGCs rather than decrease it. It was postulated that the
inhibition of SERT may have triggered a compensatory mechanism(s) in old CGCs to

reduce 5-HT content in the extracellular space337],

1.2.5 Age-related changes in synaptic plasticity

Synaptic plasticity is the modification of the efficacy of synaptic transmission, i.e. its
synaptic strength. Studies have revealed that alterations to neuronal firing and synaptic

transmission with age contribute towards alterations in synaptic plasticity!319:91:247],

Hebbian forms of synaptic plasticity, including long-term potentiation (LTP) and long-
term depression (LTD), have been proposed as cellular correlates for specific types of
memories!!®*31, LTP is the enhancement of synaptic strength lasting for hours or even

days, whilst LTD is the decrease in synaptic strength!10-2%01,



N-methyl- D-aspartate receptor (NMDAR)-dependent LTP is triggered by the strong
depolarisation of the postsynaptic membrane in order to relieve the Mg?* block of NMDA
receptors and thus, allow for its activation by presynaptically released glutamate?*?l. Both
Ca’* and Na* can then enter the postsynaptic dendritic spinel?®”]. The significant rise in
postsynaptic Ca>* triggers LTP via the activation of signalling transduction molecules
such as Ca**/calmodulin(CaM)-dependent protein kinase II (CaMKII)[®310:2901  The
primary mechanism involved in LTP expression at hippocampal synapses is the alteration
in a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking,
which results in an increase in the number of AMPA receptors expressed within the
postsynaptic density!1%?*!1. The persistence of synaptic enhancement for hours to days

(late phase of LTP), requires protein synthesis!!%2%0],

The induction of NMDAR-dependent LTD requires only a smaller rise in postsynaptic
Ca?*10.78]  This activates serine/threonine phosphatases during signal transduction,
which dephosphorylates synaptic substrates®®?l. For example, Ser845 on GIuRl1 is a
protein kinase A (PKA) substrate site that has been shown to be dephosphorylated during
LTDM0.2%.781 This decreases the probability of AMPA receptor channel opening and thus,
contributes to the expression of LTD (Figure 1.2). The removal of AMPA receptors via

dynamin- and clathrin-dependent endocytosis is also involved in LTD expression 290781,

NMDAR AMPAR

Figure 1.2| Hippocampal LTP and LTD 73, (A) During the basal state, NMDA receptors
are non-active due to the Mg?* block (not shown) and AMPA receptors cycle between
the intracellular compartments and postsynaptic membrane. (B) The induction of LTP
is signalled with a robust influx of Ca** via NMDA receptors. CaMKII is then activated
and enhances LTP by increasing AMPA receptor translocation to the postsynaptic
membrane. (C) During LTD, endocytosis is enhanced to remove AMPA receptors from

the postsynaptic membrane, a Ca?*-dependent process involving calcineurin.[10-290781



It has been recognised that the age-related decline in synaptic plasticity may be due to an
increase in the LTP threshold®%". Studies by Barnes et al. (1996) and Foster et al. (2007)
found that this was partly caused by insufficient postsynaptic depolarisation, which
consequently led to a reduction in NMDA receptor activation!128:27:2431 Tt is thought that
the larger AHP also observed in these ageing neurons hinders the integration of
postsynaptic potentials and therefore decreases depolarisation of postsynaptic
neurons 1292452521 Qther studies involving the ageing CA1 hippocampal region of rodents
have also shown that there are deficits to the NMDA receptor itself due to oxidative
modifications and/or alterations in subunit expression?5]. This diminishes the Ca**

contribution to LTP made by the NMDA receptors and thus, LTD is favoured over
LTP[129’245’252].

Studies investigating the ageing prefrontal cortex in rats, have also reported that there is
disinhibition of PKA signalling®®?]. It was observed that increasing PKA activity in these
animals exaggerated cognitive deficits, whilst inhibition ameliorated such deficits!36%1, In
invertebrates such as Drosophila melanogaster and Aplysia californica, it has also been
shown that the decline in synaptic plasticity with age is caused by a chronic increase in

PKA activity and that this could be reversed by reducing its activity[49%:23-228],

1.3 Okxidative stress: The mechanism driving neuronal ageing?

In order to understand how the phenotypic changes observed during normal brain ageing
manifests, an understanding of the mechanistic basis of neuronal ageing is required. Such
knowledge could also facilitate the development of therapeutic treatments in the future
that could potentially ameliorate the detrimental effects associated with brain ageing. This
would significantly improve the quality of life for individuals and may even extend

longevity.

At present, OS is considered a critical mediator of neuronal ageing[503:445:2954701
Numerous studies from mammalian to invertebrate models have demonstrated that there
is a significant increase in OS in the ageing CNS, which suggests that this may be an
evolutionarily conserved facet of the neuronal ageing process!503:445.295:47087,176,321 ' Gy,ch
studies have implicated the increase in OS responsible for the functional alterations

observed in ageing neurons[303:445:295:470.87,176,32]

The initial theory regarding the role of OS in ageing was the “free radical theory of

ageing”, which had been proposed by Denham Harman in 1956181 Here, it was
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postulated that ageing and age-related diseases manifest as a result of cumulative

changes/damage to cell and tissues inflicted by an increase in the production of free

radicals50-168]

Under no