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Abstract

Constraint diagrams are part of the family of visual logics based on Euler dia-

grams. They have been studied since the 1990s, when they were first proposed by

Kent as a means of describing formal constraints within software models. Since

that time, constraint diagrams have evolved in a number of ways; a crucial re-

finement came with the recognition of the need to impose a reading order on the

quantifiers represented by diagrammatic syntax. This resulted first in augmented

constraint diagrams and, most recently, generalized constraint diagrams (GCDs),

which are composed of one or more unitary diagrams in a connected graph. The

design of GCDs includes several syntactic features that bring increased expres-

sivity but which also make their metatheory more complex than is the case with

preceding constraint diagram notations. In particular, GCDs are given a second

order semantics.

In this thesis we identify a decidable fragment of GCDs and provide the first

set of sound inference rules for the system. We define a particular class of the uni-

tary diagrams drawn from this fragment, which we call γ-diagrams. We describe a

decision procedure for the satisfiability of unitary γ-diagrams, before developing a

means of applying the decision procedure to all unitary diagrams of the fragment,

achieved by using the class of γ-diagrams as a reduction class. Next, we develop a

decision procedure for the non-unitary diagrams of the fragment. This procedure

makes use of several normal forms which enable us to judge the satisfiability of

a (non-unitary) generalized diagram by examining the unitary diagrams it con-

tains. We discuss the ways in which our work is of benefit to users of GCDs and

those engaged in making software tools based on them. Finally, we identify the

ways in which our results provide the foundations for further theoretical study of

the system.
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Chapter 1

Introduction

Modern logic has its roots in the work of Leibniz, who proposed the first logical

calculus in his characteristica universalis [30]. Leibniz categorises the concerns

of what would become formal logic as ars inveniendi, the art of finding, and

ars iudicandi, the art of judging. In modern terms, the former corresponds to

logical completeness, the ability to generate a complete set of theorems for a given

language, while the latter corresponds to the decision problem: the search for a

mechanical procedure to judge the satisfiability of a theorem. Modern logic began

in earnest in the mid to late 19th century, following the work of Frege and Russell,

and many of the first projects of its practitioners did indeed fall into one or another

of Leibniz’ two categories. Thus, the effort to identify decidable fragments of

logical systems has a long tradition, with what is now a very substantial body

of results, summarised and described in Börger et al. [2]. These results identify

fragments of larger systems that are decidable, and fragments which are not.

This thesis is concerned with the decision problem in a visual, rather than a

symbolic, setting. In it, we aim to develop ars iudicandi tabula picta – the art

of judging diagrams. By contrast with symbolic logics, relatively little is known

about which fragments of the more expressive diagrammatic logics are decid-

able. Clearly, any monadic diagrammatic logic (which includes only one place

predicates) is decidable (such as Euler/Venn [47], Euler diagrams [17], spider dia-

grams [26] and Venn-II [36], all of which are described below). However, a visual

logic capable of representing binary predicates, such as constraint diagrams, is

potentially undecidable. As we will see, the constraint diagram notation includes

elements called arrows and spiders, which allow users to describe binary rela-

1



1.1 RELATED WORK 2

tionships and to construct arbitrary quantifier alternations; permitting arbitrary

quantifier alternations is a typical source of undecidability. A standard approach

to creating a decidable fragment is to limit the number of quantifier alternations

in some way.

In this thesis we will define a fragment of generalized constraint diagrams

and show that this fragment is decidable by constructing a decision procedure.

Constraint diagrams were proposed as a means of modelling software systems,

with generalized constraint diagrams being a recent refinement. It is easy to see

that the ability to determine the consistency of a model is a fundamental benefit

to users of the system. Furthermore, the close study of the syntactic conditions

of consistency in generalized constraint diagrams brings insights into the way

in which syntactic elements interact. Since decision procedures exist for earlier

versions of the constraint diagram notation, we use the decision procedure we

develop as a means to focus on the novel syntactic features of the generalized

case, and their effect on the expressiveness of the system.

We begin by surveying related work, focusing especially on constraint dia-

grams and the numerous related diagrammatic logics.

1.1 Related work

Euler [10] is credited with introducing diagrams which represent logical propo-

sitions. Equally, Euler diagrams can be considered to make assertions about

sets. Figure 1.1(a) presents an Euler diagram which can be read in either of the

following ways:

• All B is A. No A is C.

• ∀x
(
(B(x)⇒ A(x)) ∧ ¬(A(x) ∧ C(x))

)
.

Hammer provided Euler diagrams with a formal basis by presenting a sound

and complete reasoning system based on Euler diagrams [17, 44]. An Euler dia-

gram is a collection of closed curves called contours which represent sets, within

an enclosing rectangle. Figure 1.1(a) shows an example with three contours, la-

belled A, B and C. Containment, intersection and disjointness are represented

by the placement of contours, so the diagram asserts B ⊆ A and A ∩ C = ∅.
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A

B

C

(a)

A

B

C

(b)

Figure 1.1: Two Euler diagrams.

A zone is a set of points in the diagram that can be described as being inside

certain contours and outside all others. The diagram in Figure 1.1(b) has five

zones; one inside A but outside B and C, one inside A and B but outside C, and

so on. The region outside all contours but inside the boundary rectangle is also a

zone. In Euler’s original notation, each zone is necessarily non-empty. Hammer

added the syntactic device of shading within a zone, which asserts the emptiness

of the set represented by that zone. There are two shaded zones in the diagram in

Figure 1.1(b), and the fact that these zones are shaded asserts that A∩C = ∅ and

A−B = ∅. Reasoning is carried out by the application of rules which transform

one diagram into another. A proof consisting of Euler diagrams is formed by

applying inference rules repeatedly to transform an initial diagram (the premise)

into the target diagram (the conclusion). Hammer [17] defined three inference

rules, including one which adds a missing zone to a diagram, and one which adds

a missing contour to a diagram. In Figure 1.2 we can use the add missing zone

rule to the zone inside A and B to d1, giving d2. This rule is sound, since both

missing and shaded zones represent the empty set. We can use the rule which

adds a contour to add C to d2, giving d3. We say that this rule ‘maintains’ the

shading of the original diagram; the zone inside A and B is shaded in d2, whilst

in d3 the two zones inside A and B are shaded.

d1 d2 d3

A A A

B

C

BB

Figure 1.2: A proof using Euler diagrams.
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Venn noted several limitations of Euler diagrams related to their strictness [49].

Perhaps the most telling of these is the fact that, since zones necessarily represent

non-empty sets in Euler’s original notation, we cannot use an Euler diagram to

represent sets A and B if we do not know whether the intersection of A and B is

populated. Venn aimed to formalise and generalise the use of diagrams in logic,

developing a notation in which each intersection between the represented sets is

shown without making any claims about the existence of elements. In Venn’s di-

agrams the emptiness of a zone is indicated by shading, rather than the absence

of the zone, as in Euler’s original notation. Figure 1.3 shows a Venn diagram

whose meaning is equivalent to that of the Euler diagram in Figure 1.1(a), except

that the non-shaded zones in Figure 1.3 may or may not be empty.

A

B C

Figure 1.3: A Venn diagram.

Charles Peirce [31] added syntax to Venn diagrams to make them more expres-

sive, allowing for existential statements and disjunction. Peirce made a crucial

advance towards formal diagrams by developing, for the first time, rules of trans-

formation, such as those described above for Euler diagrams, used to draw valid

inferences from diagrams. In Peirce’s diagrams, emptiness is depicted by the

symbol O. An X placed in a zone indicates that the set represented by the zone

contains an element. Zones containing neither O nor X symbols may or may not

be empty. The O and X symbols may be joined by a straight line to indicate

disjunction. So, in Figure 1.4 the set represented by the zone inside C and outside

A and B is either empty or contains an element.

The lack of distinction between the syntax of these rules and their semantic

meaning restricted the work that could be done in the metatheory of Peirce’s

diagrams. Peirce suspected, for example, that the set of rules defined was incom-

plete, but was unable to prove that fact. Indeed, it was only after establishing

separate syntax and semantics for a notation adapted from Peirce’s work that
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Shin [37] was able to show that Peirce’s set of rules is incomplete.

A

B C

O

O O

O

XO

Figure 1.4: A Peirce diagram.

Fully formalised visual logics emerged in the 1990s, beginning with Shin’s [36]

work on the Venn-I and Venn-II reasoning systems. Shin adapted Venn-Peirce

diagrams by using shading to represent emptiness, as in Venn diagrams, and by

enclosing each diagram in a boundary rectangle to represent the universal domain.

A A B

d1 d2

Figure 1.5: Venn-I.

Venn-I is a simplification of Peirce’s diagrams. Shin provides six valid rules

of inference for the system. Figure 1.5 illustrates the rule which introduces a

new contour to a diagram. We can use the rule to introduce a new contour, B,

to the diagram d1, resulting in diagram d2. From d1 we know there is a single

element in the set represented by A. Since we do not know whether that element

is also a member of B, d2 asserts that the element is either in A and not B, or

in both A and B. Furthermore, the inference rule maintains the shading from

d1, by ensuring that the zone inside both A and B is shaded in d2. Shin makes

a clear distinction between diagrammatic syntax and its underlying semantics, a

distinction which had been imperfectly made in earlier systems. The semantics

is model-theoretic, in which an interpretation of a diagram is a mapping from

curves, or contours, to subsets of a universal domain. Venn-II increases the

expressiveness of Venn-I by allowing so-called unitary diagrams (of the type we

have seen so far) to be connected with a straight line, indicating disjunction.
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Figure 1.6 gives an example which states, among other things, that either there

is an element in C − (A ∪B), or C is empty.

A

B C

A

B C

Figure 1.6: Venn-II.

Venn-II is equivalent in expressive power to monadic first order logic [36].

Shin’s influential work on Venn-I and Venn-II was part of a growing interest in

visual logics based on the work of Euler and Venn in the 90s, which is surveyed in

Stapleton [39]. Swoboda [47] adapted Venn-II to produce Euler/Venn diagrams.

The Euler/Venn system uses Euler diagrams as the underlying notation, rather

than the more restrictive Venn diagrams (as in Venn-II) and introduces named

constants.

Spider diagrams [13, 23, 21, 24, 26] extend Euler diagrams with shading by

adding syntax to represent individual elements in various ways. Instead of the ⊗-

sequences found in Venn-II, spiders, which are collections of round or rectangular

dots joined by straight lines, are used to represent the existence of elements. A

spider may have several feet, which are dots placed in distinct zones and joined by

straight lines. Similarly to the ⊗-sequences of Venn-II, a spider with several feet

provides disjunctive information, asserting the existence of an element in exactly

one of the zones in which its feet are placed. Unlike the ⊗ notation in Venn-II,

distinct spiders necessarily represent distinct elements.

Figure 1.7 shows a spider diagram. There is a spider with a single foot in the

zone inside A but outside B and C, indicating that there is at least one element

in the set represented. There are two spiders in the zones inside B and C, one of

which has three feet. The shading in the zone inside C but outside A and B places

an upper bound on the cardinality of the set the zone represents – the shading

asserts that the set is empty other than for the elements represented by spiders

placed in the zone. Similarly, spiders place a lower bound on the cardinality of

the set represented by the zone in which they are placed. Thus, in Figure 1.7, the

set represented by the zone inside C but outside A and B contains either exactly
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one or exactly two elements.

A B

C

... .
.

Figure 1.7: A spider diagram.

In [28], Molina developed the first sound and complete system of spider di-

agrams, called SD1. In SD1, spiders cannot be placed in shaded zones. This

restriction is removed in SD2 [28], and the diagram in Figure 1.7 is an SD2

diagram.

The full formalisation of diagrammatic logics depends on a clear separation

between a notation and its underlying meaning. Howse et al. [19] explore a

parallel distinction within the syntactic level which is beneficial to providing

a clear metatheory for a visual logic; this is the distinction between type and

token syntax. It is easier to make mathematically rigorous statements about

a diagrammatic notation if we are able to ignore its semantically unimportant

details. These details may include the shape of diagrammatic elements, or their

relative position on page or screen. For instance, in Figure 1.7 the relative size of

the circles A, B and C tells us nothing about the size of the sets they represent,

nor does it convey any other semantic information. The size of the circles we draw

when creating Euler or spider diagrams is an important consideration in terms of

the readability of the diagram, but not in terms of its formal meaning (at least,

so far as this work is concerned). For this reason, it is important to consider the

abstract syntax (called the type syntax in [19]) of a notation separately from that

notation’s concrete (or token) syntax. The concrete syntax describes the spatial

conditions of a diagram as it is drawn, including such constraints as we may

wish to place on presentation; the abstract syntax is a notation which formalises

that which is essential for a notation to have unambiguous meaning, and it is

this notation which is used in definitions of semantics and metatheory. The

diagrammatic logics described in this section each use their own abstractions but

all are based on the idea of representing diagrams as tuples of sets of labels and
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identifiers of other diagrammatic elements to represent the essential information

conveyed by a diagram.

1.1.1 Constraint diagrams

In parallel to the mathematical interest in diagrammatic reasoning, there has

been a constant need for structured diagrams in software development. Since its

inception, this field has made use of a wealth of notations to describe, for instance,

structural schema, functional constraints and process flow. Examples of notations

widely used by software engineers include Harel statecharts [18], entity relation-

ship diagrams [5] and the Unified Modelling Language (UML) [48]. Whilst such

notations must be considered effective tools of communication since they are so

widely used in the software process, they are not, in general, suitable for pre-

cise specification. The UML, for example, is a collection of several disparate

notations with no formal semantics, and makes use of an extra-diagrammatic

symbolic notation to describe operational constraints [29]. Although much work

has been done towards formalising UML (for example, [6]), formal fragments of

UML require non-diagrammatic symbolic components in order to specify oper-

ational constraints and are not developed into axiomatic systems with rules of

inference.

Thus, traditional formal methods such as Z [32] and Coq [1] remain the only

practical choice when verifying critical software. As Sheard [34] states, this sit-

uation maintains a ‘semantic gap’ between programming and verification, since

the tools and techniques used to perform each activity are dissimilar. A recent

approach to precise diagrammatic specification is found in the diagram predicate

framework [33], in which UML class diagrams are given a formal, categorical se-

mantics. Based as it is on UML, this approach is not purely diagrammatic and

requires a textual component to specify constraints.

Constraint diagrams were introduced by Kent [27] with the purpose of formally

modelling software systems, and are sufficiently expressive to specify operational

contracts [25]. Kent’s concern was with providing a fit-for-purpose, highly expres-

sive diagrammatic notation that better fitted with the other visual notations on

offer to the software engineer. Constraint diagrams extend the notation of spider

diagrams by introducing syntax to represent universal quantification and binary
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relations. An example, taken from [25], can be seen in Figure 1.8. This diagram

expresses an invariant that we might wish to place on a video rental store sys-

tem: every member can only borrow films that are in the collections of the stores

which they have joined. The asterisk is a so-called universal spider which acts

as a universal quantifier, the arrows allow us to make statements about binary

relations and the closed curves represent sets (or classes).

*

Member Film

Store

collectionjoined

canBorrow

Figure 1.8: A constraint diagram.

The study and development of constraint diagrams has led to an improved

understanding of what can be expressed in a visual, yet formal, manner. Indeed,

the process of formalising Kent’s original notation revealed the difficulty of de-

veloping highly expressive diagrammatic notations in which arbitrary quantifier

alternations can occur [14]. In particular, constraint diagrams as originally pre-

sented are ambiguous; since spiders represent quantifiers, the order in which they

are read affects the meaning of the diagram. In the absence of information about

the scope of quantifiers (spiders), a diagram may have multiple incompatible in-

terpretations. The diagram in Figure 1.8 is unambiguous. In Figure 1.9, the

same diagram is altered by the addition of a so-called existential spider, which

is represented by a solid circular dot and asserts the existence of an element in

the zone in which the spider is placed. Two possible meanings can be ascribed

to this diagram, depending on the order in which we read the spiders, which are

labelled x and y for convenience (spider labels are not part of the constraint dia-

gram notation). If we read the universal spider, x, first, then the meaning of the

diagram includes the assertion that, for each member, x, there is a film, y, that x

can borrow. If we read the existential spider, y, first, then the meaning includes

the assertion that there is a certain film, y, that every member can borrow.

To overcome this problem, Fish et al. [12] proposed augmented constraint
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*

Member Film

Store

collectionjoined

canBorrow

.x y

Figure 1.9: An ambiguous constraint diagram.

diagrams. These are constraint diagrams augmented by reading trees, extra-

diagrammatic graphs which provide a reading order for the spiders of the dia-

grams. The two possible reading trees for the diagram in Figure 1.9 are
∗
x→

•
y and

•
y→∗x. Reading trees need not be linear and may provide more complex quantifier

scoping by the use of bracketing information. Figure 1.10 shows a augmented

constraint diagram and its reading tree. The reading tree is non-linear and im-

poses bracketing information on the meaning assigned to the diagram, with the

result that x is not in the scope of y or z.

A C

f .B
*
x

*
y

z.
w

g

h

x

y z
w

*

* ..
Figure 1.10: An augmented constraint diagram.

In contrast to the extra-diagrammatic reading tree, generalized constraint

diagrams [40] impose a reading order as an implicit feature of the notation. Fig-

ure 1.11 shows a generalized diagram that expresses the same information as the
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diagram in Figure 1.9 augmented by the reading tree
∗
x→

•
y. The diagram D is

composed of two unitary diagrams, labelled d1 and d2, connected by an arrow.

The reading order is implied by the fact that the diagram is ‘read’ from left to

right, and thus d2 is ‘in the scope of’ d1. Since the spider y appears in d2 but

not in d1, when the meaning of D is constructed, y is read after, and is in the

scope of, x. We can consider, informally, the meaning of D to be given by d1∧d2,
although this is potentially misleading since, in this case d1 ∧ d2 6≡ d2 ∧ d1, due

to the interaction of the quantifiers x and y. To maintain unique meanings, con-

straints are placed on the way in which spiders can be added to the diagram; if a

unitary diagram, d, contains a universal spider which does not appear in any of

the ‘ancestors’ of d (those unitary diagrams that appear before d) then d cannot

contain any other ‘new’ spiders.

*

Member Film

Store

collectionjoined

canBorrow

x *

Member Film

Store

collectionjoined

canBorrow

.x y

d1 d2

D

Figure 1.11: A generalized constraint diagram.

The tree structure of generalized constraint diagrams may contain branches,

representing disjunction and conjunction. In the diagram in Figure 1.12, the ver-

tical bar represents disjunction, and so the meaning of the diagram is, informally,

d1 ∧ (d2 ∨ d3). In Figure 1.13, the diagram from Figure 1.12 is extended with a

conjunctive branch, represented by the fork attached to d2. Informally, we could

say that the meaning is now d1 ∧ (d3 ∨ (d2 ∧ (d4 ∧ d5))), although this informality

is potentially misleading due to the issues of quantifiers and their scope discussed

above1.

1In fact, issues of scope do not come into play in this case. Since Figure 1.13 contains only
existential spiders, the order in which the quantifiers they represent are read does not affect
the meaning of the diagram.
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d1

d3

d2A B

A B

A B

.

.

Figure 1.12: Disjunction in generalized constraint diagrams.

d1

d3

d5

d4

d2A B

A B

A B

.

.

B

A

.

.

f

f

Figure 1.13: Disjunction and conjunction in generalized constraint diagrams.

Part of the motivation for developing constraint diagrams lies in the claim

that their use makes it easier to create and comprehend formal specifications, for

some group of software engineers, than traditional formal methods. Creating a

formal specification using a system such as Coq, and showing that a program con-

forms to that specification, requires specialised skills possessed by relatively few

programmers. In contrast, diagrams are widely used and accepted in the software

process. Arguably, Euler diagrams, the notation underlying constraint diagrams,

are intuitive; that is, they are easy to use and possess natural affordances which

can be classified in several ways. An intuitive diagram has the power to convey

information efficiently and in such a way that its message is easily understood.

A diagram with these attributes is said to be well-suited or well-matched to its

subject [16, 35]. Regarding efficient representation in diagrams, Shimojima [35]

identified free rides as phenomena which occur when a diagram provides valid in-
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formation as an unintended consequence of its physical conditions. For example,

Figure 1.14(a) shows two Euler diagrams. In Figure 1.14(a), the fact that the

circle Tenors is placed within Choristers tells us that all tenors are choristers.

Since the circles Choristers and Audience do not overlap, the diagram states that

no choristers are in the audience. The viewer can also infer, as a free ride, that

no tenors are in the audience. Adding the circle Musicians to the diagram in Fig-

ure 1.14(a) to produce the diagram in Figure 1.14(b) asserts that all choristers

are musicians and that no musicians are in the audience, but also that all tenors

are musicians, as a second free ride. Here we see an example of well-matchedness

since the transitive property of the subset relation is mirrored in the diagram by

the containment of circles.

Tenors

Choristers

Audience

(a)

Tenors

Choristers

AudienceMusicians

(b)

Figure 1.14: Free rides

The usability of constraint diagrams, as distinct from the underlying Euler

notation, requires further study. In [11], Fetais and Cheng conducted an ex-

perimental study in which users performed a comprehension task using either

constraint diagrams or natural language, and found no significant difference in

performance between the two groups. Generalized constraint diagrams (GCDs)

were designed with usability and cognitive principles in mind. The usability of

GCDs was addressed in their original presentation [41], in which Stapleton and

Delaney state five principles that guided the design of the notation:

1. Well-matchedness principle: that syntactic relations mirror semantic ones.

2. Explicitness principle: make the informational content explicit, not implicit.

3. Interpretation principle: ensure that the semantics assigned to each piece

of syntax are independent of context.

4. Expressiveness principle: allow statements to be made naturally.
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5. Construction principle: impose only the necessary restrictions on what con-

stitutes a well-formed statement [41].

The authors argue that GCDs satisfy the principles by identifying notational

features in each case. For example, GCDs satisfy the well-matchedness principle

since, arguably, the underlying Euler diagram notation is well-matched, as is the

use of arrows to represent properties of binary relations which are, of course, a

directional relationship. Furthermore, GCDs satisfy the explicitness principle by

virtue of the way in which meaning is assigned to a diagram. For instance, the

meaning of spiders is explicitly provided; spiders quantify over the information

in the unitary diagram, d, in which they first appear, and the information in the

descendants of d [41]. The design of GCDs is studied further in Coppin et al. [8],

in which the authors argue that the notation suits the cognitive requirements

which arise when communicating proofs. More research is required to analyse

the usability of constraint diagrams and their generalized case in comparison

with related notations.

It has been shown that generalized constraint diagrams form an undecidable

logic, being at least as expressive as first order logic containing arbitrary one and

two place predicates [41]. This expressivity allows us to create diagrams with

only infinite models, for which no decision procedure can exist. For instance,

Figure 1.15 shows a generalized constraint diagram which requires an infinite

model, expressing a property of the integers. A translation of the semantics of

this diagram to first order logic yields the following sentence:

∀x(Z(x)⇒ ∃y(Z(y) ∧ x 6= y ∧ f(x, y))).

* * .
f

Figure 1.15: An undecidable generalized constraint diagram.

We identify a decidable fragment of generalized constraint diagrams by ex-

cluding universal spiders, and call the resulting fragment the existential fragment

(EF).
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A f B.
C

Figure 1.16: A diagram from the existential fragment.

Although the existential fragment does not contain universal spiders, this does

not imply that it lacks universal quantification: the use of shading and arrows

gives rise to statements that are universally quantified. For example, translating

the semantics of the diagram in Figure 1.16 to first order logic yields the following

sentence, which includes universal quantifiers:

∃x(A(x) ∧ ∀y(f(x, y)⇒ B(y)) ∧ ∀z((C(z)⇒ B(z)) ∧ (A(z)⇒ ¬B(z)))).

By removing universal spiders, we restrict the manner in which quantifiers

can alternate, with the result that all existential quantification comes before all

universal quantification. As we describe in the next section, this method, in

which a certain quantifier prefix is specified, is closely related to the way in which

decidable fragments of symbolic logics are identified.

1.1.2 The decision problem in symbolic and visual logic

The search for decidable fragments of logical systems is part of the wider study of

computability, and arose from the series of problems posed by Hilbert in 1900 [7].

Particular fragments of a logical system, known as languages, are categorised

along four axes:

1. the quantifier prefix sentences drawn from the language may have, after

conversion to prenex normal form,

2. the arities of predicate and function symbols drawn from the language,

3. the existence of an equality relation, and
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4. the existence of a finite model for any sentence drawn from the language.

For instance, Ramsey [2] showed in 1930 that the first order language with

prefix ∃∗∀∗, with two-place predicates, finite models and equality, is decidable.

For languages with finite models, many proofs of decidability hinge on the con-

struction of a minimal model for the language, called the canonical, or Herbrand

model [2, p26]. Although the decision problem for first order symbolic logic is

solved, open questions include the exact complexity of the decision problems for

particular languages [2, 7].

In this section we will present a high-level view of the decision problem in

diagrammatic reasoning, before examining the particular case of the decision

problem for monadic languages (symbolic and diagrammatic) in more detail in

section 1.1.3. Several of the diagrammatic logics described in the previous section

are trivially decidable, and the decision problem does not become interesting in

diagrammatic reasoning until we consider more expressive systems such as con-

straint diagrams. In [43] Stapleton et al. develop a decision procedure for a

sound and complete system based on a decidable fragment of (non-generalized)

constraint diagrams. The decision procedure is extracted from the proof of com-

pleteness, which works by the algorithmic manipulation of a diagram into its max-

imal form by such operations as adding syntactic elements and splitting unitary

diagrams into disjunctions of simpler diagrams. The decision procedure works

by the pairwise comparison of the arrows of a diagram. Adopting the canonical

models used in decidability proofs in symbolic logic, the proof of the link between

syntactic conditions and satisfiability proceeds by showing that each satisfiable

diagram has a finite, minimal model. For constraint diagrams, the canonical

model, called the standard model, is one in which the universe is given by the set

of spiders in the diagram [38, p236].

Figure 1.17 shows two constraint diagrams, neither of which requires a read-

ing tree in order to have an unambiguous interpretation. In the (non-generalized)

constraint diagram in Figure 1.17(a), the arrow sourced on the spider inside A

and which targets the spider in the zone outside A and B tells us, informally,

that when the domain of f is restricted to the element represented by the spider

inhabiting A, the relational image is the element represented by the spider in-

habiting the zone outside of A and B. However, the arrow sourced on the same

spider and which targets the contour B provides contradictory information: when



1.1 RELATED WORK 17

the domain of f is restricted to the element represented by the spider inhabiting

A, the relational image of f is B. In Stapleton’s terminology, the two arrows in

the diagram are pairwise incompatible.

.

.A B

f

f

(a)

..

A B

f

f

.
(b)

Figure 1.17: Consistency in constraint diagrams and the generalized case

The diagram in Figure 1.17(b) is a generalized constraint diagram. The un-

labelled contour inside A is called a derived contour, and represents an arbitrary

subset of the set represented by A. From the arrow sourced on the derived con-

tour and from the shading in the zone inside A but outside the derived contour,

we can infer that, when the domain of f is restricted to A, the image of f is a

proper subset of B. The arrow sourced on A provides contradictory information,

i.e. that when the domain of f is restricted to A, the image of f is B. The

notion of pairwise compatibility does not capture this inconsistency, which arises

because generalized constraint diagrams, unlike earlier versions of constraint dia-

grams, contain arrows sourced on contours. In chapter 3, we provide examples of

inconsistency in generalized unitary diagrams which show that derived contours

and arrows sourced on contours interact in other ways, justifying a need for more

general definitions.

Like the fragment of generalized constraint diagrams presented in this thesis,

the fragment of constraint diagrams presented in [43] excludes universal spiders.

Semantically, there are numerous differences between the two systems, the key

one being that generalized constraint diagrams are given a second order seman-

tics (see section 2.3). Syntactically, there are two key differences between the

unitary diagrams of [43] and those of the EF. First, all arrows are sourced on

spiders in (non-generalized) constraint diagrams, leading to a relatively straight-

forward definition of consistency and, hence, satisfiability. Secondly, there are

no derived contours in [43], which reduces expressiveness. GCDs include both



1.1 RELATED WORK 18

derived contours and arrows sourced on (given or derived) contours; as we will

see in section 3.1, this has a significant impact on the notion of consistency for

generalized diagrams.

1.1.3 Decidability in monadic languages

In this section we compare approaches to the decision problem in two monadic

languages. The first of these, monadic first order logic with equality, denoted

MFOL=, is a symbolic logic, whilst the second, spider diagrams, is diagram-

matic. In [46] Stapleton et al. show that these two systems are equivalent in

expressive power. Definitions 1.1.1 and 1.1.2 are taken from [46]. To begin,

monadic predicate symbols and variables are drawn from the countably infinite

sets P and V , respectively.

Definition 1.1.1. The first order language MFOL= consists of the following:

1. Atomic formulae which are defined as follows:

(a) if xi and xj are variables then (xi = xj) is an atomic formula,

(b) if Pi ∈ P and xj is a variable then Pi(xj) is an atomic formula.

2. Formulae, which are defined inductively:

(a) Atomic formulae are formulae.

(b) ⊥ and > are formulae.

(c) If p and q are formulae so are (p ∧ q), (p ∨ q) and ¬p.

(d) If p is a formula and xj is a variable then (∀xj p) and (∃xj p) are

formulae.

We define F and S to be the sets of formulae and sentences (formulae with no

free variables) of the language MFOL= respectively.

Since we can construct the universal closure of any formula, F , giving a

sentence, S [2, p25], we can restrict consideration to sentences. Sentences in

MFOL= are interpreted in the standard way, via structures, with the only ex-

ception to the standard approach being that structures with an empty domain

are permitted.
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Definition 1.1.2. We define m = (U,=m, P
m
1 , P

m
2 , . . . ) to be a structure, where

m satisfies the following:

1. U is a set,

2. =m: U × U is the equality relation on U , and

3. Pm
i is the interpretation of the monadic predicate symbol Pi in the structure

m (that is, Pm
i ⊆ U).

A concrete decision procedure forMFOL= is given in [2, p25], and is due to

Büchi. We will describe the approach informally: given a sentence S, we produce

a domain, U , consisting of the variables and predicate symbols of S, and call

this the canonical domain. Then the canonical model for S is one in which the

variables and predicate symbols of S are interpreted as themselves in the domain

U . Finally, Büchi showed that S is satisfiable if and only if we can construct its

canonical model.

Similarly to the above results forMFOL=, the decidability of spider diagrams

can be shown by identifying a finite, minimal model for each diagram. In [28]

Molina provides a procedure for constructing a standard model for a satisfiable

spider diagram, which takes the set of spiders as the universal domain; he then

showed that if we are unable to construct the standard model for a diagram, d,

then d is unsatisfiable, thus providing a decision procedure for spider diagrams.

To demonstrate this we will briefly describe the abstract syntax and semantics

of spider diagrams. The following definitions and theorem 1.1.1 are taken from

[26]. In this presentation, the ‘underlying’ diagram of a spider diagram is an

Euler diagram, unlike systems SD1 and SD2, whose underlying diagrams are

Venn diagrams.

As previously stated, the theory of spider diagrams works at the level of ab-

stract syntax, ignoring many superfluous details of drawn diagrams. To describe

a spider diagram in the abstract syntax we need to list the contour labels of the

diagram, its zones, those zones which are shaded, and the spiders of the diagram.

Contour labels are drawn from a countably infinite set L. Howse et al. [26] denote

the set of all finite subsets of a set S by FS . A zone is a pair of sets of contour

labels, z = (in, out), where the labels in in are inside z and those in out are

outside z. Figure 1.18 shows a spider diagram, d, with the following four zones:
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1. (∅, {A,B}),

2. ({A}, {B}),

3. ({A,B}, ∅), and

4. ({B}, {A}).

A B

... .
.

d

Figure 1.18: Zones and spiders in spider diagrams.

Definition 1.1.3. A zone with labels in L is an ordered pair (in, out) where

in, out ⊆ FL and in ∩ out = ∅. Define Z to be the set of zones on L,

Z = {(in, out) ∈ FL × FL : in ∩ out = ∅}.

If z = (a, b) ∈ Z then the set a = c(z) is called the set of contour labels that

contain z. A region with labels in L is a set of zones; R = PZ denotes the set

of regions on L.

The habitat of a spider is the region in which its feet are placed. In Fig-

ure 1.18, there are spiders with habitat {({A}, {B})}, {({A,B}, ∅), ({B}, {A})}
and {({B}, {A}), (∅, {A,B})}. Several authors [20, 28] have given the abstract

description of the set of spiders of a diagram by a set of identifiers and a habitat

function (as, in fact, we do in chapter 2). In [26], Howse et al. choose instead

to represent spiders by listing the number of spiders inhabiting each region. If

there are n > 0 spiders inhabiting region r, then (n, r) is a spider identifier. The

result of this choice is that each drawn spider diagram has a unique abstract

description.
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Definition 1.1.4. A unitary spider diagram with labels in L is a tuple d =

(L,Z, Z∗, SI ) whose components are defined as follows.

1. L = L(d) ∈ FL is a finite set of contour labels.

2. Z = Z(d) ⊆ (in, L− in) : in ⊆ L is a set of zones (Z(d) ⊆ Z) such that

(a) for all l ∈ L there exists (in, L− in) ∈ Z such that l ∈ in, and

(b) (∅, L) ∈ Z.

We define R = R(d) = PZ − {∅} to be the set of regions.

3. Z∗ = Z∗(d) ⊆ Z is the set of shaded zones.

4. SI = SI (d) ⊂ Z+ ×R(d) is a (finite) set of spider identifiers such that

∀(n1, r1), (n2, r2) ∈ SI (r1 = r2 ⇒ n1 = n2).

If (n, r) ∈ SI we say there are n spiders whose habitat is r.

Additionally, the diagram ⊥ = (∅, ∅, ∅, ∅) is a unitary spider diagram.

We will illustrate the abstract syntax using Figure 1.19, which is taken from [26].

This diagram has the abstraction (L,Z, Z∗, SI ), which is determined as follows:

1. The set of contour labels, L, is equal to {A,B,C}.

2. The set of zones, Z, is equal to

(a) ({A}, {B,C}),

(b) ({A,B}, {C}),

(c) ({C}, {A,B}), and

(d) (∅, {A,B,C}).

3. The set of shaded zones, Z∗, is equal to {({A}, {B,C})}.

4. The set of spider identifiers, SI , is equal to

{(2, {({A}, {B,C}, ({A,B}, {C}))}), (1, {({C}, {A,B})})}.
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A C. ..B ..

Figure 1.19: The abstract syntax of spider diagrams.

Definition 1.1.5. Let d be a unitary spider diagram.

1. If (n, r) ∈ SI (d) then the region r contains n spiders which we denote s1(r),

s2(r), . . . , sn(r). We define S(d) to be the set of all spiders in d:

S(d) = {si(r) : (nr, r) ∈ SI (d) ∧ 1 ≤ i ≤ nr}.

The habitat mapping η : S(d) → R(d) is given by η(si(r)) = r and we say

that the spider si(r) has habitat η(si(r)).

2. Let r be a region of d. The set of complete spiders inhabiting r in diagram

d is:

S(r, d) = {s ∈ S(d) : η(s) ⊆ r}.

The set of spiders touching region r in diagram d is

T (r, d) = {s ∈ S(d) : η(s) ∩ r = ∅}.

For any region r not in R(d) we define S(r, d) = ∅ and T (r, d) = ∅.

Unitary spider diagrams can be combined using disjunction and conjunction.

In Figure 1.20 shows a compound diagram, D, which is formed of two unitary

spider diagrams, d1 and d2, in disjunction. The meaning of D is given by the

disjunction of the meanings of d1 and d2.

In the next definition we simplify the presentation of [26], which includes

details not relevant to our purpose such as multi-diagrams, which are the con-

junction or disjunction of compound diagrams.
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A C. ..B ..
A B

... .
.

d1 d2

Figure 1.20: A compound spider diagram.

Definition 1.1.6. An abstract spider diagram is defined as follows.

1. Any unitary diagram is a spider diagram.

2. If D1 and D2 are spider diagrams then D1 ∨D2 is a spider diagram.

3. If D1 and D2 are spider diagrams then D1 ∧D2 is a spider diagram.

For full details of the abstract syntax of spider diagrams, see [26]. Next, we

consider semantics. Contour labels, zones and regions represent sets and subsets

of a universal domain, U , while spiders assert the existence of elements in the

region in which they are placed. The number of elements in the set represented

by a shaded region is less than or equal to the number of spiders touching that

region. This allows us to place lower and, in the case of shaded regions, upper

bounds on the cardinality of the sets represented. Missing zones represent the

empty set.

Definition 1.1.7. An interpretation is a pair, m = (U,Ψ), where U is a set

and Ψ : L → PU is a function mapping contour labels to subsets of U . We

extend Ψ to a set assignment to zones, Ψ : Z → PU . The set denoted by a zone,

z = (in, out), is defined to be the intersection of the sets denoted by the contour

labels in in and the intersection of the complements of the sets denoted by the

contour labels b:

Ψ(in, out) =
⋂
l∈in

Ψ(l) ∩
⋂
l∈out

Ψ(l),

where Ψ(l) = U −Ψ(l). We also define
⋂
l∈∅

Ψ(l) = U =
⋂
l∈∅

Ψ(l). Finally we extend

Ψ to a set assignment to regions, Ψ : R → PU . The set denoted by a region, r,
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is the union of the sets denoted by the zones which r contains:

Ψ(r) =
⋃
z∈r

Ψ(z).

We also define Ψ(∅) =
⋃
z∈∅

Ψ(z) = ∅.

As an example of the process of assigning a meaning to a spider diagram,

consider Figure 1.21. Let I = (U,Ψ) be an interpretation, where U = N and Ψ

satisfies the following:

1. Ψ(A) = {1, 2},

2. Ψ(B) = {2, 3}.

A B

... .

d

Figure 1.21: Interpreting a spider diagram.

Then we say that I satisfies d. We can see that, under I, the spider with two

feet in d, whose habitat is in B, represents an element in Ψ(A) ∩ Ψ(B). In [26],

as in earlier systems [28], the question of whether an interpretation satisfies a

unitary spider diagram is captured by a set of conditions called the semantics

predicate.

Definition 1.1.8. Let D be a diagram and let m = (U,Ψ) be a set assignment

to regions. We define the semantics predicate, denoted PD(m), of D. If D = d

( 6= ⊥) is a unitary diagram then Pd(m) is the conjunction of the following three

conditions.

1. Distinct Spiders Condition. The cardinality of the set denoted by a

region r of a unitary diagram d is greater than or equal to the number of
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complete spiders in r: ∧
r∈R(d)

|Ψ(r)| ≥ |S(r, d)|.

2. Shading Condition. The cardinality of the set denoted by a shaded

region r of a unitary diagram d is less than or equal to the number of

spiders touching r: ∧
r∈R∗(d)

|Ψ(r)| ≤ |T (r, d)|.

3. Plane Tiling Condition. All elements fall within sets denoted by the

zones of d: ⋃
z∈Z(d)

Ψ(z) = U.

If D = ⊥ then PD(m) = ⊥. If D = D1 ∨ D2 then PD1(m) ∨ PD2(m). If

D = D1 ∧D2 then PD1(m) ∧ PD2(m).

Next, Howse et al. state the following theorem, which shows the decidability

of spider diagrams.

Theorem 1.1.1: Every unitary spider diagram (6= ⊥) has a model.

Sketch. Given a non-false unitary diagram d, we follow the approach adopted by

Molina [28] to construct a standard model for d, as follows. Take the universal

set to be the set of spiders in d: U = S(d). For each spider s ∈ S(d), choose

a zone f(s) in η(s); this defines a ‘choice function’ f : S(d) → Z(d) such that

f(s) ∈ η(s). Given the choice function, we can define a set assignment to contour

labels Ψ : L→ PS(d) by

Ψ(l) =

{s ∈ S(d) : l ∈ c(f(s))} if l ∈ L(d)

∅ otherwise.

The extension of Ψ to zones and regions satisfies:

1. for any zone z ∈ Z(d), Ψ(z) = {s ∈ S(d) : f(s) = z}, and

2. for any region r ∈ R(d), Ψ(r) = {s ∈ S(d) : f(s) ∈ r}.
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It can be shown that the set assignment (S(d),Ψ) defined above is a model

for d. (The proof, which we omit, is similar to that given in [28] for the SD2

system.)

This ends the material taken from [26]. The existence of a finite, minimal

model for each diagram leads to a decision procedure for unitary spider dia-

grams. The meaning of a compound spider diagram is obtained by using logical

connectives ∧ and ∨ to take the conjunction and disjunction of the meanings

of unitary diagrams, and Howse et al. go on to generalise the unitary decision

procedure to the compound case.

Thus, we have examined decision procedures for two monadic first order logics,

MFOL= and spider diagrams. Each of these logics has the same expressive

power, and the process of showing decidability for each system makes use of

finite, minimal models.

1.2 Thesis outline

In chapter 2 we present the syntax and semantics of generalized constraint dia-

grams, making a number of small changes to the original presentation, which are

described in section 2.1.1. The changes consist of restrictions to the full system

and changes to the semantics, which we are able to simplify. Of the restrictions

to the full system, only one is crucial to our exercise: we produce a decidable

system from the full, undecidable, notation by excluding universal spiders. We

also exclude spiders with several feet. This change is made to shorten and sim-

plify the results and is not essential to the decision procedure, and in chapter 5

we show that our work readily extends to the case of spiders with several feet.

The changes to the semantics fall into two categories: simplifications made possi-

ble by our restrictions to the system, and simplifications which would be equally

applicable to the full system. In the former category, because of the absence of

universal spiders, the order in which spiders are ‘read’ in the semantics is imma-

terial. Because of this fact, we are able to simplify the original means used to

assign semantics to a diagram in a way which makes reasoning about the formulae

assigned to diagrams and fragments of diagrams much simpler. The exclusion of

spiders with several feet simplifies the semantics in several places; for instance,
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the habitat of a spider is a single zone, rather than a set of zones. In the category

of simplifications to the semantics which would be equally applicable to the full

system, we are able to simplify the set of conditions used to test whether an

interpretation satisfies a diagram (see section 2.3).

Chapters 3 and 4 contain the main contributions of this thesis, which are

the decision procedures for unitary diagrams and for generalized diagrams. In

chapter 3, we begin by examining the types of inconsistency found in unitary

diagrams and by observing that we cannot, in general, tell whether a unitary di-

agram is inconsistent by simply examining its arrows (i.e. as is possible with the

‘incompatible arrows’ of [38], previously discussed on page 17). This observation

leads to the class of γ-diagrams, so-called because they extend β-diagrams [28].

A γ-diagram is a unitary diagram in which each zone is shaded, or contains a spi-

der, or both, and in which no arrows are sourced on spiders (see definition 3.1.1).

We show that we can determine the consistency of a γ-diagram by inspecting its

spiders and arrows. Furthermore, we show that any unitary diagram is equiv-

alent to the disjunction of some set of γ-diagrams and, in section 3.3, develop

inference rules that allow us to transform a unitary diagram into what we call

its γ components. We base these inference rules on reusable, purely syntactic

transformations. Then, to establish the link between the syntactic condition of

consistency and the semantic condition of satisfiability, we show that a γ-diagram

is satisfiable if and only if it is consistent. Because consistency is a syntactic con-

dition, i.e. one which can be judged solely by an inspection of a diagram’s syntax,

and because diagrams have finite syntax, this leads to a decision procedure for

γ-diagrams. As stated, each unitary diagram is equivalent to its set of γ com-

ponents, and we use this fact to describe a decision procedure for the unitary

fragment of our system.

In chapter 4, we develop a decision procedure for the existential fragment.

This works by transforming diagrams through several normal forms, culminating

in what we call disjunctive normal form (see section 4.4). The algorithm we

define in order to transform a generalized diagram to disjunctive normal form, in

combination with the unitary decision procedure, provides a decision procedure

for the whole system. If a diagram is in disjunctive normal form, all information in

that diagram is contained in a disjunction of leaf nodes. We use this fact to show

that, after transforming a diagram into disjunctive normal form, that diagram is
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satisfiable if and only if one or more of its leaf nodes is satisfiable. That is, we can

judge the satisfiability of the diagram by using the unitary decision procedure to

test the satisfiability of its leaf nodes.

The transformations and inference rules defined in chapter 4 focus on the tree

structure of generalized diagrams rather than the content of unitary diagrams. To

transform a generalized diagram, D, into disjunctive normal form, we first ‘lin-

earise’ ∧-labelled nodes with out-degree of greater than one from D, by reducing

their out-degree until they become linear connectives (see section 4.2). In sec-

tion 4.3, we develop inference rules to ‘push’ syntax forwards from the root to the

leaf nodes. Next we remove all but one of the ∨-labelled nodes from the diagram,

so that we are left with a diagram which is a disjunction of linear branches (see

section 4.4). We then describe the means by which we are able to reduce a linear

diagram to a single unitary diagram, whereby the linear diagram is satisfiable if

and only if the unitary diagram is satisfiable (see section 4.5).

In the process of reducing the linear diagram to a single unitary diagram, we

may encounter inconsistency between two unitary diagrams labelling nodes in the

linear diagram. Each of the unitary diagrams in question may be consistent in its

own regard but, taken together, they make an inconsistent set of assertions. If this

condition exists, we show that the linear diagram is inconsistent and unsatisfiable,

enabling us to replace it with ⊥, the unitary diagram which represents falsity.

If the condition does not exist, we are able to remove non-leaf nodes without

changing the meaning of the diagram. In this way, we reduce the linear diagram

to a semantically equivalent unitary diagram, whose satisfiability can be judged

by the application of the unitary decision procedure. Equipped with a decision

procedure for linear diagrams, we are able to show that an arbitrary generalized

diagram is satisfiable if and only if one or more of the linear branches of its

disjunctive normal form is satisfiable (see section 4.6). This completes the decision

procedure for the whole system.

In chapter 5, we conclude and discuss potential areas for further work. The

discussion focuses on the issue of showing completeness for the system. We show

that the strategies used to show completeness of closely related notations are

complicated by the fact that generalized constraint diagrams have a second-order

semantics. A glossary of terms and notation is supplied as an appendix.



Chapter 2

The syntax and semantics of

generalized constraint diagrams

In this chapter we present the syntax and semantics of generalized constraint di-

agrams, extending the system presented by Stapleton and Delaney [41], building

on earlier work on constraint diagrams ([38, 12]) and making use of the notion of

equal spiders in [45]. In sections 2.2 and 2.3, on syntax and semantics respectively,

we adapt existing work by simplifying its presentation. This simplification is pos-

sible because, primarily, the fragment we consider in detail contains less syntax.

We will begin by describing constraint diagrams and the underlying notation

of Euler diagrams with shading [44], before introducing generalized constraint

diagrams.

2.1 Introduction

A drawn generalized constraint diagram is a collection of closed curves called con-

tours which represent sets, within an enclosing boundary rectangle, representing

the universal domain, U . Contours are either given or derived ; given contours

represent named sets and are given unique labels, while derived contours represent

unnamed subsets of U and are unlabelled. The generalized constraint diagram in

Figure 2.1 has three (given) contours, labelled A, B and C, respectively. Contain-

ment, intersection and disjointness are represented by the placement of contours,

so this diagram asserts B ∩ C = ∅.
A basic region is the largest area contained by a contour or the boundary

29
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B

CA

Figure 2.1: Introducing constraint diagrams.

rectangle. A region is either a basic region or the intersection, union or difference

of two non-empty regions. A zone is a region with no other regions inside it. The

region outside of all contours is also a zone. The diagram in Figure 2.1 has five

zones; one inside A but outside B and C, one inside A and B but outside C, and

so on. Shading within a zone places an upper bound on the cardinality of the

set represented by that zone; in the absence of other information, a shaded zone

represents the empty set. The shading in the diagram in Figure 2.1 tells us that

A−B = ∅ and A∩C = ∅. The constraint diagram in Figure 2.1 is also an Euler

diagram.

. . *

.A B

f

g

d

. .

Figure 2.2: The syntax of constraint diagrams.

Constraint diagrams extend the Euler diagram notation described in sec-

tion 1.1 to include spiders, arrows and derived contours. In drawn diagrams,

a spider is a graph whose nodes, called its feet, are placed in zones. The region

made up of the zones in which a spider’s nodes are placed is called its habitat.

In Figure 2.2, diagram d, there is a spider with two feet whose habitat is the

region inside A. The nodes of a spider are either all asterisks or all round dots;



2.1 INTRODUCTION 31

spiders whose nodes are asterisks are called universal spiders, while those whose

nodes are round dots are called existential spiders. In Figure 2.2, diagram d,

the spider whose habitat is the region inside A is an existential spider, while the

spider whose habitat is the zone inside B but outside A is a universal spider.

Semantically, a universal spider represents quantification over all elements in the

sets represented by the spider’s habitat, which may be empty, while an existen-

tial spider asserts the existence of an element in sets represented by the spider’s

habitat. In this way, existential spiders provide a lower bound for the cardinality

of the set represented by their habitat. Since shading provides an upper bound,

a shaded zone containing n spiders represents a set which contains exactly n ele-

ments. Spiders may be connected by two parallel lines. This device is called a tie,

and denotes equality. In the diagram in Figure 2.2, there are two spiders in the

zone outside of all contours. These spiders are joined by a tie and thus represent

a single element.

Arrows are placed in diagrams so that each end of the arrow is directly next

to a spider or the edge of a contour. Semantically, arrows represent properties of

binary relations and are labelled to indicate the relation in question. The spider

or contour at the beginning of the arrow, called the arrow’s source, represents

a restriction on the domain of the relation. The spider or contour at end of

the arrow, called its target, represents the relational image when the domain

is restricted to the set represented by the source, where existential spiders are

treated as representing singleton sets. In Figure 2.2, diagram d contains two

arrows, labelled f and g, respectively. The arrow labelled f asserts a property of

the f relation: when the domain of f is restricted to the set A, the image of f is

the empty set.

Figure 2.2 shows a unitary diagram. Compound diagrams are formed by

joining diagrams with logical connectives which state that the semantics of the

result is the conjunction or disjunction of its parts. Different varieties of the

notation have different ways of indicating that a set of diagrams is joined by

a particular connective; Figure 2.3 shows a compound constraint diagram in

Stapleton’s notation [38]. The meaning of this diagram is given by the conjunction

of the meanings of the two unitary diagrams it contains.

As discussed in section 1.1.1, a diagrammatic notation that represents quan-

tifiers must provide an unambiguous way of combining those quantifiers. In
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A B. r . A B. .

Figure 2.3: A compound constraint diagram.

that section we discussed augmented constraint diagrams which include an extra-

diagrammatic reading tree. The system of generalized constraint diagrams [41]

solves the same problem by allowing diagrammatic elements to be introduced

piece-wise, in what may be thought of as a movie strip or timeline. Figure 2.4

shows an example.

A B .A

A B. f

A B. f .

Figure 2.4: A generalized constraint diagram.

A GCD is a tree structure of unitary diagrams which imposes a partial order

on the syntactic elements of the unitary diagrams. The root node of the tree is

labelled by a unitary diagram, called the root diagram. Each node below the root

is labelled by either a unitary diagram or a connective. The connectives used are

∧ and ∨, represented in drawn diagrams by a fork and a vertical bar, respectively.

Each diagram below the root may add some new piece of syntax to the diagrams

preceding it. Indeed, it may also remove syntax. Constraints are placed on what

may be added to ensure no ambiguity arises.

The structure of a GCD provides the reading order in which its semantics is

interpreted. In Figure 2.5, d2 can be thought of as ‘in the scope of’ d1. Because
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the universal spider is introduced in d1, before the arrow and existential spider

are introduced in d2, the informal meaning of the diagram is that “every man is

the son of exactly one woman,” not “there is a woman of whom every man is the

son”.

Men Women

*

Men Women

*

son .
d1 d2

Figure 2.5: Reading order in generalized constraint diagrams.

2.1.1 Restrictions imposed on generalized constraint dia-

grams in our system

There are several variations of the constraint diagram notation, each devised

to have specific properties. The system we consider is produced by applying

certain restrictions to generalized constraint diagrams. The restrictions we place

on GCDs are that diagrams may not contain universal spiders, and that spiders

have feet placed in a single zone. Additionally, we add the syntactic device of

ties between spiders [45], representing their equality. Thus, spiders’ feet may be

joined by ties but may not represent disjunctive information. This means that

unitary diagrams in our system are α-diagrams [22], in which all spiders have a

single foot, and we call the resulting system the existential fragment of generalized

constraint diagrams. We will refer to existential spiders as ‘spiders’ from here on

unless it is not clear from the context which type of spider we mean.

2.2 Syntax

We will now introduce the syntax of GCDs, adapting the definitions in [41] with

the restrictions discussed above, and beginning with the case of unitary diagrams.
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2.2.1 Generalized unitary constraint diagrams

The contours of a unitary diagram are provided by the sets GC, of given contours,

and DC, of derived contours. In the abstract syntax we identify contours with

their labels, so the contents of GC are what is used to label contours in the drawn

diagram. Derived contours have no label, and we consider the contents of DC
to correspond directly to the derived contours of the concrete diagram. The set

AL contains labels for arrows and S contains spiders. We assume that these four

sets are pairwise disjoint. Since we wish never to run out of spiders or derived

contours we further assume the sets S and DC are countably infinite. As with

Euler diagrams, a zone is a pair of disjoint sets of contour labels and the set of

all zones, Z, has the following type:

Z : P(GC ∪ DC)× P(GC ∪ DC).

A region is any collection of zones. Syntactically, arrows are composed of a

label, source and target. Spiders and contours, both given and derived, may act

as sources and targets of arrows. Figure 2.6 illustrates the possible sources and

targets for arrows. The definitions in the remainder of this subsection extend

those in [42] and [45].

A
h

g
i

f
.

.

Figure 2.6: Sources and targets of arrows.

Definition 2.2.1. An arrow end is either a contour or a spider. An arrow is

an ordered triple (l, s, t) where l ∈ AL, s is an arrow end called the source and

t is an arrow end called the target.

Two spiders in the same zone can be joined by a tie to assert equality, indicat-

ing that they represent the same element. This aspect of the syntax is not part
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of the original presentation of generalized constraint diagrams and adapts work

in [45]. At the abstract level we provide each unitary diagram, d, with an equality

relation on S(d) called τd, where (x, y) ∈ τd if and only if the spiders x and y

are joined by a tie. Certain ties which may be implied are omitted from drawn

diagrams to avoid clutter. For any spider x ∈ S(d), we have (x, x) ∈ τd and so

each spider is considered to be tied to itself; these ties are omitted from drawn

diagrams. Furthermore, for all x, y, z ∈ S(d), the equality relation is symmetric,

so that if (x, y) ∈ τd then (y, x) ∈ τd, and transitive, so that if (x, y) ∈ τd and

(y, z) ∈ τd, then (x, z) ∈ τd. Thus, τ is an equivalence relation which partitions

the set of spiders. In drawn diagrams the ties implied by the transitive property

of τ may be omitted. That is, if spiders y and z are joined by a tie and we add

a tie between a third spider, x, and y, the tie between x and z can be omitted

from the drawing but is present in the abstract syntax.

A . B

.... .x
y

d

Figure 2.7: Illustrating ties between spiders.

In Figure 2.7, there are two spiders in the zone ({B}, {A}). Because these

spiders are joined by a tie, they must represent the same element in any interpre-

tation that satisfies d. Thus, these two spiders indicate that there is at least one

element in the set represented by B. There are three spiders joined by ties in the

shaded zone ({A}, {B}), indicating that the represented set contains exactly one

element. The spider labelled x is not tied directly to the spider labelled y, but

we know that (x, y) ∈ τd by the transitive property of τ , and it greatly reduces

clutter in diagrams to omit such ties.

Definition 2.2.2. A generalized unitary diagram is a tuple

d = (C,Z, Z∗, S, η, τ, A)

which satisfies the following:
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1. C = C(d) is a finite set of contours, that is C ⊂ GC ∪ DC.

2. Z = Z(d) is a finite set of zones such that:

(a) for each zone (in, out) ∈ Z(d), in ∪ out = C(d) and in ∩ out = ∅,

(b) for each contour c ∈ C(d), there is a zone (in, out) ∈ Z(d) where

c ∈ in, and

(c) the zone outside of all contours, (∅, C(d)), is in Z(d).

3. Z∗ = Z∗(d) is a set of shaded zones such that Z∗(d) ⊆ Z(d).

4. S = S(d) is a finite set of spiders.

5. η = ηd is function ηd : S(d) → Z(d) which returns the habitat of every

spider.

6. τ = τd is a binary relation on S(d) which satisfies the following: for all

x, y, z ∈ S(d),

(a) (x, x) ∈ τd,

(b) (x, y) ∈ τd ⇒ (y, x) ∈ τd,

(c) ((x, y) ∈ τd ∧ (y, z) ∈ τd)⇒ (x, z) ∈ τd.

7. A = A(d) is a finite set of arrows such that for each arrow (l, s, t) ∈ A(d),

s and t are each either a contour in C(d) or a spider in S(d).

Additionally, the diagram ⊥ = (∅, ∅, ∅, ∅, ∅, ∅, ∅) is a generalized unitary con-

straint diagram. The set of all generalized unitary diagrams is denoted UD.

As we have said, the spiders inhabiting a zone provide a lower bound on the

cardinality of the set that zone represents. Note that, in general, the lower bound

is provided not by the number of spiders, but by the number of equivalence classes

under τ .

Definition 2.2.3. A spider inhabits a zone in a unitary diagram d if it is placed

in that zone in d. The zone inhabited by a spider is also called its habitat. Let

r be a subset of Z(d). We define the set of spiders inhabiting the zones in r in d,

denoted S(r, d), to be

S(r, d) = {s ∈ S(d) : ηd(s) ∈ r}
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We next define notation which allows us to refer to the sets of zones which

are inside a particular contour, and the set of spiders inhabiting those zones. For

example, in Figure 2.8, the set of zones containing A is

{({A}, {B,C}), ({A,B}, {C}), ({A,C}, {B}), ({A,B,C}, ∅)}.

There are three spiders inhabiting a zone in this region, two of which are joined

by a tie.

A

.
B

.
C

.

Figure 2.8: Zones containing a contour and the spiders inhabiting those zones.

Definition 2.2.4. Let d be a generalized unitary diagram and c a contour label

in C(d). We define Z(c, d), the zones in d which include c, to be

Z(c, d) = {(in, out) ∈ Z(d) : c ∈ in}.

The set of spiders inhabiting c in diagram d, denoted S(c, d), is defined to be

S(c, d) = S(Z(c, d), d).

For convenience in later definitions we extend S to individual spiders such that

for each spider x in S(d), S(x, d) = {x}.

Definition 2.2.5. Let d be a generalized unitary diagram. We define the derived

contours of d, denoted DC (d), as follows:

DC (d) = {c ∈ C(d) ∩ DC}.

If a unitary diagram, d, contains all possible zones, then the diagram obtained

by removing all spiders and arrows from d is a Venn diagram. We define the set
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of all possible zones for d, some of which may be missing, which we call the Venn

zone set of d, and the set of zones which are missing from d.

Definition 2.2.6. Let d be a generalized unitary diagram. We define the Venn

zone set of d, denoted VZ (d), as the set {(a, C(d)− a) : a ∈ PC(d)}. We define

the missing zones of d, denoted MZ (d), as those in the set VZ (d)− Z(d).

2.2.2 Generalized constraint diagrams

A generalized constraint diagram is a bipartite tree in which each node is labelled

with either a generalized unitary diagram or one of the connectors ∧ and ∨. At the

drawn level, connectors are represented by forks and vertical bars, respectively;

each fork or vertical bar may have more than two branches, or even only one

branch. The tree is directed, and for each diagram-labelled node the information

provided by its ancestors is available. The diagram in Figure 2.9 has three nodes.

The root node is labelled by the unitary diagram d1. The immediate descendant

of the root node is an ∧-labelled node which is not shown in the diagram. When

it is relevant to the discussion, such nodes will sometimes be depicted in meta-

diagrams but, to avoid clutter, ∧-labelled nodes with out-degree of one are not

depicted in generalized diagrams. Finally, the diagram in Figure 2.9 has a leaf

node labelled by the unitary diagram d2. The semantic formula for the diagram

is derived from the conjunction of the meanings of d1 and d2, but d2 is inside the

scope of d1 and not vice versa. That is, as diagram-labelled nodes are added to

a graph their meaning is interpreted in the context of their ancestor nodes. In

Figure 2.9 then, we read the information provided by d2 in combination with that

provided by its ancestor node and are able to conclude, informally, that A has

exactly one element and that element is related to an element of U −A under f .

AA A

.
A

d1 d2

f

.

Figure 2.9: Generalized diagrams and scope.

Diagram-labelled nodes may introduce diagrammatic elements such as spi-

ders and arrows; the full system provides rules to ensure that universal spiders



2.2 SYNTAX 39

are introduced in such a way that the scope of the quantifiers they represent is

clear [41]. Our system does not include universal spiders and, since it does not

matter in which order existential quantifiers are read, these rules are not needed.

Figure 2.10 is a meta-diagram which illustrates the structure of a generalized

diagram. We will use this type of meta-diagram frequently throughout the work,

whenever the discussion is mostly or entirely concerned with the structure of

diagrams and it is helpful to ignore the unitary diagrams used as labels. In this

type of meta-diagram, diagram-labelled nodes are represented by solid rectangles,

and solid circles represent connective-labelled nodes. Each node is given a name,

n1, n2, etc., and the label of a node (i.e. a logical connective or the name of a

unitary diagram) may be shown above the node, as is done in Figure 2.10.

d2

d4

d6

d5

d3

. . .
d1 .
n1 n2 n3 n4

n5 n6

n7

n8

n9

Figure 2.10: The structure of a generalized diagram.

In Figure 2.10, nodes are named n1 to n9. Above each node is shown its

label: unitary diagrams d1 to d6, which are assumed to be defined, and the

connectors ∨ and ∧. In Figure 2.11 that structure is visualised. The root node,

n1, is labelled by a unitary diagram, d1. The immediate descendant of the root

node is a connective-labelled node, n2. The node n2 is shown in Figure 2.10,

but is missing from Figure 2.11. Connective-labelled nodes with an out-degree

of one are suppressed in drawn diagrams to reduce clutter, but are present in

the abstract representation of the diagram. The next node, n3, is labelled by

a diagram, d2. Because d1 is joined to d2 with a straight line in Figure 2.11,

we can informally consider them to be in conjunction except that, semantically,

the quantifier introduced by d2 (represented by the spider) is not in the scope

of d1. Since, unlike the original presentation of GCDs in [41], our existential

fragment does not include universal spiders, the order in which d1 and d2 are

read could, in fact, be reversed without changing the meaning of the diagram.

Unitary diagrams cannot, however, be moved in arbitrary ways without a change
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in meaning; for example, exchanging d2 and d3 in 2.11 results in a diagram with

a different meaning.

d1 d2

d4

d6

d5

d3A B A .
A B

A B

.

.

B

A

.

.

f

f

Figure 2.11: Visualising the structure of a generalized diagram.

After the node labelled by the unitary diagram d2, (node n3, Figure 2.10), the

next node, n4, is labelled by an ∨ connector. Unlike the node n2, n4 is shown in

Figure 2.11, and is represented by a vertical bar. The disjunction of the meanings

of the two branches of the vertical bar is added to the meaning of the diagram as

a whole. Diagram d4 labels a leaf node. Attached to d3 is an ∧ connector, with

the effect that the meaning of d5 ∧ d6 is added to the meaning of d3. Informally,

if we take the labels d1, d2, etc. to stand for the meaning of the unitary diagrams

in question, the meaning of the diagram as a whole is given by the formula:

d1 ∧ d2 ∧ ((d3 ∧ (d5 ∧ d6)) ∨ d4).

We will now formalise the structure of generalized diagrams, extending the

definition given in [41]. Nodes, or vertices, are drawn from a countably infinite

set V .

Definition 2.2.7. A generalized constraint diagram is a (node) labelled,

directed bipartite tree D = (V,W,E, l) which satisfies the following:

1. V and W are disjoint sets of nodes, and V 6= ∅.

2. E : (V ×W ) ∪ (W × V ) is a set of edges which satisfies the following:
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(a) There is one root node in E, which is in the set V .

(b) Every node in V except the root node has an in-degree of 1.

(c) Every node in V has an out-degree of at most 1.

(d) Every node in W has an in-degree of 1 and an out-degree which is

greater than 0.

3. l : (V ∪W )→ UD ∪ {∧,∨} is a labelling function such that:

(a) The nodes in V are labelled by generalized unitary constraint dia-

grams.

(b) The nodes in W are labelled by either ∧ or ∨.

In order to describe the tree structure of individual generalized diagrams with-

out listing sets of vertices and edges, etc., we use a shorthand notation in which

the symbols ∧ and ∨ mean the same as the fork and vertical bar found in drawn

diagrams. When a connective-labelled node has more than one immediate de-

scendant, the connective, ∧ or ∨, is used as a prefix operator and followed by a

collection of nodes in set notation. For example, if the abstractions of the uni-

tary diagrams d1, d2 etc are defined, then the diagram in Figure 2.11 has abstract

syntax described by

d1 ∧ d2 ∧ (∨{d3 ∧ (∧{d5, d6}), d4}).

Our convention is to use lower case letters d, d1, . . . , dn and so on to denote

generalized unitary diagrams and upper case letters D, D1, . . . , Dn, etc., to de-

note non-unitary generalized diagrams. Given a generalized diagram D, we will

often need to refer to the subsets of the nodes, edges and labels of D which are

themselves generalized diagrams. We call such diagrams sub-diagrams of D.

Definition 2.2.8. Let D1 = (V1,W1, E1, l1) and D2 = (V2,W2, E2, l2) be gener-

alized diagrams. We say that D1 is a sub-diagram of D2, denoted D1 ⊆ D2 if

and only if the following is true:

1. V1 ⊆ V2,

2. W1 ⊆ W2,
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3. E1 = E2 ∩ ((V1 ×W1) ∪ (W1 × V1)), and

4. l1 = l2|V1∪W1 .

As an example of sub-diagrams, consider Figure 2.12, diagram D1. Each

connected set of nodes from the underlying graph structure of D1, which is also

a generalized diagram, is a sub-diagram of D1. Figure 2.12 shows the following

sub-diagrams of D1:

1. d1,

2. d1 ∧ d2,

3. d1 ∧ {d2, d4}.

There are other sub-diagrams of D1 which are not shown in Figure 2.12.

However, ∧{d1 ∧ d2, d3} is not a sub-diagram of D1 since, as the root node is not

labelled by a diagram, it is not a generalized diagram. The diagram d1 ∧ d3 is

not a sub-diagram of D1 since it contains an edge which is not in D1.

D1

d1

d2 d3

d4
D2

d1

D3

d1 d2

D4

d1

d2

d4

Figure 2.12: Diagrams and sub-diagrams.

Figure 2.13 shows a meta-diagram in which connective-labelled nodes are

labelled n2 and n4. Node n2 is labelled by ∧ and has an out-degree of 1. We say
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n3 n4
n6

n5
n1 n2

Figure 2.13: Linear and non-linear connectives.

that n2 is a linear connective, Node n4 has an out-degree of 2; we say that n4 is

a non-linear connective.

Definition 2.2.9. Let D be a generalized diagram which includes a connective-

labelled node n. We say that n is a non-linear connective of D if and only if

n has an out-degree of greater than one: |{(n, n′) ∈ E}| > 1. Otherwise, we say

that n is a linear connective. If D contains only linear connectives we say that

D is a linear generalized diagram.

We define a function which supplies the root of a generalized diagram.

Definition 2.2.10. Let D be a generalized diagram. Then we define the function

root , so that root(D) returns the root vertex of D.

The edges of a diagram give rise to a partial order on its nodes which we

characterise as the sets of ancestors and descendants of a given node. Figure 2.14

is a meta-diagram in which nodes are labelled with V or W to show which set

the node belongs to. The immediate ancestor of n6 is n5, which is another way of

saying that the edge (n5, n6) is in the diagram. The vertex n6 has two immediate

descendants, n7 and n8.

Note that immediate ancestors are unique but immediate descendants are not,

in general. Also, the sets of all ancestors and descendants of a node are given

by the transitive closures of the immediate ancestor and immediate descendant

relations respectively.

Definition 2.2.11. Let D = (V,W,E, l) be a generalized diagram and let n1 and

n2 be two nodes in V ∪W . We say that n1 is the immediate ancestor of n2

and n2 is an immediate descendant of n1 if and only if the edge (n1, n2) is in

E. We denote the set of immediate descendants of n1 in D as ImmDes(n1, D).

We denote the set of all ancestors of n2, which is the transitive closure of the
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. .
n1 n2 n3

n5 n6

n7

n8

n9

.
n4

V W V W

V

V W

V

V

Figure 2.14: The ancestors and descendants of a node.

immediate ancestor relation, as Anc(n2, D), and the set of all descendants of

n1 in D, which is the transitive closure of the immediate descendant relation, as

Des(n1, D).

We will also need to refer to the nearest ancestor or descendant which is la-

belled by a diagram. We call these the immediate diagram-labelled ancestors and

descendants. As with (diagram- or connective-labelled) ancestors and descen-

dants, immediate diagram-labelled ancestors are unique but immediate diagram-

labelled descendants need not be. In Figure 2.14, n7 and n8 are necessarily

labelled by unitary diagrams since they are leaf nodes. It follows that n6 must

be labelled by a connective and that the immediate diagram-labelled ancestor of

both n7 and n8 is node n5.

Definition 2.2.12. Let D be a generalized diagram which contains diagram-

labelled nodes n1 and n2. We say that n1 is the immediate diagram-labelled

ancestor of n2 if and only if there is a path of length two from n1 to n2. If this

is the case, we say that n2 is an immediate diagram-labelled descendant of

n1.

2.3 Semantics

The semantics we present is taken from Stapleton and Delaney [41] with adapta-

tions that reflect the fact that we work in the existential fragment of the system.

We are also able to simplify the semantics in several places. This section is

therefore an adaptation of existing work.
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The first stage of the process of assigning semantics to generalized diagrams

is to interpret the given contour labels as subsets of some specified universal set

U , and the arrow labels as binary relations on U , giving an interpretation. We

call the mapping for contour labels Ψ, and the mapping for arrow labels Φ. For

example, an interpretation I given by

1. U = {1, 2},

2. Ψ = {(A, {1}), (B, {2})},

3. Φ = {(f, {(1, 2)})},

satisfies the diagram in Figure 2.15. We mean by this that the diagram can be

interpreted via this universe and mappings without contradictions arising (the

notion of satisfaction is formalised later in this section). The interpretation J ,

given by

1. U = {1, 2},

2. Ψ = {(A, {1, 2}), (B, ∅)},

3. Φ = {(f, {(1, 2)})},

does not satisfy the diagram, since J contradicts the assertions of the diagram

that B contains at least one element and that an element of A is related to all

elements of B under f ; either one of these properties is sufficient for J not to

satisfy the diagram.

A

. .
Bf

.

Figure 2.15: Interpretations of a unitary diagram.

By converting the diagram to a sentence in symbolic logic using the process

described in this section, it can be shown that I satisfies the diagram but J
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does not. These symbolic sentences are used to determine whether an interpre-

tation satisfies a diagram. The sentence assigned to a given diagram allows us to

determine whether an interpretation satisfies that diagram.

Definition 2.3.1. An interpretation is a triple, (U,Ψ,Φ), where U is a non-

empty set, Ψ : GC → PU is a function that maps given contours to subsets of U

and Φ : AL → P(U × U) maps arrow labels to binary relations on U [43].

It is often essential and sometimes merely convenient to extend the mapping Ψ

to interpret other diagrammatic elements: derived contours, zones and individual

spiders. We therefore define extended interpretations.

Definition 2.3.2. Let I = (U,Ψ,Φ) be an interpretation. We define the ex-

tended interpretation I ′ = (U,Ψ′,Φ) where Ψ′ extends Ψ,

Ψ′ : GC ∪ DC ∪ S ∪ Z → PU,

and satisfies the following.

1. For each zone, (in, out) ∈ Z, we define

Ψ′(in, out) =
⋂
c∈in

Ψ(c) ∩
⋂
c∈out

(U −Ψ(c)).

2. For each set of zones, Z, we define

Ψ′(Z) =
⋃
z∈Z

Ψ(z).

3. For each spider, x, |Ψ′(x)| = 1 and Ψ′(x) ⊆ U .

The definition of Ψ′ for zones has a useful corollary.

Corollary 2.3.1. Let (in, out) be a zone, let c be a contour label not in in ∪ out

and let m = (U,Ψ′,Φ) be an extended interpretation which interprets c. Then

Ψ′(in, out) = Ψ′(in ∪ {c}, out) ∪Ψ′(in, out ∪ {c}).



2.3 SEMANTICS 47

For unitary diagrams, d, we will specify a collection of conditions whose con-

junction captures the meaning of d when d is viewed as a formula not containing

quantifiers. These conditions correspond to the syntactic components in d and

their relationships with each other. For an interpretation to satisfy a diagram,

d, these conditions must hold with regard to the interpretation and the semantic

formula assigned to d.

The first condition, the plane tiling condition, states that the union of the sets

represented by the zones in d is the universal set. The shaded zones condition

ensures that shading imposes an upper bound on the cardinality of the sets repre-

sented by shaded zones. The spiders habitat condition asserts that each universal

element represented by a spider is a member of the set represented by the zone the

spider inhabits. The spiders’ distinctness condition states that spiders not joined

by a tie represent different universal elements, while any two spiders joined by

tie represent the same element. The arrows condition states that, for each arrow,

the set represented by the target is indeed the image of the relation represented

by the arrow label, when the domain is restricted to the set represented by the

arrow’s source. After formalising the conditions we present a concrete example.

Definition 2.3.3. Let U be a set, let R be a binary relation on U and let A be

a subset of U . We define the image of R when the domain is restricted to A,

denoted A.R, as follows:

A.R = {y ∈ U : ∃x ∈ A ((x, y) ∈ R)}.

Definition 2.3.4. Let d ( 6= ⊥) be a generalized unitary diagram and let (U,Ψ,Φ)

be an interpretation with extension (U,Ψ′,Φ).

1. The plane tiling condition for d, denoted PTC (d), asserts that the union

of the sets represented by the zones is the universal set:

Ψ′(Z(d)) = U.

2. The shaded zones condition for d, denoted SZC (d), asserts that all of

the elements in the sets represented by shaded zones are represented by
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spiders: ∧
z∈Z∗(d)

Ψ′(z) =
⋃

x∈S(z,d)

Ψ′(x).

3. The spiders’ habitats condition for d, denoted SHC (d), asserts that the

elements represented by the spiders are in the sets represented by their

habitats: ∧
x∈S(d)

Ψ′(x) ⊆ Ψ′(ηd(x)).

4. The spiders distinctness condition for d, denoted SDC (d), asserts that

two spiders represent the same element if and only if they are joined by a

tie: ∧
x,y∈S(d)∧x 6=y

Ψ′(x) = Ψ′(y)⇔ (x, y) ∈ τd.

5. The arrows condition for d, denoted AC (d), asserts that, for each arrow,

the set represented by the arrow’s target is the image of the relation rep-

resented by the label when the domain of that relation is restricted to the

set represented by the source:∧
(l,s,t)∈A(d)

Ψ′(s).Φ(l) = Ψ′(t).

The conjunction of the above five conditions is called the formula for d, denoted

form(d).

Note that the arrows condition is a simplification of that in the original

presentation. The simplification is made possible by extending the function

S : Z ∪ C ∪ UD → PS to operate on individual spiders. Thus, given a uni-

tary diagram d and a spider x ∈ S(d), S(x, d) = {x}. The result of this is that

the arrows condition is shortened from four cases (the potential types of source

and target of arrows) to one.

An equivalent way of stating the plane tiling condition is by the containment

condition [38, p54].

Definition 2.3.5. Let d (6= ⊥) be a generalized unitary diagram and let (U,Ψ′,Φ)

be an extended interpretation. The set represented by each basic region is the
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same as that represented by its containing contour:∧
c∈C(d)

Ψ′(c) =
⋃

(in,out)∈Z(d)∧ c∈in

Ψ′(in, out).

Lemma 2.3.1. The plane tiling condition and the containment condition are

equivalent.

Proof. See Stapleton [38, p54] for a proof of the equivalence of the plane tiling

and containment conditions for spider diagrams, which is also valid for generalized

unitary diagrams.

A

. .

l dc

d

x

y

Figure 2.16: Illustrating GCD semantics.

To illustrate the process of assigning a formula to a unitary diagram, consider

diagram d in Figure 2.16, where the derived contour dc is given a meta-level label

for convenience, as are the spiders. This diagram has the formula form(d), given

by

form(d) = PTC (d) ∧ SZC (d) ∧ SHC (d) ∧ SDC (d) ∧ AC (d).

The five conditions can be given in full as follows.

1. The plane tiling condition, PTC (d):

Ψ({A}, {dc}) ∪Ψ({dc}, {A}) ∪Ψ(∅, {A, dc}) = U.

2. The shaded zones condition, SZC (d):

Ψ({A}, {dc}) =
⋃

x∈S(({A},{dc}),d)

Ψ(x).
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3. The spiders’ habitats condition, SHC (d):

Ψ(x) ⊆ Ψ({A}, {dc}) ∧ Ψ(y) ⊆ Ψ(∅, {A, dc}).

4. The spiders distinctness condition, SDC (d): Ψ(x) 6= Ψ(y).

5. The arrows condition, AC (d): Ψ(A).Φ(l) = Ψ(dc).

In the original presentation [41] of the semantics of generalized constraint dia-

grams, spiders and derived contours each give rise to quantification expressions in

the sentence assigned to a diagram. Separate quantification expressions are pro-

duced for derived contours. We have simplified this presentation by removing the

need for quantification expressions relating to spiders. Instead, in a unitary dia-

gram the mapping introduced to interpret derived contours and zones is extended

to spiders:

∃Ψ′ : GC ∪ DC ∪ S ∪ Z → PU.

Our differing approach means that, instead of referring to spiders via variables

which refer to universal set elements, we apply our extended mapping, Ψ, to

syntax-level spiders, i.e. elements of S. This choice simplifies details of the

arrows condition. Also, instead of producing a new existential quantifier to prefix

the formula for each unitary diagram in an extended interpretation, we are able

to make use of a single quantifier that asserts the existence of an extension, which

appears at the beginning of the formula.

We generalise the functions C and S from the unitary to the compound case.

Definition 2.3.6. Let D = (V,W,E, l) be a generalized diagram. Then we define

the contour set of D, denoted C(D), as follows:

C(D) =
⋃
n∈V

C(l(n)).

Similarly, the spider set of D, denoted S(D), is defined as follows:

S(D) =
⋃
n∈V

S(l(n)).

We can now describe the process of constructing a formula for a general-

ized constraint diagram, allowing us to determine whether a given interpretation
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agrees with the meaning of the diagram. We begin by producing a formula for the

root and build up an expression which yields a sentence for the entire generalized

diagram.

Definition 2.3.7. Let D be a generalized constraint diagram and let ni be a

node in D labelled by the unitary diagram di. Let IDL(n,D) be the function

which returns the immediate diagram-labelled descendants of the node n in D,

and let (U,Ψ′,Φ) be an extended interpretation. We define the formula for ni

in the context of D, denoted SemForm(ni, D), as follows.

1. If ni is a leaf node then SemForm(ni, D) is the formula form(di).

2. If ni is not a leaf node of D, and the immediate descendant of ni is labelled

by ∨, then SemForm(ni, D) is the formula

form(di) ∧ (
∨

nj∈IDL(ni,D)

SemForm(nj, D)).

3. Otherwise ni is not a leaf of D and the immediate descendant of ni is

labelled by ∧, in which case SemForm(ni, D) is the formula

form(di) ∧
∧

nj∈IDL(ni,D)

SemForm(nj, D).

The formula for D, denoted form(D), is SemForm(root(D), D).

We are now able to formally define what it means for an interpretation to

satisfy a diagram.

Definition 2.3.8. Let D be a generalized diagram with root node n and let

I = (U,Ψ,Φ) be an interpretation. We say that I satisfies D if there exists

an extension of I, I ′, under which form(D) is true. If I satisfies a generalized

diagram D then we say that I is a model for D. Let Ψ′ be an extension of Ψ

with the following signature:

Ψ′ : GC ∪ DC ∪ S ∪ Z → PU.

If form(D) is true under Ψ′ then Ψ′ is called a valid extension for D.
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d1 d2

A

.
A ..

f

x x y

Figure 2.17: Interpreting a GCD.

For any generalized constraint diagram, the formula of the root node is a

sentence. For example, given an extended interpretation I ′ = (U,Ψ′,Φ), the

diagram with two nodes in Figure 2.17 has the formula form(d1) ∧ form(d2),

which we can give in full as follows. First, the conditions for d1, where > denotes

truth:

1. PTC (d1) = (Ψ′({A}, ∅) ∪Ψ′(∅, {A}) = U),

2. SZC (d1) = >,

3. SHC (d1) = Ψ(x) ⊆ Ψ({A}, ∅),

4. SDC (d1) = >,

5. AC (d1) = >.

Next, the conditions for d2:

1. PTC (d2) = (Ψ′({A}, ∅) ∪Ψ′(∅, {A}) = U),

2. SZC (d2) = >,

3. SHC (d2) = Ψ(x) ⊆ Ψ({A}, ∅) ∧ Ψ(y) ⊆ Ψ(∅, {A}),

4. SDC (d2) = (Ψ(x) 6= Ψ(y)),

5. AC (d2) = (Ψ(A).Φ(f) = Ψ(y)).
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Finally, the formula for the diagram as a whole, omitting conditions which

are trivially true:

∃Ψ′ : GC ∪ DC ∪ S → PU(
PTC (d1) ∧ SHC (d1) ∧ (PTC (d2) ∧ SHC (d2) ∧ SDC (d2) ∧ AC (d2))

)
.

Thus, we have defined the syntax of generalized constraint diagrams and iden-

tified the differences between our fragment and the original presentation. We

have also defined the semantics of generalized diagrams, including the notion of

satisfiability, and given a number of examples that show how the meaning of a

generalized diagram is constructed.



Chapter 3

A decision procedure for the

unitary existential fragment

Our goal in this chapter is to develop a decision procedure which judges the satis-

fiability of a unitary diagram. In order to do this, we need to identify the syntac-

tic properties which distinguish those diagrams which are satisfiable. Diagrams

with these properties are consistent, and those without them are inconsistent.

In this chapter we define the syntactic property of consistency and show that it

corresponds exactly to the semantic property of satisfiability; that is, a unitary

diagram is satisfiable if and only if it is consistent. The conditions under which

we can do this depend on the syntactic properties of the class of diagrams called

γ-diagrams, defined in section 3.1, and on their use a reduction class. That is,

we define consistency for the class of γ-diagrams, and show that any unitary dia-

gram is equivalent to the disjunction of a particular set of γ-diagrams, called its

γ components. By this reasoning, a unitary diagram is consistent if and only if

one or more of its γ components is consistent. The definition of consistency leads

directly to a decision procedure which allows us to judge the satisfiability of a

unitary diagram by inspecting its syntax.

3.1 Satisfiability for unitary diagrams

First, we introduce the class of diagrams called γ-diagrams. As we explain below,

β-diagrams [28], in which each zone is shaded or contains a spider, or both,

make it possible to identify inconsistency simply by observing the presence or

54
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absence of spiders. Our definition of inconsistency depends on β-diagrams, but

also requires that all arrows are sourced on contours. For this reason we define

γ-diagrams, which are β-diagrams in which every arrow is sourced on a contour.

For convenience in definitions and results, we also define γ-diagrams to contain

no non-trivial ties between spiders. We will show that for every α-diagram, d, we

can construct a set of γ-diagrams, Γ, where d is satisfiable if and only if one of

the diagrams in Γ is satisfiable.

Definition 3.1.1. Let d1 be a generalized unitary diagram in which each zone is

shaded, or contains a spider, or both. Then we say that d1 is a β-diagram. Let

d2 be a generalized unitary β-diagram which satisfies the following:

1. each arrow (l, s, t) ∈ A(d2) is sourced on a contour, i.e. s ∈ C(d), and

2. τd2 = {(x, x) : x ∈ S(d2)}.

Then we say that d2 is a γ-diagram.

A
B

f

..
. g

.

Figure 3.1: A γ-diagram.

The diagram in Figure 3.1 is a β-diagram since all zones are shaded or con-

tain a contour, or both, and is also a γ-diagram since all arrows are sourced on

contours.

3.1.1 Inconsistency

There are two possible causes of inconsistency in a generalized unitary diagram

d. The first is its arrows and their potential to represent a situation which could

not be reflected in the relation represented by the label of the arrow. The second

is the case where spiders inhabiting distinct zones are joined by ties. Figure 3.2

presents three examples of inconsistency which may be present in a diagram,
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.A
B

f
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d2 d3

.
A

B
f

d1

. .
A

B

f

f .x

Figure 3.2: Three examples of inconsistency arising from arrows.

arising from its arrows. In d1 inconsistency arises because there are too few

elements in the set represented by the source of an arrow for the property of the

relation it represents to hold. In particular, d1 asserts

1. Ψ(A) = ∅,

2. Ψ(B) 6= ∅, and

3. Ψ(A).Φ(f) = Ψ(B).

These three statements cannot be true at the same time, so no interpretation

satisfies d1. In d2 the arrow (f, A,B) also tells us that the image of f , when the

domain has been restricted to A, is equal to B. The arrow sourced on the spider

within A has a target spider outside of B, and so the two arrows are incompatible

with each other. We have, informally, A.f = B and that there is an element, a,

in A such that a.f is an element outside of B.

The third type of inconsistency, illustrated in d3, is a more general form of

that in d1. It also arises when there are too few elements in the source set of an

arrow to satisfy the constraint imposed by the arrows on the represented relation.

The arrow (f, A,B) tells us that elements in A are related under f to all elements

of B and to nothing else. However, there is no element of A that could possibly be

related to the spider x. The subset, S, of A, represented by the derived contour

inside A contains elements which are related to elements of B, but not to x.

Since S = A, we have a contradictory situation. We informally give the name

source inconsistency to the type of inconsistency depicted in d1 and d3; there are

too few spiders at the source of an arrow. We call the inconsistency depicted

in d2 target inconsistency ; there are arrows whose targets provide inconsistent

information. We note that target inconsistency generalises the notion of pairwise-
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incompatibility found in [43], and that source inconsistency arises because of the

presence of arrows sourced on contours; this type of arrow did not occur in [43].

As a further example, Figure 3.3 shows a situation in which both forms of

inconsistency arise because of the interaction of a pair of arrows. Target incon-

sistency arises because two arrows with the same label and source set of spiders

have disjoint target sets of spiders. Source inconsistency arises because, for each

of the arrows, there is a spider in the target set which must be related to some

spider in the source set, but no spider is available.

f

.
f

.

.A

B

C

D

Figure 3.3: Source and target inconsistency arising together.

In essence, the properties of source and target inconsistency both arise due to

the location or absence of spiders with respect to the arrows of the diagram. In

fact, their definitions can be unified by considering how to identify inconsistency

via the spiders in the targets and sources of arrows, relative to other arrows. In

Figure 3.3, the arrow (f, A,C) has a spider, y, in its target. There is a spider, x,

inhabiting a zone in the source of (f, A,C), but x cannot be related to y because

it is in the source of another arrow, (f,B,D), with a target that is disjoint from

that of (f, A,C). We can identify this lack of spiders in the source of (f, A,C)

with respect to (f,B,D) by noting that if we subtract the spiders in the target

of (f,B,D) from those in the target of (f, A,C) there are spiders remaining, but

if we subtract the spiders in the source of (f,B,D) from those in (f, A,C), no

spiders remain. Semantically speaking, there is no element in the set represented

by A that can be related to an element in the set represented by C, although the

arrow (f, A,C) tells us that this is so. To formulate general definitions, we focus

on pairs of sets of arrows, rather than pairs of individual arrows. In this way we

can identify the simplest form of source inconsistency shown in Figure 3.2, d1, by

considering the sets X = {(f, A,B)} and Y = ∅. If we subtract the spiders in

the targets of all arrows in Y from those in X, there are spiders remaining. If we
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carry out the same process for the sources of Y and X, there are no spiders, and

d1 is inconsistent.

A B

.
C

D E

.
F

.. f

f
. ..

f

Figure 3.4: Interaction of multiple arrows.

By considering pairs of sets of arrows, we can account for more complex cases

where multiple arrows interact. In Figure 3.4, take the sets X = {(f, C, F )}
and Y = {(f, A,E)), (f,B,D)}. There are spiders in F , the target of the only

arrow in X, which are not in D or E, the targets of the arrows in Y . However,

all spiders in C, the source of the only arrow in X, are also in the source of

an arrow in Y , and so the diagram is inconsistent. Returning to the notion of

pairwise-compatibility, in [43], Stapleton derives a relationship between a pair of

arrows that identifies when inconsistency arises. In our system, a pairwise con-

sideration of arrows is not sufficient to identify target inconsistency. For example,

in Figure 3.4, no pair of the three arrows provide inconsistent information (and

are not, therefore, pairwise-compatible), but the three arrows together do provide

inconsistent information. We now make definitions to select the source and target

spiders of a set of arrows.

Definition 3.1.2. Let d be a generalized unitary diagram and let X ⊆ A(d). We

define the source spiders in X, denoted Ss(X, d), as follows.

Ss(X, d) =
⋃

(l,s,t)∈X

S(s, d).

Similarly, we define the target spiders of X, denoted St(X, d), as follows.

St(X, d) =
⋃

(l,s,t)∈X

S(t, d).

When we compare the target and source spiders of sets of arrows, we are only

interested in sets of arrows with the same label; inconsistency cannot arise by
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the interaction of arrows with different labels. Thus, we define the arrows with a

given label in a diagram.

Definition 3.1.3. Let d be a generalized unitary diagram and let l be an arrow

label in AL(d). Define the arrows of l in d, denoted A(l, d), as follows.

A(l, d) = {(l′, s, t) ∈ A(d) : l′ = l}.

So far we have illustrated how to use pairs of sets of arrows to identify source

inconsistency, arising because there are too few elements in the source of an

arrow (as in Figure 3.4). Sets of arrows are also sufficient to identify target

inconsistency, arising because two arrows which share spiders in their source have

disjoint targets. The diagram in Figure 3.5 illustrates target inconsistency. Set

X = {(f,B,D)} and Y = {(f, A,C)}. Then St(X, d)−St(Y, d) 6= ∅, but because

all spiders in B are also in A, Ss(X, d) − Ss(Y, d) = ∅. Pairs of sets of arrows

are thus sufficient to identify both forms of inconsistency. In fact, although it

intuitively seems that there are two forms of inconsistency in generalized unitary

diagrams, our method reveals that the two forms are manifestations of the same

phenomenon.

A C

f

f

d

.B
.

D

. ..

.

Figure 3.5: Target inconsistency.

In terms of choosing the sets of arrows to be compared, it is only necessary

that they be disjoint. If, in Figure 3.5, we choose sets which are not disjoint, X =

{(f,B,D)} and Y = {(f,B,D), (f, A,C)}, inconsistency is not identified. The

examples in this section have demonstrated that the conditions of a γ-diagram

allow us to identify inconsistency by observing the spiders of a diagram relative

to its arrows; Figure 3.6 demonstrates that β-diagrams are not sufficient. If we

take X = {(f, A,B)} and Y = {(f, x, y)}, then St(X, d) − St(Y, d) 6= ∅, but
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Ss(X, d) − Ss(Y, d) = ∅. The diagram is thus judged to be inconsistent by our

approach, although it is satisfiable. The use of γ-diagrams avoids this problem.

d

A

f

f ...
B

x y

.

Figure 3.6: The need for γ-diagrams.

Definition 3.1.4. Let d ( 6= ⊥) be a generalized unitary γ-diagram. The diagram

d is consistent if, for all arrow labels l in AL(d) and for all pairs of sets of arrows

X and Y in A(l, d), where X ∩ Y = ∅, the following holds:

St(X, d)− St(Y, d) 6= ∅ ⇒ Ss(X, d)− Ss(Y, d) 6= ∅.

If this property does not hold we say d is inconsistent.

To show that the above definition is correct, we will show that every consistent

diagram is satisfiable and every satisfiable diagram is consistent. Before we do,

we establish a result relating to the source spiders of sets of arrows.

Lemma 3.1.1. Let d (6= ⊥) be a satisfiable γ-diagram and let X and Y be two

disjoint subsets of A(d). If

Ss(X, d)− Ss(Y, d) = ∅,

then ⋃
(l,s,t)∈X

Ψ′(s)−
⋃

(l,s,t)∈Y

Ψ′(s) = ∅,

where (U,Ψ,Φ) is any model for d and Ψ′ is a valid extension.

Proof. Assume

Ss(X, d)− Ss(Y, d) = ∅.
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By the definition of Ss this tells us that

( ⋃
(l,s,t)∈X

S(s, d)
)
−
( ⋃
(l,s,t)∈Y

S(s, d)
)

= ∅. (3.1)

Let (l, s, t) be an arrow in X. By (3.1),

S(s, d) ⊆
⋃

(l,s′,t′)∈Y

S(s′, d). (3.2)

Suppose Ψ′(s) 6= ∅ and let e ∈ Ψ′(s). Then e ∈ Ψ′(in, out) for some unique

zone (in, out) ∈ Z(d) where s ∈ in. Since d is a γ-diagram, (in, out) contains a

spider, say x. Now,

S((in, out), d) ⊆ S(s, d)

and, by (3.2), we can deduce

x ∈ S((in, out), d) ⊆ S(s, d) ⊆
⋃

(l,s′,t′)∈Y

S(s′, d).

That is, x ∈
⋃

(l,s′,t′)∈Y
S(s′, d). Choose some arrow, (l, s′, t′) ∈ Y with x ∈

S(s′, d). Then it can be shown that s′ ∈ in. Recall that e ∈ Ψ′(s). Then, since

(l, s, t) was an arbitrary element of X, for any e ∈
⋃

(l,s,t)∈X
Ψ′(s), it follows that

e ∈
⋃

(l,s′,t′)∈Y

Ψ′(s′).

Hence, ⋃
(l,s,t)∈X

Ψ′(s) ⊆
⋃

(l,s′,t′)∈Y

Ψ′(s′)

and therefore ⋃
(l,s,t)∈X

Ψ′(s)−
⋃

(l,s′,t′)∈Y

Ψ′(s′) = ∅.

Now we will show that the first aspect of the relationship between consistency

and satisfiability holds: that inconsistent diagrams are unsatisfiable.
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Theorem 3.1.1: Let d (6= ⊥) be a generalized unitary γ-diagram. If d is incon-

sistent then d is unsatisfiable.

Proof. Assume d is inconsistent but satisfiable, and that (U,Ψ,Φ) is a model for

d where (U,Ψ′,Φ) is a valid extension. Since d is inconsistent, for some arrow

label l ∈ AL(d), there exist two sets of arrows labelled l, X and Y where the

following is true:

1. X ∩ Y = ∅,

2. St(X, d)− St(Y, d) 6= ∅,

3. Ss(X, d)− Ss(Y, d) = ∅.

Let y be a spider in St(X, d)− St(Y, d) and choose an arrow (l, s′, t′) in X where

y ∈ S(t′, d). In Figure 3.7 we use a meta-diagram to illustrate this condition,

where the curves labelled with ∪ operators represent all sources and, respectively,

targets of arrows in Y and details such as other contours in X are suppressed to

focus on (l, s′, t′). From the spiders habitat and the arrows condition we know

that

Ψ′(y) ⊆ Ψ′(s′).Φ(l). (3.3)

Then there exists some universal element e in U where

l

..
s' t'

y

Figure 3.7: A spider in the target of one of the arrows of X.

e ∈ Ψ′(s′) (3.4)

and, by (3.3), (e,Ψ′(y)) ∈ Φ(l); see Figure 3.8. Therefore,
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..

Figure 3.8: The semantic implication of Figure 3.7.

e ∈
⋃

(l,s′,t′)∈X

Ψ′(s′). (3.5)

We know that Ψ′(y) 6⊆ Ψ′(s′′).Φ(l) for each (l, s′′, t′′) ∈ Y since y 6∈ St(Y, d) and

the distinct spiders, spiders’ habitat and arrow conditions hold (see for exam-

ple Figure 3.7, where y lays outside
⋃

(l,s,t)∈Y
{t}). Therefore e 6∈ Ψ′(s′′) for each

(l, s′′, t′′) ∈ Y , since nothing in the source of an arrow in Y is related to y. Hence,

e 6∈
⋃

(l,s′′,t′′)∈Y

Ψ(s′′). (3.6)

By (3.5) and (3.6),

e ∈
⋃

(l,s′,t′)∈X

Ψ′(s′)−
⋃

(l,s′′,t′′)∈Y

Ψ(s′′).

However, by lemma 3.1.1,⋃
(l,s′,t′)∈X

Ψ′(s′)−
⋃

(l,s′′,t′′)∈Y

Ψ(s′′) = ∅,

reaching a contradiction and showing that, if d is inconsistent then d is unsatis-

fiable.

In the next section we show the reverse of the above result, i.e. that satisfiable

diagrams are consistent.
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3.1.2 Standard interpretations

The standard interpretation of a unitary α-diagram d is one in which the universe

is given as the set of spiders of d and Ψ and Φ are ‘natural’ mappings to the uni-

verse and to relations on its elements, analogous to canonical models in classical

logic [2]; in [43] this approach gives rise to a model for any satisfiable α-diagram.

Due to the inclusion of arrows sourced on contours in our system we can only,

in general, construct such a model for the class of γ-diagrams. Indeed, it can be

shown that, in general, using S(d) as the universal set of an interpretation, when

attempting to construct a model for a unitary α-diagram, d, S(d) may not have

sufficiently large cardinality even though d may be satisfiable. We will illustrate

the issues that arise via examples.

.A

d2

B

C

.
f

.A

d1

B

C

.
f

.
..

Figure 3.9: Constructing a model with too few source spiders.

In Figure 3.9, d1, which is a γ-diagram, has sufficient spiders in the source of

the only arrow and we can construct a model (U,Ψ,Φ) for d1 as follows.

1. U = S(d1),

2. Ψ(A) = S(A, d1),

3. Ψ(B) = S(B, d1),

4. Ψ(C) = S(C, d1),

5. Ψ(c) = ∅ for all other contour labels c ∈ GC.

6. Φ(f) = {(x, t1), (x, t2)}, where x ∈ S(A, d1), t1, t2 ∈ S(B, d1) and t1 6= t2,

7. Φ(l) = ∅ for all other arrow labels l ∈ AL.
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It is clear that this is a minimal model for d1 since no interpretation based on a

smaller universe would suffice (we require |U | to be at least |S(d)|). The approach

runs into complications when we consider diagrams such as d2, Figure 3.9. In this

diagram, there are too few spiders in the source of the arrow (f, A,B) to satisfy

the relation represented by f when its domain is restricted to the set represented

by A. Since A contains an unshaded zone, d2 is satisfiable, but in an interpretation

for d2 which uses the set of spiders as the universe, the spiders’ habitat and arrows

conditions cannot be true at the same time. In the metatheory, it is extremely

helpful to be able to produce a minimal model for any diagram. Creating a

procedure to do so is not straightforward when the set of spiders is too small

to serve as the universe. We therefore make use of γ-diagrams. This constraint

ensures that no contour is ‘lacking spiders’ for any arrow, i.e. no arrow has

too few source spiders, ruling out the situation in Figure 3.9, diagram d2. γ-

diagrams allow us to define a standard interpretation in which the universe is the

set of spiders of the diagram and Ψ maps contours, regions and zones to subsets

of the set of spiders. This is because if we have an arrow, say (l, s, t), where t

contains spiders, it is necessary that s contains spiders; informally, the arrow tells

us s.l = t 6= ∅. More complicated situations can arise that force the existence

of elements in zones that do not contain spiders. Thus, in defining γ-diagrams

we extend the definition of β-diagrams, in which each zone is either shaded or

contains a spider.

When constructing the mapping, Φ, for arrow labels, it may be tempting to

map every spider in the source set of an arrow to its set of target spiders, but

Figure 3.10 illustrates the need to restrict the elements in the domain and image

of the mapping. In d1 the arrow (f, A,B) requires that, when constructing a

model, every element of Ψ(B) is included in Ψ(A).Φ(f). Naively mapping every

element of A to every element of B would produce a diagram which included

the relationships as depicted by the arrows depicted in d2, and such a mapping

cannot arise in an interpretation that satisfies d1.

Definition 3.1.5. Let d ( 6= ⊥) be a generalized γ-diagram. Let m = (U,Ψ,Φ)

be an interpretation defined as follows.

1. U = S(d),
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Figure 3.10: Restricting the mapping for arrow labels.

2. For all contours c in GC,

Ψ(c) =

S(c, d) if c ∈ C(d) ,

∅ otherwise.

3. For all labels l ∈ AL,

Φ(l) = (S(d)× S(d))− {(x, y) : ∃(l, s, t) ∈ A(d)

(x ∈ S(s, d) ∧ y 6∈ S(t, d))}.

Define m as the standard interpretation for d.

The definition of Φ gives a ‘greedy’ mapping, in that it will relate all universal

elements whenever doing so does not give rise to a contradiction.

Definition 3.1.6. Let d (6= ⊥) be a generalized γ-diagram and let m = (U,Ψ,Φ)

be the standard interpretation for d. To form the standard extension for the

spiders and derived contours of d we extend Ψ to Ψ′ where

Ψ′ : GC ∪ DC ∪ S → PU,

where for each spider x, Ψ′(x) = {x} if x ∈ S(d), and Ψ′(x) = ∅ otherwise.

Furthermore, for each derived contour dc in DC (d),

Ψ′(dc) = S(dc, d).

We now establish that the mapping of zones to sets of spiders behaves as we
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expect: Ψ′(z) = S(z, d).

Lemma 3.1.2. Let d ( 6= ⊥) be a generalized unitary γ-diagram, let (U,Ψ,Φ)

be the standard interpretation for d and let Ψ′ be the standard extension for d.

Then, for all zones z ∈ Z(d),

Ψ′(z) = S(z, d).

Proof. Let (in, out) be a zone in Z(d). In the definition of Ψ′ we have

Ψ′(in, out) =
⋂
c∈in

Ψ′(c) ∩
⋂
c∈out

(U −Ψ′(c)). (3.7)

Since m is the standard extension, for each of the contours c ∈ in we have,

by definition,

Ψ′(c) = S(c, d). (3.8)

We can rewrite (3.7) using (3.8) as follows:

Ψ′(in, out) =
⋂
c∈in

S(c, d) ∩
⋂
c∈out

(U − S(c, d)). (3.9)

Since U = S(d), this becomes

Ψ′(in, out) =
⋂
c∈in

S(c, d) ∩
⋂
c∈out

(S(d)− S(c, d)).

Let x be a spider in S((in, out), d). Then, for each c ∈ in, x ∈ S(c, d) since,

by the definition of S(c, d), we have

S(c, d) = {x′ ∈ S(d) : c ∈ in where ηd(d) = (in, out)}.

So,

x ∈
⋂
c∈in

S(c, d).

Similarly, for any c ∈ out , x 6∈ S(c, d) and, therefore, x ∈ S(d)− S(c, d). Thus,

x ∈
⋂
c∈out

(S(d)− S(c, d)).
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By 3.9 we have

x ∈
⋂
c∈in

S(c, d) ∩
⋂
c∈out

(S(d)− S(c, d)) = Ψ′(in, out).

Therefore each spider in S((in, out), d) is also in Ψ′(in, out) and we have

S((in, out), d) ⊆ Ψ′(in, out).

The proof that Ψ′(in, out) ⊆ S((in, out), d) is similar. Hence, for all zones, z, in

Z(d), Ψ′(z) = S(z, d).

We are now ready to show that the standard interpretation for a γ-diagram

d is indeed a model for d.

Theorem 3.1.2: Let d ( 6= ⊥) be a generalized unitary γ-diagram that is con-

sistent and let m = (U,Ψ,Φ) be the standard interpretation for d. Then m is a

model for d and the standard extension for d, m′ = (U,Ψ′,Φ), is valid.

Proof. We show that m satisfies d by considering the semantic formula given m′.

The plane tiling condition states that Ψ′(Z) = U . With regards to m′, we know

that U = S(d) and, by lemma 3.1.2, for all zones z in Z(d),

Ψ′(z) = S(z, d).

Therefore, since each spider is in some zone of d,

Ψ′(Z(d)) =
⋃

z∈Z(d)

S(z, d) = S(d) = U.

The shaded zones condition holds by a similar argument. The spiders’ habitat

and distinctness conditions are trivially true, as can be seen from the definition

of U and Ψ′. We next show that the arrows condition in m holds for d. Let

(l, s, t) be an arrow in A(d). We wish to show that Ψ′(s).Φ(l) = Ψ′(t), which by

the definition of m′ is equivalent to S(s, d).Φ(l) = S(t, d). We do this by showing

that

(1) S(s, d).Φ(l) ⊆ S(t, d),
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(2) S(t, d) ⊆ S(s).Φ(l, d).

We begin by showing (1) is true. Choose a spider, y, in S(s, d).Φ(l). Then

there exists a spider, x, in S(s, d) and (x, y) ∈ Φ(l). Suppose y 6∈ S(t, d). But

the arrow we are considering, (l, s, t), has x ∈ S(s, d) and y 6∈ S(t, d). By the

definition of Φ, the standard interpretation would not relate x and y under l, that

is (x, y) 6∈ Φ(l), reaching a contradiction and showing that y ∈ S(t, d) and hence

S(s, d).Φ(l) ⊆ S(t, d).

We now show (2) is true. Let y ∈ S(t, d). We will show that there exists an x

such that (x, y) ∈ Φ(l) and x ∈ S(s, d). Let X1 = {(l, s, t)} and Y1 = ∅. We know

that there are spiders in St(X1, d) − St(Y1, d) (i.e y ∈ St(X1, d) − St(Y1, d)) so,

since d is consistent, we know that Ss(X1, d)− Ss(Y1, d) is not empty, and hence

S(s, d) 6= ∅. Suppose no x in S(s, d) is related to y. That is, for all x′ ∈ S(s, d),

(x′, y) 6∈ Φ(l). Then, by the definition of Φ(l), for each x′ ∈ S(s, d) there is an

arrow whose source includes x′ but whose target does not include y:

∀x′ ∈ S(s, d)∃ (l, ŝ, t̂) (x′ ∈ S(ŝ, d) ∧ y 6∈ S(t̂, d)). (3.10)

Define X2 = {(l, s, t)} and Y2 to be the set of arrows (l, ŝ, t̂) where there is

some x′ ∈ S(s, d), for which x′ ∈ S(ŝ, d) and y 6∈ S(t̂, d) (that is, arrows as

in (3.10)). Then

y ∈ St(X2, d)− St(Y2, d),

but

Ss(X2, d)− Ss(Y2, d) = ∅.

Thus, d is inconsistent, but this is a contradiction since we know d is consistent

by assertion. Therefore, there exists x ∈ S(s, d) where (x, y) ∈ Φ(l). Hence,

S(t, d) ⊆ S(s, d).Φ(l). It follows that Ψ(s).Φ(l) = Ψ(t), the arrows condition

holds for d and the semantic formula, form(d), is true. Hence, m is a model for

d and the standard extension is valid.
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3.1.3 A decision procedure for the satisfiability of unitary

γ-diagrams

We are now able to show that a unitary γ-diagram is satisfiable if and only if it

is consistent, thus providing a decision procedure for the satisfiability of unitary

γ-diagrams.

Theorem 3.1.3: Let d (6= ⊥) be a generalized unitary γ-diagram. The diagram

d is satisfiable if and only if d is consistent. Furthermore, the unitary γ fragment

is decidable.

Proof. Since d is a γ-diagram, it is also an α-diagram. Therefore, by theo-

rem 3.1.1, if d is inconsistent then d is unsatisfiable.

By lemma 3.1.2, if d is not inconsistent then d is satisfiable via the standard

interpretation.

Since d contains finitely many spiders, contours and arrows, we can determine

the satisfiability of d by checking whether target inconsistency arises for any pair

of arrows, and whether source inconsistency arises for any arrow sourced on a

contour. Hence, the unitary γ fragment is decidable.

We are now required to show that we can use the class of γ-diagrams as

a reduction class for the unitary existential fragment. That is, we must show

that any diagram from the unitary existential fragment is equivalent to some

set of γ-diagrams, thus enabling us to use the above decision procedure with

any unitary diagram. To do so, we will define a series of inference rules. To

facilitate elegant definitions of inference rules for unitary and, later, non-unitary

generalized diagrams, we will base the definitions on transformations.

3.2 Transformations

Transformations are syntactic operations which represent the addition or removal

of a piece of syntax. For example, we can remove the curve B from d1 in Fig-

ure 3.11, transforming it into d2; this remove curve transformation will be for-

malised below.

The transformations defined will be applicable under specified syntactic con-

ditions, which are not related to sound reasoning, but are intended to merely
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.
A

d1 d2

.
B

l

.
A

.
l

Figure 3.11: Purely syntactic transformations.

constrain the transformation to ensure the result of its application is a diagram.

The benefit of making transformations which are purely syntactic and unrelated

to reasoning is that this facilitates their use in a wide number of (reasoning) con-

texts. We discuss the benefits of the transformations approach at more length in

section 5.1.

Figure 3.12 shows an invalid application of a transformation which removes a

spider, which erases a spider that is the source of an arrow. The invalid trans-

formation results in the collection of lines and curves labelled d2, which is not a

generalized unitary diagram since it includes an arrow with no source.

..
A

r

.
A

r

d1 d2

Figure 3.12: An invalid transformation.

Any conditions on the removal or addition of syntax which relate to reasoning,

such as that the habitat of a spider to be removed must be unshaded, are intro-

duced by associated inference rules. In general, inference rules combine the use

of one or more transformations with an additional set of pre and post conditions.

In order to maximise the usefulness of the transformations at the reasoning stage,

we aim for transformations defined in a general way and with minimal precondi-

tions. If a transformation T can be applied to a diagram d1 to give d2, we write
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d1
T−→ d2.

Transformations may rely on each other, in that a transformation T may

be applicable only after other transformations have been applied. For instance,

an arrow can always be removed from a diagram to give a second, well-formed

diagram, but a spider may only be removed if it is not the source or target of an

arrow. Removing a spider may therefore require the removal of arrows sourced

on, or targeting it. We introduce the transformations with weakest preconditions

first and simplify some transformations by adding preconditions which can be

satisfied by the application of other transformations.

3.2.1 Transformations that remove syntax

Transformation 1: Remove arrow. We can transform a diagram by removing

an arrow, including arrows which touch derived contours. In Figure 3.13, the

arrow, a, labelled r is removed from d1 to give d2.

.
A

d1 d2

r .
A

Figure 3.13: Transforming a diagram by removing an arrow.

Formal description. Let d1 be a generalized unitary diagram such that there

exists an arrow a ∈ A(d1). The diagram d2 can be obtained from d1 by removing

a, denoted d1
−a−→ d2, where

d2 = (Z(d1), Z
∗(d1), S(d1), ηd1 , τd1 , A(d1)− {a}).

Transformation 2: Remove shading. We can transform a diagram by re-

moving the shading from a zone, without any preconditions. In Figure 3.14, the

shading is removed from the zone ({B}, {A}) in d1 to give d2.

Formal description. Let d1 be a generalized unitary diagram and let z be a

zone such that z ∈ Z∗(d1). The diagram d2 can be obtained from d1 by using



3.2 TRANSFORMATIONS 73

A

d1 d2

A
B B

Figure 3.14: Transforming a diagram by removing shading from a zone.

the remove shading transformation to remove the shading from z, denoted

d1
−z∗−−→ d2, where

d2 = (Z(d1), Z
∗(d1)− {z∗}, S(d1), ηd1 , τd1 , A(d1)).

Transformation 3: Remove spider. We can transform diagrams by removing

a spider as long as the spider is not the source or target of an arrow. In Figure 3.15

the spider labelled x is removed from d1 to give d2. When removing a spider, x,

from a diagram, d, we need to ensure that the equality relation τd is updated to

remove pairs which include x.

d1 d2

. .
r

.
r

x

Figure 3.15: Transforming a diagram by removing a spider.

Formal description. Let d1 be a generalized unitary diagram such that there

exists a spider x ∈ S(d1) which is not the source or target of any arrow. The

diagram d2 can be obtained from d1 by using the remove spider transformation

to remove x, denoted d1
−x−→ d2, where

d2 = (Z(d1), Z
∗(d1), S(d1)− {x}, ηd1|S(d1)−{x}, τd2 , A(d1)),
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and

τd2 = {(x′, y′) ∈ τd1 : x′ 6= x ∧ y′ 6= x}.

When removing ties between spiders in unitary diagrams, we make changes

to the equality relation, τ , of the diagram. In order to do this, we define notation

used to denote the equivalence class of each spider under τ .

Definition 3.2.1. Let d be a generalized unitary diagram and let x ∈ S(d). We

define the equivalence class of x under τd, denoted [x]d, as follows:

[x]d = {y : (x, y) ∈ τd}.

Transformation 4: Remove ties. We can transform diagrams by removing a

tie between two spiders. In Figure 3.16, the tie between the spiders labelled x

and y in diagram d1 is removed to obtain d2. If x and y are tied, as in d1, x and

y are members of the same equivalence class under τ . Removing the tie has the

effect that x is no longer related to any member of [y]d1 except itself. For this

reason, the transformation is called remove ties, rather than remove tie.

d1 d2

A A.x. .y . . .y
.z

x

.z

Figure 3.16: Transforming a diagram by removing a tie.

Formal description. Let d1 be a generalized unitary diagram such that there

exist two distinct spiders x, y ∈ S(d1) where τd(x, y). The diagram d2 can be

obtained from d1 by the remove ties transformation, denoted d1
−=(x,y)−−−−→ d2,

where

d2 = (Z(d1), Z
∗(d1), S(d1), ηd1 , τd2 , A(d1)),

and

τd2 = τd1 − {(x, y′), (y′, x) : y′ ∈ [y]d1 − {x}}.
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Removing the tie between two spiders, x and y, in a unitary diagram d can

be thought of in terms of the equivalence classes under τ in d. The operation has

the effect of splitting the class [x]d = [y]d into two, [y]d − {x} and {x}. We are

required to prove that the resulting relation is an equivalence relation.

Lemma 3.2.1. Let d1 be a generalized unitary γ-diagram which has distinct

spiders x and y, joined by a tie. Let d2 be the diagram obtained by using the

remove ties transformation to remove the tie between x and y. Then τd2 is an

equivalence relation.

Proof. We know that τd1 is an equivalence relation since d1 is a generalized unitary

diagram. The relation τd2 is formed as follows:

τd2 = τd1 − {(x, y′), (y′, x) : y′ ∈ [y]d1 − {x}}.

We know that (x, x) is in τd1 . Since the pairs removed from τd1 all have an

element in [y]d1 − {x}, (x, x) is in τd2 . For all y′ ∈ [y]d1 , the pair (y′, y′) is not

removed, and so τd2 is reflexive. We will next show that τd2 is symmetric. Let

x′, y′ ∈ S(d2) − {x}. If τd2(x
′, y′) then we know that τd1(x

′, y′) since τd2 ⊆ τd1 .

Then τd1(y
′, x′) since τd1 is symmetric. Since x′ 6= x and y′ 6= x it follows that

(y′, x′) 6∈ {(x, y′), (y′, x) : y′ ∈ [y]d1 − {x}}. (3.11)

Thus, we have τd2(y
′, x′) as required. Since τd2 is reflexive, (x, x) ∈ τd2 and

symmetry is trivially true in this case. Thus τd2 is symmetric. To show transitiv-

ity, assume we have x′, y′, z′ ∈ S(d1)− [x]d1 where (x′, y′) ∈ τd1 and (y′, z′) ∈ τd1 .
Then we know that (x′, z′) ∈ τd1 . We need to show that (x′, z′) ∈ τd2 . As the

pairs removed from τd1 all have an element in [y]d1−{x} and [x]d1 = [y]d1 , no pair

with an element from x′, y′ or z′ is removed from τd1 to form τd2 . It follows that

if the three elements were related in the way described in τd1 then the following

is true:

1. (x′, y′) ∈ τd2 ,

2. (y′, z′) ∈ τd2 , and

3. (x′, z′) ∈ τd2 .
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Suppose we have x′′,y′′ and z′′ in [y]d1−{x}. By (3.11), only pairs containing x

as an element are removed from τd1 , so (x′′, y′′), (y′′, z′′) and (x′′, z′′) are elements

of τd2 . Thus τd2 is transitive, and is an equivalence relation as required.

Transformation 5: Remove zone. We can transform a diagram by removing

any zone which is not the habitat of any spider and so long as the resulting

diagram contains the zone outside all others. In Figure 3.17 the zone ({A,B}, ∅)
is removed from d1 to give d2.

d1 d2

A B A B

Figure 3.17: Transforming a diagram by removing a zone.

Formal description. Let d1 be a generalized unitary diagram such that there

exists a zone z in Z(d1) which is not the habitat of any spider and is not the

zone outside all others, i.e. S(z, d) = ∅ and z 6= (∅, C(d1)). Then the diagram d2

can be obtained from d1 by using the remove zone transformation to remove z,

denoted d1
−z−→ d2, where d2 satisfies the following:

d2 = (Z(d1)− {z}, Z∗(d1)− {z}, S(d1), ηd1 , τd1 , A(d1)).

Before defining the transformation which removes a contour from a diagram,

we define three sets of zones formed from the zones of Z(d): those which were

split by, inside and outside c.

Definition 3.2.2. Let d be a generalized unitary diagram and let c ∈ C(d). We

define three sets of zones formed by removing c from the zones of Z(d) as follows.

1. Zs(c, d) is formed of the zones which were split by c:

{(in, out) : (in ∪ {c}, out) ∈ Z(d) ∧ (in, out ∪ {c}) ∈ Z(d)},
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2. Zi(c, d) is formed of the zones which were inside c:

{(in, out) : (in ∪ {c}, out) ∈ Z(d) ∧ (in, out ∪ {c}) ∈ MZ (d)},

3. Zo(c, d) is formed of the zones which were outside c:

{(in, out) : (in ∪ {c} ∈ MZ (d) ∧ (in, out ∪ {c}) ∈ Z(d)}.

We define Z∗s (c, d), Z∗i (c, d) and Z∗o (c, d) similarly.

1. Z∗s (c, d) is formed of the zones which were inside fully shaded regions in d1

which were split by c:

{(in, out) : (in ∪ {c}, out) ∈ Z∗(d) ∧ (in, out ∪ {c}) ∈ Z∗(d)},

2. Z∗i (c, d) is formed of the zones which were shaded in d and inside c:

{(in, out) : (in ∪ {c}, out) ∈ Z∗(d) ∩ Zi(c, d)}

3. Z∗o (c, d) is formed of the zones which were shaded in d and outside c:

{(in, out) : (in, out ∪ {c}) ∈ Z∗(d1) ∩ Zo(c, d)}.

Transformation 6: Remove contour. We can transform diagrams by remov-

ing contours so long as the contour is not touched by any arrow. In Figure 3.18

the contour labelled B is removed from d1 to give d2.

d1 d2

A

B
C.

A

C.

Figure 3.18: Transforming a diagram by removing a contour.

This transformation handles partial shading in the same way as the corre-

sponding reasoning rules from notations such as Euler diagrams [44]. In diagram

d1 in Figure 3.18, the region inside the contour labelled A is partially shaded.
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In the Euler diagram system, removing the contour B requires us to make the

new region inside A entirely unshaded in order for the rule to be sound. The

transformation is defined to work in the same way, since we intend to use it to

make definitions of sound reasoning rules.

Formal description. Let d1 be a generalized unitary diagram and let c be a

contour such that c ∈ C(d1) and A(c, d1) = ∅. The diagram d2 can be obtained

from d1 by using the remove contour transformation to remove c, denoted

d1
−c−→ d2, where d2 satisfies

1. Z(d2) = {(in − {c}, out − {c}) : (in, out) ∈ Z(d1)},

2. Z∗(d2) is the union of the sets of zones Z∗s (c, d1), Z
∗
i (c, d1) and Z∗o (c, d1),

3. S(d2) = S(d2),

4. ∀s ∈ S(d2) ηd2(s) = (in− {c}, out− {c}), where (in, out) = ηd1(s),

5. τd2 = τd1 ,

6. A(d2) = A(d1).

3.2.2 Transformations that add items of syntax

Transformation 7: Add arrow. Arrows can be added to a diagram in four

ways, corresponding to the combinations of spiders and contours as source and

target. We define a single add arrow transformation which can be used in any

of the four ways. Figure 3.19 shows the addition of an arrow labelled r to the

diagram d1 to give d2. The arrow is sourced on the contour labelled A and targets

the spider whose habitat is (∅, {A}).

d1 d2

A . A .
r

Figure 3.19: Transforming a diagram by adding an arrow.
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Formal description. Let d1 be a generalized unitary diagram and let (l, s, t)

be an arrow such that s, t ∈ S(d) ∪ C(d). The diagram d2 can be obtained by

applying the add arrow transformation to add the arrow a = (l, s, t) to d1,

denoted d1
+a−→ d2, where

d2 = (Z(d1), Z
∗(d1), S(d1), ηd1 , τd1 , A(d1) ∪ {(l, s, t)}).

Transformation 8: Add spider. We can transform a diagram by placing a

new spider in a zone. Figure 3.20 shows the addition of a spider x, placed in the

zone (∅, {A,B}) to transform d1 to d2.

d1 d2

A .
B

A

B
x

Figure 3.20: Transforming a diagram by adding an spider to a zone.

Formal description. Let d1 be a generalized unitary diagram such that there

exists a zone z ∈ Z(d1) and a spider x 6∈ S(d1). The diagram d2 can be obtained

by applying the add spider transformation to d1, denoted d1
+(x,z)−−−→ d2, where

d2 = (Z(d1), Z
∗(d1), S(d1) ∪ {x}, ηd1 ∪ {(x, z)}, τd1 ∪ {(x, x)}, A(d1)).

Transformation 9: Add ties. We can transform a diagram by adding a tie be-

tween two spiders. In Figure 3.21, diagram d2 shows the result of transforming d1

by the addition of a tie between the spiders labelled x and y. The transformation

is defined to preserve the properties of the equality relation, so that in d2 not

only are x and y related under τd2 but all members of the respective equivalence

classes are related in such a way that transitivity and symmetry are preserved;

reflexivity is maintained trivially. The add ties transformation has the effect of

combining two equivalence classes of τd1 .

Formal description. Let d1 be a generalized unitary diagram and let x, y ∈ S(d)
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d1 d2

A A.x. .y . . .y
.z .z.w

x

.w

Figure 3.21: Transforming a diagram by adding a tie between two spiders.

such that (x, y) 6∈ τd1 . The diagram d2 can be obtained by applying the add ties

transformation to d1, denoted d1
+=(x,y)−−−−→ d2, where

d2 = (Z(d1), Z
∗(d1), S(d1), ηd1 , τd2 , A(d1)),

and τd2 is the symmetric, transitive closure of τd1 ∪ {(x, y)}.

Lemma 3.2.2. Let d1 be a generalized unitary γ-diagram which contains spiders,

x and y, such that (x, y) 6∈ τd1 . Let d2 be the diagram obtained by using the add

ties transformation to add a tie between x and y. Then τd2 is an equivalence

relation.

Proof. By the definition of the transformation, τd2 is the symmetric, transitive

closure of τd1 ∪ {(x, y)}. Thus, we have

τd2 = τd1 ∪
⋃

x′∈[x]d1

{(x′, y′), (y′, x′) : y′ ∈ [y]d1}. (3.12)

For each x′ ∈ S(d2), we know that x′ ∈ S(d1) and (x′, x′) ∈ τd1 . Therefore,

(x′, x′) ∈ τd2 and τd2 is reflexive. We know that τd1 is symmetric. By (3.12) we

can clearly see that the set that forms τd2 − τd1 forms a symmetric relation, and

so τd2 is symmetric. For transitivity, let (x′, y′) and (y′, z′) be elements of τd2 .

We need to show that (x′, z′) ∈ τd2 . If (x′, y′) and (y′, z′) are elements of τd1 then

we are finished, since τd1 is transitive. Assume (x′, y′) 6∈ τd1 and (y′, z′) ∈ τd1 .

Then either x′ ∈ [x]d1 and y′ ∈ [y]d1 or vice versa. Assume that x′ ∈ [x]d1 and

y′ ∈ [y]d1 . We know that z′ ∈ [y]d1 since (y′, z′) ∈ τd1 and, by (3.12), (x′, z′) ∈ τd2 .
The other cases are similar. Thus, τd2 is transitive and is an equivalence relation

as required.
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Transformation 10: Add shading. We can transform a diagram by adding

shading to a zone. In Figure 3.22, shading is added to the zone ({A,C}, {B}) in

d1 to give d2.

d1 d2

A B

C

A B

C

Figure 3.22: Transforming a diagram by adding shading to a zone.

Formal description. Let d1 be a generalized unitary diagram and z ∈ Z(d1)−
Z∗(d1). Then the diagram d2 can be obtained by applying the add shading

transformation to d1, denoted d1
+z∗−−→ d2, where

d2 = (Z(d1), Z
∗(d1) ∪ {z}, S(d1), ηd1 , τd1 , A(d1)).

Transformation 11: Add zone. We can transform a diagram by adding a

missing zone. Figure 3.23 shows the addition of the missing zone ({A,B}, {C})
to d1 to give d2.

d1 d2

A B
f

A B
f

CC

Figure 3.23: Transforming a diagram by adding a zone.

Formal description. Let d1 be a generalized unitary diagram and z be a zone

such that z ∈ V Z(d1)−Z(d1). Then the diagram d2 can be obtained by applying

the add zone transformation to d1, denoted d1
+z−→ d2, where

d2 = (Z(d1) ∪ {z}, Z∗(d1), S(d1), ηd1 , τd1 , A(d1)).
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Transformation 12: Add contour. There are a number of ways of adding a

contour to a diagram in which other contours are present; the new contour can

be added in such a way that it is entirely outside of all existing contours, or is

entirely contained within one other contour, and so on. Previous systems have

added contours in such a way that they split every existing zone. This is arguably

an intuitive method and other arrangements of zones can be reached afterwards

by the use of other reasoning rules. We can achieve greater flexibility, however,

by parametrising the transformation of adding a contour to a diagram d1 with

two subsets of zones which we call Zin and Zout, where Zin∪Zout = Z(d1). Those

zones which will fall inside the new contour are in Zin, those outside in Zout

and those that will be split are in Zin ∩ Zout. Similarly, we require the user of

the transformation to specify two sets of spiders, Sin and Sout , which are those

spiders inside and outside of the new contour respectively, and where Sin and

Sout partition the set of spiders of the diagram. An appropriate choice of Zin

and Zout allows the user to add contours in any of the possible ways. The case

of adding a contour to a diagram d which splits every zone in d1, for instance, is

that of choosing Zin = Zout = Z(d). Figure 3.24 shows an example of adding a

contour with Zin = {(∅, {A,B})} and Zout = Z(d1) − Zin, and with Sin = {x}
and Sout = S(d1)− {x}.

d

+c

A

r B

C

. .A

r B

. .

1 d2

x x

Figure 3.24: Transforming a diagram by adding a contour.

Formal description. Let d1 be a unitary diagram and let c be a contour that

is not in d1. Let Zin and Zout be subsets of Z(d1) such that Zin ∪ Zout = Z(d1).

Let Sin and Sout be a two-way partition of S(d1) such that

1. for all x in Sin, ηd1(x) ∈ Zin and

2. for all y in Sout, ηd1(y) ∈ Zout.
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Let d2 be a unitary diagram where

1. C(d2) = C(d1) ∪ {c},

2. Z(d2) = in ∪ out ∪ split , where

(a) in = {(a ∪ {c}, b) : (a, b) ∈ Zin − Zout},

(b) out = {(a, b ∪ {c}) : (a, b) ∈ Zout − Zin},

(c) split = {(a ∪ {c}, b), (a, b ∪ {c}) : (a, b) ∈ Zin ∩ Zout},

3. Z∗(d2) = in∗ ∪ out∗ ∪ split∗, where

(a) in∗ = {(a ∪ {c}, b) : (a, b) ∈ (Zin − Zout) ∩ Z∗(d1)},

(b) out∗ = {(a, b ∪ {c}) : (a, b) ∈ (Zout − Zin) ∩ Z∗(d1)},

(c) split∗ = {(a ∪ {c}, b), (a, b ∪ {c}) : (a, b) ∈ (Zin ∩ Zout) ∩ Z∗(d1)},

4. S(d2) = S(d1),

5. for each x ∈ S(d2), where ηd1(x) = z,

(a) x ∈ Sin ⇒ ηd2(x) = (in(z) ∪ {c}, out(z)),

(b) x ∈ Sout ⇒ ηd2(x) = (in(z), out(z) ∪ {c}),

6. τd2 = τd1 ,

7. A(d2) = A(d1).

Then d1 can be transformed into d2 by using the add contour transformation

to add c, given a choice of Zin, Zout, Sin and Sout, denoted d1
+P−−→ d2, where

P = (c, Zin, Zout, Sin, Sout).

3.2.3 Completeness of the unitary transformations

We now show that we have a complete set of unitary transformations, in the sense

that any generalized unitary diagram can be transformed into any other. We show

this by describing a naive method in which, to transform a unitary diagram d1

into a second unitary diagram d2, we remove all syntax from d1 then add syntax

until d1 has all the same syntactic elements as d2. There will often be faster
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and more elegant ways to transform one unitary diagram into another, but this

method suffices to show the completeness of the set of unitary transformations.

Transforming the unitary diagrams relies on choosing the right order in which

to apply the transformations, depending on their preconditions of syntactic well-

formedness; for instance, before using the remove spider transformation to remove

a spider x which is the source of an arrow a in d′, we must first use the remove

arrow transformation to remove a from d1.

Theorem 3.2.1: Let d1 and d2 be generalized unitary constraint diagrams where

d1 6= ⊥ and d2 6= ⊥. Then there is a sequence of transformations which can be

used to transform d1 into d2.

Proof. Assume that A(d1) is not empty and that d1 has a set of arrows {a1 . . . an}.
We begin by applying the remove arrow transformation to remove a1 from d1,

obtaining diagram e1. We continue to remove the rest of the arrows, obtaining

diagram en. None of the spiders in en are arrow ends, and so its spiders can

now be removed by repeated use of the remove spider transformation, obtaining

diagram fm, where m is the number of spiders in d1.

We next remove the shading from each zone in fm, obtaining diagram go,

where o is the number of shaded zones in fm, and then remove the contours of go

in a similar way, obtaining diagram hp, where p is the number of contours in go.

The diagram hp is empty of syntax other than for the single zone (∅, ∅).
Next, we use the add contour transformation to add the contours in C(d2) to

hp. Recall that the add contour transformation is parametrised with two sets of

zones, Zin and Zout , which are the sets of zones of the original diagram which

will be inside and outside the new contour, and similarly with the sets of spiders

which are inside and outside the new contour, Sin and Sout . The diagram hp

contains no spiders, so Sin = Sout = ∅. We will add each contour so that it splits

every zone in the diagram to which it is added. Thus, to add the first contour,

say c1, we set Zin = Zout = Z(hp) and add c1 to hp obtaining diagram i1. For

each subsequent contour, ci, we set Zin = Zout = Z(ii−1). We follow this process

to obtain diagram iq, where q is the number of contours in d2. Note that iq is a

Venn diagram.

Next we use the remove zone transformation to remove the zones in Z(iq) −
Z(d2), producing the unitary diagram j which has the same contours and zones
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as d2. Next, we use the add shading transformation to the zones Z∗(d2) in j,

producing the unitary diagram k. We continue in a similar manner using the

add spider, add spider with tie and add arrow transformations in that order to

produce a diagram, l, with the same contours, zones, shading, spiders, ties and

arrows as d2. Since d2 is finite, the process will terminate and thus the set of

unitary transformations is complete.

3.3 Extending the decision procedure to the uni-

tary fragment

Our goal is to use the decision procedure for γ-diagrams described in section 3.1.3

in larger fragments of the unitary GCD system. In this section we will show that

we can do this by converting a unitary diagram, d, to a set of unitary γ-diagrams,

Γ, and that d is satisfiable if and only if one or more element of Γ is satisfiable.

The first step in the process is to remove spiders from d until d contains no spiders

which are joined by ties. This is necessary because γ-diagrams are defined so that

they contain no ties (other than the ties from each spider to itself, which are not

depicted in diagrams). This restriction in the definition of γ-diagrams is made for

convenience. In Figure 3.25, we can remove spiders from d1 until no ties between

spiders are left, obtaining d2. This has the effect of reducing the cardinality of

each equivalence class of τd1 to one. We say that d2 is in singleton-τ form, and

is an associated singleton-τ form of d1. Because ties between spiders represent

equality, it is easy to see that d1 has an equivalent meaning to d2.

A
B

f

..
. g

d3

A
B

f

..
. g

d2

A
B

f

..
. g

d1

.. .

.
x

y

Figure 3.25: Removing spiders to obtain singleton-τ form.
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Definition 3.3.1. Let d be a generalized unitary α-diagram. If τd = {(x, x) :

x ∈ S(d)}, we say that d is in singleton-τ form.

In Figure 3.25, diagram d3, two spiders with different habitats are joined by

a tie. This diagram is inconsistent. For the spiders distinctness condition to be

true, the spiders labelled x and y must represent the same element. However,

for the spiders’ habitat condition to be true, x and y must represent distinct

elements. We will show in section 3.3.3 that such diagrams are unsatisfiable.

After converting a unitary diagram, d1, to an equivalent diagram, d2, in

singleton-τ form, the next step is to transform d2 to an equivalent diagram, d3,

in which all arrows are sourced on contours; we say that d3 is in contour-source

form.

Definition 3.3.2. Let d be a generalized unitary α-diagram. If each arrow

(l, s, t) ∈ A(d) is sourced on a contour, that is s ∈ C(d), we say that d is in

contour-source form.

To reiterate, our goal in making this series of transformations is to produce

a set of γ-diagrams. We transform diagrams in singleton-τ form to contour-

source form rather to sets of β-diagrams because it is not possible, in general, to

convert a β-diagram, d, to a γ-diagram, d′, in one step. This is because replacing

the arrows sourced on spiders in d may result in zones which are unshaded and

contain no spiders. In Figure 3.26, d1 is a β-diagram in singleton-τ form in which

an arrow is sourced on a spider. Diagram d2 is a copy of d1 in which the arrow

sourced on the spider x has been replaced by an arrow sourced on a fully shaded

derived contour that contains only x. However, d2 is not a β-diagram, and thus

not a γ-diagram, since the zone outside all contours is unshaded and contains no

spiders.

To achieve the transformation to singleton-τ and contour-source forms, we

formulate a series of sound inference rules. When used in sequence, these rules

allow us to remove spiders until there are no ties remaining in a diagram, and

to replace each arrow sourced on a spider, x, with an arrow sourced on a de-

rived contour which contains just x. In section 3.3.1 we define the rules, and in

section 3.3.2 we show them to be sound. In section 3.3.3 we show that every

α-diagram, d1, has an associated diagram, d2, where d2 is in singleton-τ form and

is semantically equivalent to d1. Furthermore, we show that every diagram, d3,
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Figure 3.26: β-diagrams and contour-source form.

in singleton-τ form, has an associated diagram in contour-source form, d4, where

d3 is semantically equivalent to d4, and we use these facts to extend the decision

procedure for γ-diagrams to the unitary existential fragment.

3.3.1 Inference rules

The first rule we require is one which removes a spider which is joined by a tie to

another in a unitary diagram. In Figure 3.27 we can remove the spider labelled y

from diagram d1 to obtain d2. Note that the arrow sourced on y in d1 is replaced

in d2 by an arrow with the same label and target and which is sourced on one

of the spiders equal to y. The rule is defined to replace all arrows sourced on or

targeting the spider to be removed. This rule can be used repeatedly to produce

a diagram in singleton-τ form.

d1 d2

.A . .x y

z

A . .x

z

.f .f

Figure 3.27: An application of remove equal spider.

Rule 1: Remove equal spider. Let d1 be a generalized unitary diagram and

let x and y be spiders in S(d1) which satisfy the following:

1. (x, y) ∈ τd1 ,
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2. ηd1(x) = ηd1(y), and

3. x 6= y.

Let d2 be the generalized unitary diagram which satisfies the following:

1. Z(d2) = Z(d1),

2. Z∗(d2) = Z∗(d1),

3. S(d2) = S(d1)− {x},

4. ηd2 = ηd1|S(d2), and

5. A(d2) = {f(l, s, t) : (l, s, t) ∈ A(d1)}, where f : A(d1)→ A(d2) is a bijection

defined as follows:

f(l, s, t) =



(l, s, t) if s 6= x ∧ t 6= x

(l, y, t) if s = x ∧ t 6= x

(l, s, y) if s 6= x ∧ t = x

(l, y, y) if s = x ∧ t = x.

Then d1 can be replaced by d2 and vice versa.

Next, we consider the process of ensuring that all arrows are sourced on con-

tours. To transform d1 in Figure 3.26 to d2, we need to transform the initial

diagram four times:

1. by adding a new derived contour containing just the spider x,

2. by shading the zone inside the new derived contour,

3. by adding an arrow sourced on the new contour and with the same label

and target as (g, x, y) and, finally,

4. by removing the arrow (g, x, y).

We combine the first two steps to define a rule which adds a fully shaded

contour, and we combine steps three and four to define a rule which replaces

arrows. Both rules are defined in the context of initial diagrams in singleton-τ

form.



3.3 EXTENDING TO THE UNITARY FRAGMENT 89

d1 d2

. .r . .r

Figure 3.28: An application of add contour over spider.

Rule 2: Add contour over spider. Let d1 be a generalized unitary diagram in

singleton-τ form and let x be a spider in S(d1). Let dc be a derived contour such

that dc 6∈ C(d1). Let d′1 be the diagram obtained by using transformation 12,

add contour, to add dc to d1: d1
+P−−→ d′1, where P = (Zin , Zout , Sin , Zout) satisfies

the following:

1. Zin = ηd1(x),

2. Zout = Z(d1),

3. Sin = {x},

4. Sout = S(d1)− {x}.

Let d2 be the diagram obtained by adding shading to the habitat of the spider x

in d′1: d
′
1

+(ηd′1
(x))∗

−−−−−−→ d2. Then d1 can be replaced by d2 and vice versa.

Next, we need a rule that replaces an arrow, (l, x, t), where the source, x,

is the only spider within a fully shaded contour, c, with the arrow (l, c, t). In

Figure 3.29 the spiders are given the labels x and y for convenience. In diagram

d1, x is the source of an arrow, (r, x, y). The spider x is the only spider inhabiting

a zone inside the contour A, and all zones inside A are shaded. This allows us to

infer that we can add an arrow sourced on A, with the same label and target as

(r, x, y), as shown in diagram d2.

Rule 3: Replace arrow. Let d1 be a generalized unitary diagram in singleton-τ

form and let (l, x, t) be an arrow in A(d1), where x is the only spider within a

fully shaded contour c. Let d′1 be the diagram obtained using transformation 7,
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Figure 3.29: An application of replace arrow.

add arrow, to add (l, c, t) to d1: d1
+(l,c,t)−−−−→ d′1. Let d2 be the diagram obtained by

removing (l, x, t) from d′1: d
′
1

−(l,x,t)−−−−→ d2. Then we can replace d1 with d2 and vice

versa.

3.3.2 Validity of the inference rules

We will show that the rules defined in the previous section are sound. Rule 1,

remove equal spider, is justified by the fact that ties represent equality.

Theorem 3.3.1: Rule 1, remove equal spider, is sound. Let d1 be a generalized

unitary diagram and let x and y be spiders in S(d1) which satisfy the following:

1. (x, y) ∈ τd1 ,

2. ηd1(x) = ηd1(y), and

3. x 6= y.

Let d2 be the diagram obtained by using the remove equal spider rule to

remove x from d1. Then d1 ≡� d2.

Proof. First we show that d1 � d2. Let I = (U,Ψ,Φ) be a model for d1 with

valid extension I ′ = (U,Ψ′,Φ). The plane tiling, shaded zones, spiders habitat

and distinctness conditions for d1 imply those for d2. For each arrow, (l, s, t), in

A(d1), then if s 6= x and t 6= x, (l, s, t) is in d2. Otherwise, if s = x or t = x or

s = t = x, then (l, s, t) is replaced in d2 by an arrow which is either sourced on y, or

targets y, or is sourced on and targets y respectively. By the spiders’ distinctness

condition for d1, Ψ′(x) = Ψ′(y), and so we can see that arrows condition is true

for d2 if it is true for d1, and d1 � d2. To show that d2 � d1, let I = (U,Ψ,Φ)
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be a model for d2 with valid extension I ′ = (U,Ψ′,Φ). Let I
′′

= (U,Ψ
′′
,Φ) be an

extension of I ′ such that Ψ
′′
(x) = Ψ′(y). Then it follows that I

′′
is valid for d2,

so d2 � d1 and d1 ≡� d2 as required.

Next, we show that rule 2, add contour over spider, is sound. Informally,

this rule is justified by the fact that we can add arbitrary derived contours to a

diagram.

Theorem 3.3.2: Rule 2, add contour over spider, is sound. Let d1 be a general-

ized unitary diagram in singleton-τ form and let x be a spider in S(d1). Let dc

be a derived contour such that dc 6∈ C(d1). Let d2 be the diagram obtained by

adding dc to d1 using the add contour over spider rule. Then d1 ≡� d2.

Proof. To show that d1 � d2, let (U,Ψ,Φ) be a model for d1, and let Ψ′1 be a valid

extension of Ψ for d1. Let Ψ′2 : GC ∪ DC ∪ S ∪ Z be an extension of Ψ′1 which

satisfies

1. Ψ′2(y) = Ψ′1(y) for each y ∈ S(d2),

2. Ψ′2(c) = Ψ′1(c) for each c ∈ C(d2)− {dc}, and

3. Ψ′2(dc) = Ψ′1(x).

We will show that Ψ′2 is a valid extension of (U,Ψ,Φ) for d2. We show that the

spiders habitat condition holds first. For each spider y ∈ S(d2) we need to show

that Ψ′2(y) ⊆ Ψ′2(ηd2(y)). We know that Ψ′2(y) = Ψ′1(y). Let (in, out) = ηd1(y).

Then we can deduce the following:

Ψ′2(y) ⊆ Ψ′1(in, out) (habitats condition for d1)

=
⋂
c∈in

Ψ′1(c) ∩
⋂
c∈out

(U −Ψ′1(c)) (definition of Ψ′1)

=
⋂
c∈in

Ψ′2(c) ∩
⋂
c∈out

(U −Ψ′2(c)) (definition of Ψ′2.) (3.13)

If y 6= x then ηd2(y) = (in, out ∪ {dc}) and by the spiders’ distinctness condition

for d1 we know

Ψ′1(y) ∩Ψ′1(x) = ∅.
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Since Ψ′1(y) = Ψ′2(y) and Ψ′1(x) = Ψ′2(x) = Ψ′2(dc) it follows that

Ψ′2(y) ∩Ψ′2(dc) = ∅.

Therefore, by (3.13),

Ψ′2(y) ⊆
⋂
c∈in

Ψ′2(c) ∩
⋂
c∈out

(U −Ψ′2(c)) ∩ (U −Ψ′2(dc))

⊆ Ψ′2(in, out ∪ {dc})

⊆ Ψ′2(ηd2(y)).

We now consider the case when y = x. Then ηd2(x) = (in ∪ {dc}, out). Since

Ψ′2(x) = Ψ′2(dc), it follows from (3.13) that

Ψ′2(x) ⊆
⋂
c∈in

Ψ′2(c) ∩
⋂
c∈out

Ψ′2(c) ∩Ψ′2(dc).

Therefore, Ψ′2(x) ⊆ Ψ′2(in ∪ {dc}, out). The spiders habitat condition therefore

holds for d2. We next show that the plane tiling condition holds, that is,⋃
z∈Z(d2)

Ψ′2(z) = U.

We know that, in d1, ⋃
z∈Z(d1)

Ψ′1(z) = U.

Let (a, b) be a zone in Z(d1); then there is a zone z = (a, b ∪ {dc}) in Z(d2).

Now,

Ψ′2(z) =
⋂
c∈a

Ψ′2(c) ∩
⋂

c∈b∪{dc}

(U −Ψ′2(c))

=
⋂
c∈a

Ψ′1(c) ∩
⋂
c∈b

(U −Ψ′1(c)) ∩ (U −Ψ′2(dc))

= Ψ′1(a, b) ∩ (U −Ψ′2(dc)). (3.14)

The zone ηd1(x) = (in, out) in Z(d1) is replaced in d2 by two zones, (in ∪
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{dc}, out) and (in, out ∪ {dc}). Let

Z2 = Z(d2)− {(in ∪ {dc}, out), (in, out ∪ {dc})}.

Then we know that⋃
z∈Z2

Ψ′2(z) =
⋃

z∈Z(d1)−{(in,out)}

(Ψ′1(z) ∩ (U −Ψ′2(dc))) (by (3.14))

=
⋃

z∈Z(d1)−{(in,out)}

Ψ′1(z) ∩ (U −Ψ′2(dc))

and therefore, by the plane tiling condition for d1,⋃
z∈Z2

Ψ′2(z) = (U −Ψ′1(in, out)) ∩ (U −Ψ′2(dc)). (3.15)

We know that Ψ′2(dc) = Ψ′1(x) ⊆ Ψ′1(in, out) by the habitat condition for d1,

and therefore Ψ′2(dc) ⊆ Ψ′1(in, out) and (3.15) becomes⋃
z∈Z2

Ψ′2(z) = U −Ψ′1(in, out).

By corollary 2.3.1,

Ψ′1(in, out) = Ψ′2(in ∪ {dc}, out) ∪Ψ′2(in, out ∪ {dc}).

Therefore, ⋃
z∈Z(d2)

Ψ′2(z) = U.

We can see that as the spiders’ distinctness and arrows conditions hold for d1

they will also hold for d2. Hence, d1 � d2.

To show the reverse, that d2 � d1, we need to reason in a similar way about

the habitat of the spiders and the zone sets of d1 and d2. We omit this part of

the proof as it readily extends from existing results such as the delete curve rule

in [26]. Hence, d1 ≡� d2.

The next rule, replace arrow, is justified by the fact that arrows sourced on

spiders are considered, semantically, to be sourced on singleton sets. Therefore if
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an arrow a is sourced on a spider which is the only spider within a fully shaded

contour c, we can add an arrow with the same label and target as a which is

sourced on c.

Theorem 3.3.3: Rule 3, replace arrow, is sound. Let d1 be a generalized unitary

diagram where there is an arrow (l, x, t) in A(d1), where x is the only spider

within a fully shaded contour c. Let d2 be the diagram obtained by using the

replace arrow rule to replace (l, x, t) by (l, c, t) in d1. Then d1 ≡� d2.

Proof. Let (U,Ψ,Φ) be a model for d1 and let Ψ′ be a valid extension for d1. We

show that Ψ′ is a valid extension for d2. Let d′1 be the diagram obtained using

transformation 7, add arrow, to add (l, c, t) to d1: d1
+(l,c,t)−−−−→ d′1. By the arrows

condition for d1,

Ψ′(x).Φ(l) = Ψ′(t). (3.16)

We know that c contains a single zone which is the habitat of the spider x.

By the shaded zones and spiders habitat condition for d1,

Ψ′(Z(c, d1)) = Ψ′(S(c, d1)) = Ψ′(x). (3.17)

By the definition of Ψ′ for zones, Ψ′(c) = Ψ′(Z(c, d1)) so (3.17) becomes Ψ′(c) =

Ψ′(x) and we can rewrite (3.16) as

Ψ′(c).Φ(l) = Ψ′(t).

Hence the arrows condition holds for d′1. The other conditions are not affected

by the addition of (l, c, t) and so d1 � d′1. Diagram d2 is the diagram obtained

by removing (l, x, t) from d′1. Since A(d2) ⊂ A(d′1), the arrows condition for d′1

implies that of d2. The other conditions are unaffected, so d′1 � d2 and hence

d1 � d2. We can show that d2 � d1 by a similar argument and so d1 ≡� d2 as

required.

3.3.3 Transforming α-diagrams to sets of γ-diagrams

We now show that we can use the inference rules defined and proved sound in

the preceding sections to transform an α-diagram into singleton-τ form, then

into contour-source form and, finally, into a set of γ-diagrams. First, we show
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that every unitary diagram, d, has an associated unitary diagram in which no

ties are present. We call this diagram an associated singleton-τ form of d. To

define associated singleton-τ forms we make use of the notion of equivalence class

representatives.

A

r B

..
A

r B

. . .

d2d1

.
.
.
.1
2

3 4
6

5 5

4

3

Figure 3.30: Equivalence class representatives of τ .

In Figure 3.30, spiders are numbered for convenience. Diagram d2 is an asso-

ciated singleton-τ form of diagram d1. In d1, the relation τd1 relates each spider

to itself and also, because of the ties present in d1, relates 1, 2 and 3 to each other,

and relates 5 and 6 to each other. The relation τd1 has the following equivalence

classes:

1. {1, 2, 3},

2. {4},

3. {5, 6}.

A set of class representatives of τd1 is formed by choosing one element from

each equivalence class; thus, {1, 4, 5} and {3, 4, 6} are sets of class representatives

of τd1 . In Figure 3.30, the set of spiders present in diagram d2 is a set of class

representatives of τd1 . Since spiders joined by ties are equal, semantically, it does

not matter which set of class representatives is used.

Definition 3.3.3. Let d1 be a generalized unitary α-diagram. Define an asso-

ciated singleton-τ form of d1 as the generalized unitary diagram, d2, which

satisfies the following:

1. Z(d1) = Z(d2),

2. Z∗(d1) = Z∗(d2),
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3. the set of spiders of d2 is a set of class representatives of τd1 ,

4. ηd2 ⊆ ηd1 ,

5. there is a bijection, f : A(d1)→ A(d2), which satisfies the following:

f(l, s, t) =



(l, s, t) if s, t ∈ S(d2) ∪ C(d2)

(l, s, t′) if s ∈ S(d2) ∪ C(d2) ∧ t ∈ [t′]d1

(l, s′, t) if t ∈ S(d2) ∪ C(d2) ∧ s ∈ [s′]d1

(l, s′, t′) if s ∈ [s′]d1 ∧ t ∈ [t′]d1

Lemma 3.3.1. Let d1 be a unitary α-diagram in which all pairs of spiders, x and

y, which are joined by ties inhabit the same zone: (x, y) ∈ τd1 ⇒ ηd1(x) = ηd1(y).

Let d2 be an associated singleton-τ form of d1. Then d1 ≡� d2.

Proof. Diagram d2 can be obtained from d1 by the repeated use of the remove

equal spider rule. Equally, diagram d1 can be obtained from d2 by using the

same rule in reverse. By theorem 3.3.1, which proves the soundness of that rule,

d1 ≡� d2.

Lemma 3.3.2. Let d be a generalized unitary α-diagram in which all pairs of

spiders, x and y, which are joined by ties inhabit the same zone: (x, y) ∈ τd1 ⇒
ηd1(x) = ηd1(y). Then we can use a finite series of inference rule applications

to produce a diagram, d2, where d2 is an associated singleton-τ form of d1 and

d1 ≡� d2.

Proof. Since ηd1(x) = ηd1(y) for each (x, y) ∈ τd1 where x 6= y, then we use rule 1,

remove equal spider, to remove each x from d1, resulting in a diagram, d2, which

is an associated singleton-τ form of d1. Since d1 has finite spiders, this process is

terminating. By lemma 3.3.1, d1 ≡� d2.

The previous two results depend on spiders which are joined by ties having

the same habitat. Next we show that, if this is not true, the diagram containing

the spiders is unsatisfiable. We use this fact to discard inconsistent diagrams

when transforming to singleton-τ form.

Lemma 3.3.3. Let d be a unitary α-diagram which contains two spiders, x and

y, where (x, y) ∈ τd and ηd(x) 6= ηd(y). Then d is unsatisfiable.
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Proof. Let I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ). By

the spiders’ distinctness condition, Ψ′(x) = Ψ′(y). We know that ηd(x) 6= ηd(y)

and, since distinct zones represent distinct subsets of U ,

Ψ′(ηd(x)) ∩Ψ′(ηd(y)) = ∅.

By the spiders habitat condition, Ψ′(x) ⊆ Ψ′(ηd(x)) and Ψ(y) ⊆ Ψ′(ηd(y)).

Thus, Ψ′(x) 6= Ψ′(y), a contradiction which shows that I ′ is invalid for d and d is

unsatisfiable.

We can now move on to transforming unitary diagrams in singleton-τ form to

contour-source form.

Definition 3.3.4. Let d1 be a generalized unitary α-diagram in singleton-τ form.

Define an associated contour-source form of d1 as the generalized unitary

diagram, d2 where, for each arrow (l, x, t) ∈ A(d1) where x ∈ S(d1), (l, x, t) is

replaced in A(d2) by an arrow (l, dc, t), where dc is the contour that results from

using rule 2, add contour over spider, to add a new derived contour to d1 with

regard to x.

We will now show that if d1 is a unitary α-diagram in singleton-τ form then

we can obtain a diagram, d2, where d2 is an associated contour-source form of

d1 and d1 ≡� d2. We do this by using a series of inference rules. In Figure 3.31,

the only arrow in d1, (r, x, t), has a spider as its source. In d2 we use the add

contour over spider rule to add a new, fully shaded, derived contour containing a

single zone which is the new habitat of x. In d3 we use the replace arrow rule to

add an arrow with the derived contour as its source, label r and target t, and to

simultaneously remove the arrow (r, x, t), obtaining an associated contour-source

form of d1.

Lemma 3.3.4. Let d1 (6= ⊥) be a generalized unitary α-diagram in singleton-τ

form. Then there is a finite series of inference rules that can be used to obtain a

diagram, d2, where d2 is an associated contour-source form of d1 and d1 ≡� d2.

Proof. First, we show that d1 � d2. Let {a1 . . . an} be the arrows in d1 which

are sourced on spiders. For each (l, xi, ti) ∈ {a1 . . . an}, and each corresponding

derived contour dci, we need to show that d1 entails the diagram obtained by
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Figure 3.31: Obtaining contour-source form.

adding both dci and (l, dci, ti), then removing (l, xi, ti) from d, where the resulting

diagram satisfies the post conditions of the add contour over spider rule with

regard to the spider xi.

Let (l, x, t) be an arrow sourced on a spider in d1, and let e1 be the diagram

obtained by using rule 2, add contour over spider, to add a new derived contour,

dc, over x in d1. Then d1 ≡� e1 by theorem 3.3.2. By the post conditions of

the add contour rule, S(dc, e1) = {x}, Z(dc, e1) = {(in ∪ {dc}, out)}, where

(in, out) = ηd1(x) and Z(dc, e1) ⊆ Z∗(e1). The syntactic conditions therefore

exist for the application of rule 3, replace arrow, to replace (l, x, t) by (l, dc, t);

let e2 be the diagram obtained by this operation. Then e1 � e2 by theorem 3.3.3.

By the definition of contour-source form, d2 is the diagram obtained by repeating

this process for all arrows in {a1 . . . an}, and it follows that d1 � d2. Since d1 has

finite arrows, the process terminates.

We can show that d2 � d1 using similar reasoning. The process requires a

series of applications of rule 3, replace arrow, and rule 2, add contour over spider

(used in reverse to remove contours). Thus, d2 � d1 and d1 ≡� d2 as required.

We can now show that each unitary α-diagram in single-τ and contour-source

forms, d1, entails the disjunction of a set of γ-diagrams which we call the γ

components of d1. It follows that, given a unitary α-diagram d2, we can use

the method given in section 3.3 to find an equivalent diagram, d2, where d2

is in singleton-τ and contour-source forms, then use the decision procedure of

section 3.1 to say that d2 is satisfiable if one or more of its γ components is

satisfiable.

In Figure 3.32, d1 is an α-diagram in singleton-τ and contour-source forms

which contains a zone, ({A}, {B}), which is unshaded and contains no spiders.

All other zones in d1 are shaded or contain a spider, or both. Semantically, the
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Figure 3.32: An α-diagram and its γ components.

absence of shading in a zone means that the zone contains at least as many

elements as are depicted by spiders. It follows that d1 semantically entails either

d2, which is a copy of d1 in which ({A}, {B}) contains an extra spider, or d3, in

which that zone is shaded.

Definition 3.3.5. Let d1 be a generalized unitary α-diagram in singleton-τ and

contour-source forms, and let d2 be a generalized unitary γ-diagram. We say that

d2 is a γ component of d1 if the following conditions hold:

1. the diagrams d1 and d2 have the same set of zones,

2. for every shaded zone, z, in d1, z is shaded in d2 and S(z, d2) = S(z, d1),

3. for every unshaded zone that contains spiders in d1, z, z is unshaded in d2

and S(z, d2) = S(z, d1),

4. every unshaded zone that contains no spiders in d1 is either unshaded and

contains a single spider in d2, or is shaded and contains no spiders in d2,

and

5. the diagrams d1 and d2 have the same set of arrows.

Theorem 3.3.4: Let d (6= ⊥) be a generalized unitary α-diagram in singleton-τ

and contour-source forms. Then d is satisfiable if and only if one or more of its γ

components is satisfiable.

Proof. We first show that, if d is satisfiable, one of its γ components is satisfiable.

Let (U,Ψ,Φ) be a model for d and let Ψ′1 be a valid extension for d. Choose a

γ component of d, say g, where for each zone z ∈ Z(d) which is unshaded and

contains no spiders, if Ψ′1(z) = ∅ then z is shaded in g, and if Ψ′1(z) 6= ∅ then z

is unshaded and contains a single spider in g.
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Let Ψ′2 : GC ∪DC ∪ S be an extension of Ψ defined by Ψ′2(c) = Ψ′1(c) for each

c ∈ DC (g) and

Ψ′2(x) =

Ψ′1(x) if x ∈ S(d)

{e} for some e ∈ Ψ′1(ηd(x)) if x ∈ S(g)− S(d).

In the second case of Ψ′2(x), where x ∈ S(g)−S(d), we know there are elements

available in Ψ′1(ηd(x)), as the only spiders in g but not in d are those in a zone,

z, where Ψ′1(z) 6= ∅. We will show that Ψ′2 is a valid extension for g and therefore

(U,Ψ,Φ) is a model for g.

The plane tiling condition holds trivially, as Z(d) = Z(g) and the plane tiling

condition holds for d1. The spiders’ distinctness condition holds for g since every

spider in S(g)−S(d) is the only spider in its habitat and the spiders’ distinctness

condition holds for d. The spiders habitat condition also holds trivially. To show

the shaded zones condition holds for g, we will show that, for every shaded zone

z ∈ Z∗(g), Ψ′1(z) = Ψ′2(z). By the shaded zones condition for d,⋃
z∈Z∗(d)

Ψ′1(z) =
⋃

x∈S(z,d)

Ψ′1(x).

If z ∈ Z∗(g)− Z∗(d), Ψ′1(z) = ∅, by our choice of g. Hence, Ψ′2(z) = Ψ′1(z) =

∅. The shaded zones condition therefore holds for g. The arrows condition is

unaffected, and so (U,Ψ,Φ) satisfies g. Therefore if d is satisfiable then so is one

of its γ components.

To show the reverse, let g be a γ component of d, let (U,Ψ,Φ) be a model for

g and let Ψ′2 be a valid extension for g. The shaded zones condition for g implies

that of d, since Z∗(d) ⊂ Z∗(g).

For each zone, z, which is unshaded and contains no spiders in d, z is either

shaded and contains no spiders in g, or is unshaded and contains a single spider

in g. In all other zones, z, (i.e. z is shaded in d, or contain spiders in d, or both),

S(z, g) = S(z, d). Thus, the spiders’ habitat and distinctness conditions for g

imply those for d. It must be then that (U,Ψ,Φ) is a model for d, and g � d.

Hence, d is satisfiable if and only if one of its γ components is satisfiable.

Theorem 3.3.5: The unitary α fragment is decidable.
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Proof. We determine the satisfiability of a unitary α-diagram, d, as follows. If

there exists a pair of spiders, x and y, where (x, y) ∈ τd and ηd(x) 6= ηd(y) then,

by lemma 3.3.3, d is unsatisfiable. Assume that this is not the case. Then, by

lemma 3.3.2, we can produce a diagram, d′, where d′ is an associated singleton-

τ form of d and d ≡� d
′. By lemma 3.3.4, we can construct d′′, an associated

contour-source form of d′, in finite steps. Finally, we construct the set of γ

components of d′′; then, by lemma 3.3.4 and theorem 3.3.4, d is satisfiable if and

only if one or more of the γ components of d′ is satisfiable. Hence, the unitary α

fragment is decidable.

The proof of theorem 3.3.5 encapsulates the decision procedure for the unitary

fragment. Thus, using γ diagrams as a reduction class, we have shown that the

unitary fragment is decidable.



Chapter 4

The decision procedure for the

existential fragment

In this chapter we show that the full existential fragment is decidable by describing

a decision procedure which judges the satisfiability of a generalized diagram. The

procedure extends the decision procedure from the previous chapter and depends

on the transformation of diagrams into a normal form. Throughout this chapter

we work towards the definition of this normal form, which we call disjunctive

normal form. The process of transforming a diagram into disjunctive normal

form has several intermediate steps. Figure 4.1 illustrates these steps and the

strategy used in this chapter.

D2

EF
-linear 

normal form

D3

pushed syntax 
normal form

D4

disjunctive 
normal form

D1

D5

reduce linear 
sub-diagrams

Figure 4.1: The normal forms defined in this chapter.

DiagramD1, Figure 4.1, is a diagram from the existential fragment. Information-

preserving inference rules are applied to transform D1 into D2, a diagram which

is in ∧-linear normal form. This means that, in D2, all ∧-labelled nodes have an

102
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out-degree of one; ∧-linear normal form is defined in section 4.2. Information-

preserving inference rules are then applied to transform D2 into D3, where D3 is

in pushed syntax normal form. A diagram is in pushed syntax normal form if all

possible syntax is represented in its leaf nodes. This normal form is defined in

section 4.3. Next, information-preserving inference rules are applied to transform

D3 into D4, where D4 is in disjunctive normal form, defined in section 4.4.

As we will see, a generalized diagram in disjunctive normal form is either a

linear diagram or is composed of a disjunction of linear sub-diagrams. In the

final step, we use inference rules to reduce each linear diagram to a generalized

diagram consisting of a single node, as described in section 4.5. It is at this stage

that we can make use of the decision procedure for unitary diagrams given in the

previous chapter. In Figure 4.1, the meaning of D5 is given by the disjunction of

the meaning of a set of leaf nodes, and D5 is satisfiable if and only if one or more

of the unitary diagrams labelling its leaf nodes is satisfiable. The inference rules

used to transform D1 into D5 are equivalences, and so D1 ≡� D5. Thus, since D1

and D5 have all the same models, D1 is satisfiable if and only if D5 is satisfiable.

At each step in the process, we move from one form to the next by applying

a sequence of inference rules. The way in which this is done is algorithmic; the

rules are applied iteratively and the process includes choice at various stages.

Thus, each section in this chapter focuses on the development of an algorithm:

one which transforms generalized diagrams into ∧-linear normal form, one which

transforms a diagram in ∧-linear normal form to a diagram in pushed syntax

normal form, and so on.

D1

A .f
B . g

A .d1

d3

d2

Figure 4.2: A running example: before manipulation into normal form.

To motivate the use of disjunctive normal form, consider diagram D1 in Fig-
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ure 4.2. The diagram, Dn, shown in Figure 4.3, conveys the same information as

D1 in Figure 4.2. In several cases, D1 allows us to infer disjunctive information.

For example, the unitary diagram d2 shows a spider inhabiting a zone inside B.

We can infer that this spider may or may not represent an element of A and,

furthermore, that it may or may not represent the same element as the spider

inside A in the unitary diagram d3. These inferences are reified in Dn, in which

the unitary diagrams each present one combination of the options. All informa-

tion in Dn is held in leaf nodes, each of which forms a branch of an ∨-labelled

connective; the only other node is labelled by a unitary diagram which is empty

of syntax other than for a single zone, and is thus trivially true in any interpre-

tation. Hence, the meaning of Dn is given by the disjunction of the meaning of

its leaf nodes. It follows that we can judge the satisfiability of Dn by applying

the decision procedure for unitary diagrams to its leaf nodes, and that Dn is

satisfiable if and only if one or more of its leaf nodes is satisfiable.

Dn

d0

l1

B
g

A
f...

B
g

A
f...

B
g

A
f.

B
g

A
f.

..

..

l2

l3

l4

Figure 4.3: A running example: after manipulation into normal form.

We will use the diagram in Figure 4.2 as a running example throughout this
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chapter, showing the steps required to transform it to the diagram shown in

Figure 4.3. These steps make use a series of inference rules which produce a

number of intermediate, semantically equivalent normal forms, and culminate in

a diagram which is in disjunctive normal form, such as diagram Dn in Figure 4.3.

We give a name to the unitary diagram which contains a single zone and is

otherwise empty of syntax. Because such a diagram is trivially satisfied by any

interpretation, we call it the trivial diagram, illustrated in Figure 4.4.

Figure 4.4: The trivial diagram.

Definition 4.0.6. Let d be the generalized unitary diagram which contains no

contours, shading, spiders, ties or arrows and contains only the single zone (∅, ∅).
That is,

d = (C,Z, Z∗, S, η, τ, A),

where

1. C = Z∗ = S = η = τ = A = ∅, and

2. Z = {(∅, ∅)}.

Then we say that d is the trivial diagram, denoted >.

In section 4.1, we define a set of purely syntactic transformations for general-

ized (non-unitary) diagrams. Sections 4.2 and 4.3 describe the intermediate nor-

mal forms and the inference rules required to produce them. The inference rules

will be defined using the diagram transformations. In section 4.4, we describe

disjunctive normal form and its associated inference rules, and in section 4.5 we

show how to transform a diagram in disjunctive normal form so that the decision

procedure for unitary diagrams can be used to judge its satisfiability. Finally,

in section 4.6 we show that the preceding results can be combined to describe a

decision procedure for the existential fragment.
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4.1 Transformations

Rather than dealing with the content of unitary diagrams, the transformations

defined in this section are designed to alter the tree structure of generalized

diagrams, whilst maintaining structural invariants such as the fact that all leaf

nodes of a generalized diagram are labelled by unitary diagrams. In Figure 4.5

we can remove the largest sub-diagram of D1 whose root node is labelled by the

unitary diagram d2, to obtain D2, which is a well-formed generalized diagram.

In Figure 4.6, removing just the node labelled by d3 from D2 results in D3, a

collection of nodes which is not a generalized diagram since it contains a leaf

node which is not labelled by a unitary diagram.

D1

d1

d2 d3

d4
D2

d1 d4

Figure 4.5: Transforming a generalized diagram by removing a sub-diagram.

D2

d1

d3
D3

d1

Figure 4.6: An invalid compound transformation.

In Figure 4.7, diagram D2 is a sub-diagram of D1. We can see that all leaf

nodes of D2 (the nodes n7 and n8) are also leaf nodes of D1. In other words, D2

is the largest sub-diagram of D1 whose root node is n3. We define the notion of

largest sub-diagrams as the sub-diagrams induced by a particular node.
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n1 n2
n9

n3 n4
n8

n5 n6 n7

D1

n3 n4
n8

n5 n6 n7

D2

Figure 4.7: The sub-diagram induced by a particular node.

Definition 4.1.1. Let D1 be a generalized diagram with diagram-labelled node

n. We say that the sub-diagram of D1, D2 = (V,W,E, l), with root node n and

with V ∪W = {n} ∪ Des(n,D1) is the sub-diagram of D1 induced by n.

4.1.1 Atomic transformations

The first transformation we define is one which removes a sub-diagram from a

generalized diagram.

Transformation 13: Remove sub-diagram. Given a generalized diagram D1

which has a non-root, diagram-labelled node n, we can transform D1 to obtain

a second diagram, say D2, by removing the sub-diagram induced by n. D2 is a

copy of D1 in which n and all of its descendants have been removed and, if the

immediate ancestor of n is a connective-labelled leaf node after this operation,

that node is also removed. In Figure 4.8, diagram D2 is the result of removing

from diagram D1 the sub-diagram of D1 induced by the node n5.

D1

n3

n8

n5 n7

n1 n2 n4

n6

D2

n3 n8n1 n2 n4

Figure 4.8: Removing a sub-diagram.

Formal description. Let D1 = (V1,W1, E1, l1) and D′1 = (V ′1 ,W
′
1, E

′
1, l
′
1) be

generalized diagrams and let n and nA be nodes such that the following is true:
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1. n is a diagram-labelled node in D1 and is not the root of D1,

2. nA is the immediate ancestor of n in D1, and

3. D′1 is the sub-diagram of D1 induced by n.

Let D2 = (V2,W2, E2, l2) be the generalized diagram which satisfies the fol-

lowing:

1. V2 = V1 − V ′1 .

2. If nA has more than one immediate descendant in D1, then

W2 = W1 −W ′
1.

Otherwise,

W2 = W1 − ({nA} ∪W ′
1).

3. If nA has more than one immediate descendant in D1, then

E2 = E1 − ({(nA, n)} ∪ E ′1).

Otherwise,

E2 = E1 − ({(n′, nA) ∈ E1} ∪ {(nA, n)} ∪ E ′1).

4. l2 = l1|V2∪W2 .

Then we say we can obtain D2 from D1 and D′1 using the remove sub-

diagram transformation, denoted D1

−D′1−−→ D2.

Next we define two transformations that allow us to remove a single diagram-

labelled node, provided that the result is a generalized diagram. For the simplicity

of the definitions, we separate the cases of removing root and non-root nodes.

Transformation 14: Remove root node. In Figure 4.9, we can transform D1

by removing the root node, n1, giving diagram D2. Note that the immediate

descendant of n1, n2, is also removed. It follows that this transformation is only

possible when the immediate descendant of the root node is a linear connective.
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D1

n3

n6

n5

n4n1 n2

n6

n5

n4n3

D2

Figure 4.9: Transforming a diagram by removing the root node.

Formal description. Let D1 = (V,W,E, l) be a generalized diagram that con-

tains nodes n1, and n2 which satisfy the following:

1. n1 is the root node of D1, and

2. n2 is the unique immediate diagram-labelled descendant of n1.

Let D2 be the sub-diagram of D1 induced by n2. Then we say that we can

obtain D2 from D1 and n1 using the remove root node transformation, denoted

D1
−n1−−→ D2.

Transformation 15: Remove diagram-labelled node. In Figure 4.10 we can

transformD1 by removing the node n3, givingD2. Note that the immediate ances-

tor of n3 in D1, n2, is not present in D2. The node n2 is removed to maintain the

bipartite tree of the diagram (i.e. alternating diagram- and connective-labelled

nodes).

D1

n3

n6

n5

n4n1 n2

n6

n5

n4n1

D2

Figure 4.10: Transforming a diagram by removing a non-root node.

If the immediate ancestor of the node to be removed is non-linear, however,

it is not removed as part of the transformation. In Figure 4.11, the node n4 is

removed from D1 to give D2. In this case it is the immediate descendant of n4,
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n5, which is removed to maintain the bipartite tree. It follows that, to remove a

diagram-labelled node n, either one or both of the immediate relatives of n must

be linear. If both immediate relatives of n are linear, the transformation removes

n and its immediate ancestor; an equivalent diagram would be produced if the

transformation were defined to remove n and its immediate descendant in this

case.

D1

n4

n7

n3

n5n1 n2

n7

n3

n2n1

D2

n6 n6

Figure 4.11: One of the immediate neighbours must be linear when removing a
node.

Formal description. Let D1 = (V1,W1, E1, l1) be a generalized diagram that

contains nodes n1, n2 and n3 which satisfy the following:

1. n2 is a diagram-labelled node in D1 which is not the root node of D1,

2. n1 is the immediate ancestor of n2,

3. n3 is the immediate descendant of n2, and

4. either n1 is a linear connective, or n3 is a linear connective, or both.

Let n0 be the immediate diagram-labelled ancestor of n2 and letD2 = (V2,W2, E2, l2)

be the diagram which satisfies the following:

1. V2 = V1 − {n2}.

2. If n1 is a linear connective, W2 = W1 − {n1}. Otherwise, n3 is a linear

connective and we define W2 = W1 − {n3}.

3. If n1 is a linear connective, then E2 is defined as follows:

E2 =
(
E1 − {(n0, n1), (n1, n2), (n2, n3)}

)
∪ {(n0, n3)}.
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Otherwise, n3 is a linear connective: let n4 be the (unique) immediate

descendant of n3. Then E2 is defined as follows:

E2 = (E1 − {(n1, n2), (n2, n3)}) ∪ {(n1, n4)}.

4. l2 = l1|V2∪W2 .

Then we say that we can obtain D2 from D1 and n2 using the remove diagram-

labelled node transformation, denoted D1
−n2−−→ D2.

Next, we define two transformations which attach diagrams. The first attaches

a diagram to a leaf node and requires that a new connective be supplied, and the

second attaches a diagram to an existing connective-labelled node.

In the following transformation, and in several more below, we use the ]
symbol, denoting the disjoint union of sets. When we combine sets of nodes from

generalized diagrams, we take the disjoint union of the sets of nodes to ensure

that any necessary renaming takes place, and that they are indeed treated as

disjoint sets. We assume that the labels of nodes are not affected when nodes are

renamed. That is, suppose we have a transformation T that somehow combines

generalized diagrams D1 = (V1,W1, E1, l1) and D2 = (V2,W2, E2, l2) to produce

a third diagram D3 = (V3,W3, E3, l3) where V3 ⊆ V1 ] V2 and W3 ⊆ W1 ]W2.

Furthermore, suppose there is a node, n, in D1 which is renamed n′ in D3 by

the disjoint union operation. Then, unless T explicitly includes a relabelling

operation, l1(n) = l3(n
′).

Transformation 16: Attach diagram to leaf. Figure 4.12 shows three dia-

grams, D1, D2 and D3, where D3 is the result of attaching D2 to the leaf node of

D1, n3. Note that D3 contains a node, labelled m, which is not in D1 or D2.

Formal description. Let D1 = (V1,W1, E1, l1) and D2 = (V2,W2, E2, l2) be

generalized diagrams where D1 has a leaf node n and let � be a connective where

� ∈ {∧,∨}. Choose a node, m, not in D1 or D2 and let D3 = (V3,W3, E3, l3) be

the diagram which satisfies the following:

1. V3 = V1 ] V2,

2. W3 = W1 ] {m} ]W2,
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n1 n2
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n3 n4 n5
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n3 m n4 n5 n6

Figure 4.12: Attaching a diagram to a leaf node.

3. E3 = E1 ] {(n,m), (m, root(D2))} ] E2,

4. l3 = l1 ] {(m, �)} ] l2.

Then we say we can obtain D3 from D1, n, � and D2 using the attach

diagram to leaf transformation, denoted D1
+(n,�,D2)−−−−−→ D3.

Transformation 17: Attach diagram to connective. As well as attaching

diagrams to leaf nodes, we can attach diagrams to an existing connective-labelled

node. In this case there is no need to specify a logical connective and the resulting

diagram contains only those nodes which are in the initial diagrams. Figure 4.13

shows three diagrams, D1, D2 and D3, where D3 is the result of attaching D2 to

the connective-labelled node n2 in D1.

Formal description. Let D1 = (V1,W1, E1, l1) and D2 = (V2,W2, E2, l2) be

generalized diagrams where D1 has a connective-labelled node n. Let D3 =

(V3,W3, E3, l3) be the diagram which satisfies the following:

1. V3 = V1 ] V2,

2. W3 = W1 ]W2,

3. E3 = E1 ] {(n, root(D2))} ] E2,

4. l3 = l1 ] l2.

Then we say we can obtain D3 from D1, n and D2 using the attach diagram

to connective transformation, denoted D1
+(n,D2)−−−−→ D3.
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D1

n5

D2

n1 n2
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n3

D3

n6 n7

n4

Figure 4.13: Attaching a diagram to a connective-labelled node.

Transformation 18: Relabel node. Given a generalized diagram D, we can

relabel a node in D by making a change to its labelling function. No changes are

required to the nodes or edges of D. Figure 4.14 shows two diagrams, D1 and

D2, in which the node n3 in D1 is labelled by the unitary diagram d1. Diagram

D2 shows the result of relabelling n3 in D1 by the unitary diagram d2. We can

also relabel connective-labelled nodes.

n1 n2

D1

n3 n4 n5

D2

n6

d1 d2

Figure 4.14: Relabelling a node.

Formal description. Let D1 = (V1,W1, E1, l1) be a generalized diagram which

includes a node n and, if n is a diagram-labelled node, let λ be a unitary diagram.

Otherwise, n is a connective-labelled node; let λ be one of ∧ or ∨. Let D2 =

(V1,W1, E1, l2) be the diagram where

l2 = (l1 − {(n, l1(n))}) ∪ {(n, λ)}.

Then we say we can obtain D2 from D1, n and λ using the relabel node

transformation, denoted D1
l(n,λ)−−−→ D2.
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To conclude this section, we summarise the atomic transformations in the

following table:

Table 4.1: The atomic compound transformations.

Transformation Notation Parameters Description

13: Remove sub-

diagram.

D1

−D′1−−→ D2 D′1 is the sub-diagram

of D1 induced by a

particular node.

Removes D′1

from D1 to give

D2.

14: Remove root

node.

D1
−n1−−→ D2 n1 is the root node of

D1.

Removes n1

from D1 to give

D2.

15: Remove

diagram-labelled

node.

D1
−n−→ D2 The node n is a

diagram-labelled node

of D1.

Removes n from

D1 to give D2.

16: Attach dia-

gram to leaf.

D1
+(n,�,D2)−−−−−→ D3 The node n is a leaf

node of D1, � is one

of the logical connec-

tives ∧ or ∨, and D2 is

a generalized diagram.

Attaches D2 to

n in D1 using �,
giving D3.

17: Attach dia-

gram to connec-

tive.

D1
+(n,D2)−−−−→ D3 The node n is a

connective-labelled

node in D1, and D2 is

a generalized diagram.

Attaches D2 to n

in D1, giving D3.

Continued on next page . . .
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Table 4.1 – Continued

Transformation Notation Parameters Description

18: Relabel

node.

D1
l(n,λ)−−−→ D3 The node n is a node

in D1 and, if n is

a connective-labelled

node then λ is one

of the logical connec-

tives ∧ or ∨ and, if

n is a diagram-labelled

node, then λ is a uni-

tary diagram.

Relabels n by λ

in D1, giving D3.

4.1.2 Derived transformations

We can now define a series of derived transformations which make use of the

atomic transformations from the previous section. The first two such transfor-

mations attach a set of diagrams to connective-labelled nodes and leaf nodes

respectively.

Transformation 19: Attach diagrams to connective. In Figure 4.15, dia-

gram D4 shows the result of attaching D2 and D3 to the connective-labelled node

n4 in D1.

Formal description. Let D1 be a generalized diagram which has a connective-

labelled node n and let D = {A1, . . . , Am} be a non-empty set of generalized

diagrams. Let D2 be the diagram obtained by repeated use of transformation 17,

attach diagram to connective, as follows:

D1
+(n,A1)−−−−→ DA1 . . . DAm−1

+(n,Am)−−−−−→ D2.

Then we say we can obtain D2 from D1, n and D using the attach diagrams

to connective transformation, denoted D1
+(n,D)−−−−→ D2.
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Figure 4.15: Attaching a set of diagrams to a connective-labelled node.

Transformation 20: Attach diagrams to leaf. When we attach a series of

diagrams, D = {A1, . . . , An} to the leaf node, n, of a diagram, D1, the first

operation is to attach A1 to n using transformation 16, attach diagram to leaf,

giving a diagram, say D′1. The node n is not a leaf node in D′1, and so the

remaining transformations, those which attach the diagrams in the set D−{A1}
to n, use transformation 19, attach diagrams to connective. Figure 4.16 shows the

steps involved in attaching diagrams D2 and D3 to the leaf node, n3, of D1 using

the ∨ connective. Diagram D′1 shows the result of attaching D2 to n3 in D1 using

∨ and transformation 16, attach diagram to leaf. This results in a new node, m.

Diagram D4 shows the result of attaching D3 to m in D′1 using transformation 19,

attach diagrams to connective.

Formal description. Let D1 be a generalized diagram which has a leaf node n,

let D = {A1, . . . , Am} be a non-empty set of generalized diagrams and let � be a

connective where � ∈ {∧,∨}. Let DA1 be the diagram obtained by attaching A1

to n using � and transformation 16, attach diagram to leaf: D1
+(n,�,A1)−−−−−→ DA1 .

Let nD be the immediate descendant of n in DA1 and let D2 be the diagram

obtained by attaching D − {A1} to nD in DA1 using transformation 19, attach

diagrams to connective: DA1

+(nD,D−{A1})−−−−−−−−−→ D2. Then we say we can obtain D2

from D1, n, � and D using the attach diagrams to leaf transformation, denoted

D1
+(n,�,D)−−−−−→ D2.

Transformation 21: Attach diagrams to leaves. We will sometimes need to

attach a diagram or set of diagrams to every leaf node in a diagram. Figure 4.17
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n1 n2

D1

n3 n4 n5
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D4

n3 m

n4 n5 n6

n7 n8 n9

Figure 4.16: Attaching a set of diagrams to a leaf node.

shows three diagrams, D1, D2 and D3. The result of attaching the set of diagrams

{D2, D3} to every leaf node in D1 using the ∧ connective is shown in Figure 4.18.

n8
D1

n1
n4 n5

n6

n3

n7
D2

n2

n9
D3

Figure 4.17: Prior to attaching a set of diagrams to every leaf node.

In Figure 4.18, diagram D4, the leaf nodes are copies of diagrams D2 and D3,

Figure 4.17. Where a leaf node is labelled, for example, n+
8 , the + indicates that

this node is a copy of n8 which has been renamed as necessary to make it unique

in D4.

Formal description. Let D1 be a generalized diagram, let D be a non-empty set

of generalized diagrams and let � ∈ {∧,∨}. Let D2 be a copy of D1 in which D is

attached to each leaf node of D1 using � and transformation 20, attach diagrams

to leaf. That is, if D1 has leaf nodes L = {l1, . . . , lm} then D2 is produced as
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n +9

n +9

n +9

Figure 4.18: The result of attaching a set of diagrams to every leaf node.

follows:

D1
+(l1,�,D)−−−−−→ Dl1 . . . Dlm−1

+(lm,�,D)−−−−−→ D2.

Then we say we can obtain D2 from D1 and D using the attach diagrams

to leaves transformation, denoted D1
+(�,D)−−−−→ D2.

Transformation 22: Replace sub-diagram. Next, we define a transformation

that, given a diagram D1, replaces a sub-diagram of D1 by another diagram, D2

In Figure 4.19, diagram D3 shows the result of replacing the sub-diagram of D1

induced by node n3, by diagram D2. In effect, this composes the transformations

remove sub-diagram and attach sub-diagram.

Formal description. Let D1, D2 and D3 be generalized diagrams such that

D2 is the sub-diagram of D1 induced by a diagram-labelled node, n3. Let D′1 be

the diagram obtained by removing D2 from D1 using transformation 13, remove

sub-diagram: D1
−D2−−→ D′1.

1. If the immediate ancestor of n3, n2, is present in D′1, let D4 be the dia-

gram obtained by using transformation 17, attach diagram to connective,

to attach D3 to n2 in D′1: D
′
1

+(n2,D3)−−−−−→ D4.

2. Otherwise, the immediate ancestor of n3 is not present in D′1. Let n1 be the

immediate diagram-labelled ancestor of n3 in D1 and let D4 be the diagram

obtained by using transformation 16, attach diagram to leaf, to attach D3
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Figure 4.19: Replacing a sub-diagram.

to n1 in D′1 using ∧: D′1
+(n1,∧,D3)−−−−−−→ D4.

Then we say we can obtain D4 from D1, D2 and D3 using the replace sub-

diagram transformation, denoted D1
ρ(D2,D3)−−−−−→ D4.

Finally, we define a transformation which allows us to replace an inner (i.e.

non-leaf) node in a diagram by another diagram. Figure 4.20 depicts three di-

agrams: D1, D2, and D3. Figure 4.21 shows the result of transforming D1,

D1

n3 n6 n7n4 n5
D2 D3

n1 n2

Figure 4.20: Preparing to replace a sub-diagram by a set of diagrams.

Figure 4.20, by replacing the node n3 with the disjunction of the diagrams D2

and D3 from Figure 4.20. Note that the diagram-labelled ancestors of n3 in D1,

Figure 4.20, which we can think of as the prefix of the node to be replaced, are

maintained in D4, Figure 4.21. Also, the diagram-labelled descendants of n3,

which we can think of as the suffix of the node to be replaced, are attached to

each leaf node in the replacement. If we think of diagram D1, Figure 4.20, as

composed of the node n3 with its prefix and suffix, the prefix and suffix are main-

tained in diagram D4, Figure 4.21, whilst n3 itself is replaced by the disjunction
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of diagrams D2 and D3, Figure 4.20. In diagram D4, Figure 4.21, the nodes which

are created during the transformation are labelled m1, m2 and m3, and the two

nodes labelled n+
5 are copies of node n5 from diagram D1, Figure 4.20.

D4

n1

n7

m1

n +5

n6 n +5m2

m3

Figure 4.21: The result of replacing a sub-diagram.

We present a second, more complex, example of replacing an inner node, which

illustrates the case when the immediate ancestor of the node to be replaced is

a non-linear connective. Figure 4.22 shows an initial diagram, D1, in which the

node to be replaced, n3, is highlighted, and a set of diagrams, D1, with which n3

will be replaced.

D1

n1
n9

n3
n2

n4
n8

n7n5 n6
n10

n11

Figure 4.22: Replacing an inner node.

In Figure 4.23, diagram D′ is the sub-diagram of D1, Figure 4.22, induced by

n3. Diagram D′1 is the diagram given by removing D′ from D1. We can think of

D′1 as the prefix of n3.

In Figure 4.24, the set of diagrams D2 is the set of sub-diagrams of D1, Fig-

ure 4.22, induced by the immediate descendants of n3. These diagrams are the

suffix of the node to be replaced, n3. Next, we attach the suffix of n3 to the

diagrams which will be used to replace n3. That is, the set of diagrams D3 is

formed by attaching the diagrams in D2 to the diagrams in the set D1. In doing

this, we use the connective labelling the immediate descendant of the node to
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D '1

n3 n4

n8

n7n5 n6

D'

n1 n9n2

Figure 4.23: Replacing an inner node: the first intermediate steps.

be replaced, node n4 in diagram D1, Figure 4.22. Node n4 is labelled by ∨, and

so copies of the diagrams in D2, Figure 4.24, are attached to the leaves of the

diagrams in D1, Figure 4.22, using ∨, to form the set of diagrams D3.

n8

n7n5 n6

n10 m1

n +8

n +7n +5 n +6

n11

n +8

n +7n +5 n +6
m2

Figure 4.24: Replacing an inner node: the next intermediate steps.

Finally, we attach the set of diagrams, D3, to n2 in diagram D′1, Figure 4.23,

which is the immediate ancestor of n3, the node to be replaced. The result of this

operation is shown in Figure 4.25, diagram D2.

Transformation 23: Replace inner node. Since we will only use the following

transformation to replace non-leaf nodes, we define it in this context to keep the

definition simpler.

Formal description. Let D1 be a generalized diagram with nodes n1, n2 and

n3 such that:

1. n1 and n3 are diagram-labelled nodes,
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Figure 4.25: The result of replacing an inner node.

2. n2 is a connective-labelled node and is the immediate descendant of n1 and

the immediate ancestor of n3,

3. n3 is not a leaf node.

Let D1 be a non-empty set of generalized diagrams and let � ∈ {∧,∨}. Let D′

be the sub-diagram of D1 induced by n3 and let D′1 be the diagram obtained by

using transformation 13, remove sub-diagram, to remove D′ from D1: D1
−D′−−→

D′1. Let �′ be the connective which labels the immediate descendant of n3 in

D1. Let D2 be the set of sub-diagrams of D1 induced by the immediate diagram-

labelled descendants of n3. Let D3 be the set of diagrams obtained by attaching

D2 to the leaf nodes of each diagram in D1 using �′ and transformation 21, attach

diagrams to leaves:

D3 = {Di
+(�′,D2)−−−−−→ D′i : Di ∈ D1}.

1. If the node n2 is present in D′1, then let D2 be the diagram obtained by

attaching D3 to n2 in D′1 using transformation 19, attach diagrams to con-

nective: D′1
+(n2,D2)−−−−−→ D2.

2. Otherwise, the node n2 is not present inD′1. LetD2 be the diagram obtained

by attaching D2 to n1 in D′1 using � and transformation 20, attach diagrams

to leaf: D′1
+(n1,�,D2)−−−−−−→ D2.
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Then we say we can obtain D2 from D1, n3, � and D1 using the replace inner

node transformation, denoted D1
ρ(n3,�,D1)−−−−−−→ D2.

This completes the set of compound transformations. As we have seen, the

majority of the transformations are derived from simpler, atomic operations. In

the previous section we showed that we have a complete set of unitary transforma-

tions, sufficient to transform a unitary diagram to any other. Although we do not

give a corresponding proof for the compound transformations, we will sketch the

way in which this could be done. To be syntactically complete, the compound

transformations must be sufficient to transform an initial diagram, D1, into a

target diagram D2. In Figure 4.26, suppose we wish to transform D1 into D2.

We begin by using transformation 13, remove sub-diagram, to remove everything

except the root node of D1, giving D11. To this diagram, we attach a copy of

D2, using transformation 16, attach diagram to leaf, and use transformation 18,

relabel node, to relabel n1 with the unitary diagram labelling the root of D2,

giving diagram D12. Finally, we use transformation 15, remove node, to remove

from D12 the node which was the root node of D2, giving diagram D13.

D 1

n4 n5

n9

n8n6 n7

n1 n3n2

D 2

D 11

n1

D 12

n +4 n +5
n +9

n +8n +6 n +7
n1 m

n +5
n +9

n +8n +6 n +7
n1

D 13

d4

d4

d4d4

d4

Figure 4.26: The completeness of the compound transformations.
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As with the atomic transformations, we conclude with a table of the derived

transformations:

Table 4.2: The derived compound transformations.

Transformation Notation Parameters Description

19: Attach dia-

grams to connec-

tive.

D1
+(n,D)−−−−→ D2 The node n is a

connective-labelled

node in D1, and D
is a non-empty set of

generalized diagrams.

Attaches the di-

agrams in D to n

in D1, giving D2.

20: Attach dia-

grams to leaf.

D1
+(n,D)−−−−→ D2 The node n is a leaf

node in D1, and D is a

non-empty set of gen-

eralized diagrams.

Attaches the di-

agrams in D to n

in D1, giving D2.

21: Attach dia-

grams to leaves.

D1
+(�,D)−−−−→ D2 The logical connective

� is either ∧ or ∨,

and D is a non-empty

set of generalized dia-

grams.

Attaches the di-

agrams in D to

every leaf node

in D1 using �
as the connec-

tive, giving D2.

22: Replace sub-

diagram.

D1

ρ(D′1,D2)−−−−−→ D3 D′1 is the sub-diagram

of D1 induced by a

node, n, and D2 is a

generalized diagram.

Removes D′1

from D1 and

replaces it with

D2, giving D3.

23: Replace in-

ner node.

D1
ρ(n,�,D)−−−−→ D2 The node n is a

diagram-labelled node

in D1, the logical con-

nective � is either ∧
or ∨, and D is a non-

empty set of general-

ized diagrams.

Removes n from

D1 and uses � to

replace it by dia-

grams in D, giv-

ing D3.
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4.2 ∧-linear normal form

In this section we show that we can reduce the out-degree of a non-linear ∧-

labelled connective, n, from a generalized diagram, D, without changing its mean-

ing. This is achieved by an inference rule which reduces the out-degree of n by

one. Our objective is to ‘linearise’ all ∧-labelled nodes in a diagram, i.e. to ensure

that every ∧-labelled node has an out-degree of one. We say that diagrams in

this form are in ∧-linear normal form.

Definition 4.2.1. Let D be a generalized diagram. If D contains no non-linear

∧-labelled connectives, we say that D is in ∧-linear normal form.

Figure 4.27 places this section in the larger context of the decision procedure,

where the dashed box labelled algorithm 1 indicates the current stage.

D2

EF
-linear 

normal form

D3

pushed syntax 
normal form

D4

disjunctive 
normal form

D1

Algorithm 1

D5

reduce linear 
sub-diagrams

Figure 4.27: ∧-linear normal form in the context of the decision procedure.

Figure 4.28 returns to the running example introduced in Figure 4.2, page 103.

Unlike the diagram in Figure 4.2, diagram D1 in Figure 4.28 is a meta-diagram

annotated with a label for the connective node, n, and labels for the spiders, 1,

2 and 3.

The formula for D1 is given by form(d1)∧(form(d2)∧form(d3)). The brackets

in this formula are redundant, and so it is equivalent to the formula for the
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D1

A .f
B . g

A .d1

d3

d2.n
1

2

3

Figure 4.28: A running example: prior to linearising an ∧-labelled connective.

diagram in Figure 4.29, given by form(d1) ∧ form(d2) ∧ form(d3). Thus, we can

transform D1, Figure 4.28, into D2, Figure 4.29, in which all ∧-labelled nodes

are linear, without changing the meaning of the initial diagram. Note that this

transformation results in a new node in D2, which is labelled m.

D2

A .f B . g A .
d1 d3d2

. .n mA .f
d1

.n
1

2 3

Figure 4.29: A running example: after linearising an ∧-labelled connective.

When there is more than one non-linear ∧-labelled connective to be linearised,

the order in which we do this may have a bearing on the structure, but not the

meaning, of the final result. In Figure 4.30, diagram D1 contains two non-linear

∧-labelled nodes, labelled n2 and n4. If we choose to linearise n2 first, the result

is the diagram D2, Figure 4.30. Note that we have removed the lower branch

of n2 from diagram D1 and attached a copy of it to each leaf node of the upper

branch, resulting in the addition of two new connective-labelled nodes, m1 and

m2. Equally, we could have reversed this by removing the upper branch of n2

and attaching it to n7, the single leaf node of the lower branch of n2, without

changing the meaning of the original diagram.

If, instead, we begin by removing one of the branches of n4 from D1, Fig-

ure 4.30, the result is diagram D3, Figure 4.31. Note that, in this case, only
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Figure 4.30: Linearising ∧-labelled connectives.

one new connective-labelled node, labelled m1, is created. Taking the order of

D3

n1
n7

n3
n2

n4 n6n5 m1

Figure 4.31: An alternative order in which to linearise ∧-labelled connectives.

operations which produces diagram D3, Figure 4.31, and continuing to flatten

non-linear ∧-labelled connectives until there are none left, produces diagram D4,

Figure 4.32. If instead, we take the order of operations that produces diagram

D2, Figure 4.30, and continue, the result is diagram D5, Figure 4.32. Both D4

and D5 are linear diagrams whose meanings are given by the conjunction of the

meanings of the same set of unitary diagrams. For this reason, we can see, in-

tuitively, that their meanings are equivalent. Note, however, that diagram D5

contains two copies of the diagram-labelled node n7.

Rule 4: Reduce out-degree of conjunct. The following rule reduces the

number of sub-diagrams attached to a non-linear ∧-labelled connective by one.

To fully linearise an ∧-labelled node which has more than two branches, i.e. to

reduce the out-degree to one, we apply the rule repeatedly.
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D5

n1 n +7n3n2 n4 n6n5 n +7m1 m2m3

D4

n1 n7n3n2 n4 n6n5 m1 m2

Figure 4.32: The result of linearising all ∧-labelled connectives in a diagram.

Formal description. Let D1 be a generalized diagram which includes a non-

linear ∧-labelled node, n. Let N be the set of immediate descendants of n in D1,

let nx ∈ N , and let X be the sub-diagram of D1 induced by nx. Let Y be the

set of sub-diagrams of D1 induced by the nodes in the set N −{nx} and let L be

the set of leaf nodes of the diagrams in Y . Let D′1 be the diagram obtained by

removing X from D1: D1
−X−−→ D′1. Let D2 be the diagram obtained by attaching

X to each node in L in D′1 using ∧ and transformation 20, attach diagram to

leaf:

D′1
+(l1,∧,X)−−−−−→ Dl1 . . . Dlm−1

+(lm,∧,X)−−−−−−→ D2,

for l1 to lm in L. Then D1 can be replaced by D2 and vice versa.

Theorem 4.2.1: Rule 4, reduce out-degree of conjunct, is valid. Let D1 be a

generalized diagram which includes a non-linear ∧-labelled node, n, and let D2

be the diagram obtained by using the rule to reduce the out-degree of n by one.

Then D1 ≡� D2.

Proof. Let I = (U,Ψ,Φ) be a model for D1 with valid extension I ′ = (U,Ψ′,Φ).

As in the definition of the rule, let N be the set of immediate descendants of n

in D1, let nx ∈ N , and let X be the sub-diagram of D1 induced by nx. Let Y be

the set of sub-diagrams of D1 induced by the nodes in the set N −{nx} and let L
be the set of leaf nodes of the diagrams in Y . Let n0 be the immediate ancestor

of n and let D0 be the sub-diagram of D1 induced by n0. See Figure 4.33 for a

concrete example.
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Figure 4.33: A concrete example: prior to reducing the out-degree of n.

Then the formula for D1 contains the sub-formula for D0, which is as follows:

form(d0) ∧
( ∧
D′∈{X}∪Y

form(D′)
)
, (4.1)

where d0 is the unitary diagram labelling n0 in D1. In order for (4.1) to be true

under I ′, form(D′) must be true for each D′ ∈ {X}∪Y . Assume that (4.1) is true

and let D′ ∈ {X}∪Y . In the next step the sub-diagram, X, of D1 will be removed

from D0, giving D′0, and attached to each leaf node of D′0. Let D′0 be the diagram

obtained by using transformation 13, remove sub-diagram, to remove X from D0.

Let D
′′
0 be the diagram obtained by using transformation 21, attach diagrams to

leaves, to attach X to the leaf nodes of D′0. Figure 4.34 shows a concrete example

of this operation, in which the sub-diagram, X, of diagram D0 in Figure 4.33 is

removed and attached to the leaf nodes of the remaining diagram.

We know that form(X) is true under I ′ since form(D0) is true and, by the

same fact, that form(Yi) is true for each Yi ∈ Y . Thus, form(D′′0) is true under I ′.

Diagram D2 is the diagram obtained by replacing D0 by D′′0 in D1, and it follows

that the formula for D2 is true whenever the formula for D1 is true. Thus, I ′ is

valid for D2 and D1 � D2. We can show that D2 � D1 by a similar argument,

and so D1 ≡� D2 as required.
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Figure 4.34: A concrete example: after reducing the out-degree of n by one.

We now state the steps required to transform a generalized diagram to ∧-

linear normal form, which is done using a finite sequence of applications of rule 4,

reduce out-degree of conjunct.

Algorithm 1 (Generalized diagram to ∧-linear normal form). Let D1 be a gener-

alized diagram which contains a non-linear ∧-labelled node, n. Use rule 4, reduce

out-degree of conjunct, to reduce the out-degree of n by one, giving diagram D′1.

Repeat this step until we obtain a diagram, D2, in ∧-linear normal form.

Before showing that the above algorithm terminates and produces a diagram

which is equivalent in meaning to the original, we show that linearising conjuncts

reduces the number of non-linear ∧-labelled nodes in a diagram.

Lemma 4.2.1. Let D1 be a generalized diagram that contains a non-linear ∧-

labelled node, n, and let D2 be the diagram obtained by using rule 4, reduce

out-degree of conjunct, to linearise n in D1. Then the sum of the out-degree of

non-linear ∧-labelled nodes in D2 is less than that of D1.

Proof. Let S1 be the sum of the out-degree of non-linear ∧-labelled nodes in D1,

and let N1 be the set of immediate descendants of n in D1. Then n has an out-

degree of |N1| in D1. Let S2 be the sum of the out-degree of non-linear ∧-labelled

nodes in D2 and let N2 be the set of immediate descendants of n in D2. By the

definition of the rule, n has one fewer immediate descendant in D2 than in D1:

|N2| = |N1|−1. The ∧-labelled connectives which appear in D2 but not in D1 are

those introduced by the use of transformation 16, attach diagram to leaf. By the

definition of transformation 16, each of these nodes is linear, and so S2 = S1− 1.
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Thus, the sum of the out-degrees of non-linear ∧-labelled nodes in D2 is less than

that of D1.

Theorem 4.2.2: Let D1 be a generalized diagram. Then we can use algorithm 1

to produce D2 in finitely many steps, where D1 ≡� D2 and D2 is in ∧-linear

normal form.

Proof. Each step of the algorithm reduces the out-degree of a non-linear ∧-

labelled node, n, in D1, giving a diagram, say D′1. By lemma 4.2.1, the the sum

of the out-degree of the ∧-labelled nodes in D′1 is less than that in D1, and so

the repeated use of the rule results in a diagram, D2, that contains no non-linear

∧-labelled nodes. By theorem 4.2.1, D1 ≡� D2. Since the sum of the out-degrees

of the ∧-labelled nodes in D1 is finite and each step reduces the out-degree of a

non-linear ∧-labelled node, the process terminates.

4.3 Pushing syntax

In this section we define a series of rules that allow us to add syntax in sound

ways to a unitary diagram, d, in the context of a generalized diagram, D, and

the syntax of other unitary diagrams labelling nodes in D. The objective is to

transform a generalized diagram so that all of its information is represented in leaf

nodes, a process which we call ‘pushing’ syntax. Figure 4.35 shows a generalized

diagram, D1, which consists of two nodes labelled by unitary diagrams, d1 and

d2, in which spiders are labelled x and y for convenience. In order to transform

D1 into a diagram in which all information is represented in leaf nodes we need

to push forward the syntax of d1 into d2. That is, we need to add the contour

labelled A, the spider labelled x and the arrow (f, x, A) to d2. Several of these

operations result in disjunctions; when we push forward the contour labelled A,

we need to represent the possibility that y is in A and the possibility that it is

not. When we push forward the spider x from d1 to d2, we can read from d1 that

x is outside A, but need to represent the possibilities that x is inside or outside

of B, and that x is equal to, or distinct from, y.

In Figure 4.36, diagram D2 is the result of two operations on D1: prefixing D1

with a root node labelled by a unitary diagram that contains all of the contours

of D1, and pushing all syntax in D1.



4.3 PUSHING SYNTAX 132

A B.f x .y
D

d1 d2
1

Figure 4.35: A generalized diagram prior to pushing syntax.
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Figure 4.36: A generalized diagram after pushing syntax.

As a second example, we return to the running example used throughout this

chapter. In section 4.2, we transformed this diagram to ∧-linear normal form, as

shown in Figure 4.37. Before pushing syntax, we prefix the diagram with a root

node labelled by a unitary diagram that contains all of the contours of D2, as

shown in Figure 4.38, diagram D3.

This step is not, in fact, necessary in this example, but in general we wish

to collect all contours at the root of a diagram before pushing syntax. This is

because we want each unitary diagram in a given branch to have the same zone

set, and collecting the contours at the root of a diagram allows us to push the
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D2

A .f B . g A .
d1 d3d2

. .n mA .f
d1

.n
1

2 3

Figure 4.37: A running example: ∧-linear normal form.

same set of contours into every branch. Although it is only necessary that unitary

diagrams in the same branch have the same zone set, we push all contours into

each disjunctive branch for convenience. The result is that every unitary diagram

in the resulting generalized diagram has the same zone set.

D3

A .f B . g A .
d1 d3d2

. .n m

d0

.n0A B

1
2 3

Figure 4.38: A running example: prior to pushing syntax.

Pushing the first contour, B, one step forward from the root node of diagram

D3, Figure 4.38, results in diagram D4, Figure 4.39. In diagram D4 the unitary

diagram d11 and d12 reflect the fact that, in diagram D3, the spider labelled 1

may or may not include B in its habitat. The nodes labelled m+ and the unitary

diagrams labelled d+2 and d+3 are copies of their counterparts from D3. In the case

of the unitary diagrams d+2 and d+3 , the nodes they label will have been renamed

so as to be unique in D4.

Figure 4.40 places this section in the larger context of the decision procedure,

where the outer dashed box indicates the current stage. In this stage, a diagram

in ∧-linear normal form, D2, is transformed to a diagram in pushed syntax normal

form, D3. The inner dashed box illustrates the fact that the transformation to

pushed syntax normal form is a two-stage process. First, we collect a full set

of the contours of the original diagram, D2, at the root of the diagram, giving

D′3. This part of the process is described in section 4.3.1. Then we transform D′3

to D3, which is in pushed syntax normal form, by pushing syntax towards the

leaves, as described in section 4.3.2.
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Figure 4.39: A running example: after pushing the first contour one step.
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Figure 4.40: Pushed syntax normal form in the context of the decision procedure.

4.3.1 Preparations for pushing syntax

Before pushing syntax, we want unitary diagrams labelling nodes within a partic-

ular branch to have the same set of contours and zones. This condition is ensured

by the stronger, and conceptually simpler, condition that each unitary diagram

has the same set of zones. There is no guarantee that we can achieve the latter

condition simply by pushing syntax forwards, since a contour may appear in one

branch but not another. In Figure 4.41, diagram D1, for example, we cannot

obtain a diagram with equal zone sets in its unitary diagrams simply by pushing

syntax. Instead, we prepare the diagram by collecting a full set of contours at

its root. In Figure 4.41, diagram D2, we have attached D1 to a diagram that

consists of a single node labelled by the trivial diagram.

In Figure 4.42 we have collected the contours of D2, Figure 4.41, and added
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D1 D2

.
A

B

.
A
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Figure 4.41: Preparing a diagram before pushing syntax, part 1.

them to the root node, producing D3. Since we add the contours so that they split

every zone, we are making no assertions about the intersection or disjointness of

the sets represented, and such an operation will always be valid. So, in the new

root node, we have formed a Venn diagram containing all contours in D3.

D3

.
A

B

A B

Figure 4.42: Preparing a diagram before pushing syntax, part 2.

Rule 5: Attach to trivial diagram. Let D1 be a generalized diagram and

let D> be the generalized diagram that consists of a single node, n, labelled

by the trivial diagram. Let D2 be the diagram obtained by attaching the root

node of D1 to n in D> using ∧ and transformation 16, attach diagram to leaf:

D>
+(n,∧,D1)−−−−−−→ D2. Then D1 can be replaced by D2 and vice versa.

Rule 6: Add contour. We now define the rule which, in the context of a

generalized diagram, adds a contour to a unitary diagram which contains no

spiders, arrows or shading.

Formal description. Let D1 be a generalized diagram that includes a node,

n, labelled by a unitary diagram, d1, where d1 contains no spiders, shading or

arrows. Let c ∈ C −C(d1) and let d2 be the unitary diagram obtained by adding
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c to d1 using transformation 12, add contour, as follows:

d1
+P−−→ d2,

where P = (Zin , Zout , Sin , Sout) satisfies the following:

1. Zin = Zout = C(d1), and

2. Sin = Sout = ∅.

Let D2 be the diagram obtained by using transformation 18, relabel node, to

relabel n by d2 in D1: D1
l(n,d2)−−−→ D2. Then D1 can be replaced by D2 and vice

versa.

We can use the add contour rule to collect a full set of the contours of a

generalized diagram, D, at its root. The final preparation required before pushing

syntax in D is to transform each unitary diagram in D to a Venn diagram. We do

this by adding missing zones. First, we define a rule which adds a missing zone

to a unitary diagram. Recall the definition of missing zones in definition 2.2.6,

page 38.

Rule 7: Add missing zone. We can add a missing, shaded zone to a diagram

by using the add zone transformation. Figure 4.43 shows the addition of the

missing zone ({A,B}, {C}) to d1 to give d2.

d1 d2

A B
f

A B
f

CC

Figure 4.43: An application of add missing zone.

Formal description. Let d1 ( 6= ⊥) be a generalized unitary diagram and z be

a zone such that z ∈ MZ (d1). Let d2 be the diagram obtained by composing

transformation 11, add zone, and transformation 10, add shading, to add z as a

new shaded zone: d1
+z−→ d′1

+z∗−−→ d2. Then we can replace d1 by d2.



4.3 PUSHING SYNTAX 137

Rule 8: Add missing zone (generalized). In order to apply the previous

rule in the context of a generalized diagram, we need to combine that (unitary-

to-unitary) inference rule with the transformation which relabels a node in a

generalized diagram, and now define an inference rule that does so.

Formal description. Let D be a generalized diagram which contains a node,

n, labelled by a unitary diagram, d1, and let z ∈ MZ (d1). Let d2 be the unitary

diagram obtained by using the add missing zone rule to add z to d1. Let D2 be

the generalized diagram obtained by relabelling n by d2 in D1: D1
ρ(n,d2)−−−−→ D2.

Then D1 can be replaced by D2 and vice versa.

d1

d2

d4

A

A C

.

d3

A B.
A C

B

Figure 4.44: A generalized diagram in which we wish to push syntax forwards.

After pushing contours from the root to the leaves of a diagram, we want each

unitary diagram to have not only the same set of contours but the same set of

zones. We achieve this by converting each unitary diagram to its equivalent Venn

form (defined on page38), and by pushing contours so Venn form is maintained.

Definition 4.3.1. Let D1 = (V1, V2, E, l) be a generalized diagram. We define

the Venn form of D1, denoted Venn(D1), to be the diagram, D2, which is a

copy of D1 in which each diagram-labelled node is relabelled by the Venn form

of its label in D1.

4.3.2 Inference rules which push syntax

In order to push syntax, we need to push diagrammatic elements in the right

order. In Figure 4.44, we cannot push the shading in the zone ({A}, {C}) from

d2 to d3 because that zone does not exist in d3. Before we can push the shading

in d2 forwards, we need to push the contours forwards from the root, equalising
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the zone sets of the unitary diagrams. Pushing contours becomes the first step

in the process of pushing syntax.

d1

d21 d31

A B

A C

B

A C

B

.

A C

B
.

A B.

A B.

A B

d22

d41

d42

d32

Figure 4.45: Pushing the first contour forwards.

Figure 4.45 shows the result of pushing B forwards one level from the root

in Figure 4.44. The unitary diagram d2 from Figure 4.44 is replaced by the

disjunction of two new unitary diagrams, d21 and d22. Similarly, d4 is replaced

by the disjunction of d41 and d42. If we continue this process to push all contours

as far as the leaves, the result is the diagram in Figure 4.46. In Figure 4.46,

each unitary diagram has the same zone set. Thus, the habitat of any spider is

present in each unitary diagram, and we are ready to push spiders forward. The

result of pushing spiders, followed by pushing shading, is shown in Figure 4.47.

If there were any arrows to be pushed forwards, this could be done at any time

after pushing contours and spiders is completed, by which point the source and

target of each arrow would necessarily be present in each unitary diagram.

As we have described, we will push contours before any other syntax. However,

we will define the rules in a different order, beginning with the simplest cases,

those rules which push shading and arrows.

Rule 9: Push shading. If a zone z is shaded in a unitary diagram d1 and is

unshaded in d2, the immediate diagram-labelled descendant of d1, where d1 and
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Figure 4.46: Pushing contours forwards.

d2 have the same zone sets and the spiders of d2 are a superset of or equal to the

spiders of d1, then we can add shading to z in d2. Figure 4.48 shows an example.

In diagram D1 the zone (∅, {A}) is shaded in d1 but not in its descendant, d2.

In d2, (∅, {A}) contains a superset of the spiders inhabiting the same zone in d1.

Pushing the shading forward to d2 results in diagram D2.

Formal description. Let D1 be a generalized diagram which includes two

diagram-labelled nodes, n1 and n2, labelled by generalized unitary diagrams d1

and d2 respectively, such that

1. n1 is an immediate diagram-labelled ancestor of n2,

2. Z(d1) = Z(d2),

3. S(d1) ⊆ S(d2), and
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Figure 4.47: Pushing other syntax forwards.
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Figure 4.48: Pushing shading from one unitary diagram to another.
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4. there exists a zone, z, which is shaded in d1 and unshaded in d2: z ∈
Z∗(d1)− Z∗(d2).

Let d3 be the diagram obtained by adding shading to z to d2: d2
+z∗−−→ d3. Let D2

be a copy of D1 in which n2 is relabelled by d3 using transformation 18, relabel

node: D1
l(n2,d3)−−−−→ D2. Then D1 can be replaced with D2 and vice versa.

The next rule we require is one which pushes arrows forwards from one unitary

diagram to another.

Rule 10: Push arrow. Arrows are pushed forward after other types of syntax.

Thus, since contours and spiders have been pushed forward, the sources and

targets of all arrows are necessarily present. Figure 4.49 shows an example: in

D1 the arrow (r, A, x) is present in d1 but not d2. The source and target of

(r, A, x) are present in d2 and so we are able to add the arrow, resulting in D2.

d1
d2

. rA

D1

. .A

d1
d '2

. rA

D2

. .A

.

.r

x x

xx

Figure 4.49: Pushing an arrow from one unitary diagram to another.

Formal description. Let D1 be a generalized diagram which includes two

diagram-labelled nodes, n1 and n2, labelled by generalized unitary diagrams d1

and d2 respectively, such that

1. n1 is the immediate diagram-labelled ancestor of n2,

2. Z(d1) = Z(d2),

3. S(d1) ⊆ S(d2), and
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4. there exists an arrow, (l, s, t), which is present in d1 and not in d2: (l, s, t) ∈
A(d1)− A(d2).

Let d3 be the diagram obtained by adding (l, s, t) to d2: d2
+(l,s,t)−−−−→ d3. Let

D2 be a copy of D1 in which n2 is labelled by d3 using transformation 18, relabel

node: D1
l(n2,d3)−−−−→ D2. Then D1 can be replaced with D2 and vice versa.

Note that conditions (2) and (3) of the previous rule, Z(d1) = Z(d2) and

S(d1) ⊆ S(d2), imply that the source and target of the arrow to be pushed

forwards are present in d2.

We now move on to define rules in which the act of pushing syntax forwards

may result in a disjunction representing various possibilities for the habitat and

identity of spiders. As described in the example illustrated by Figure 4.44, push-

ing a contour results in a disjunction representing the possible habitats of spiders.

We now define the unitary diagrams that make up this disjunction.

Definition 4.3.2. Let d1 be a generalized unitary diagram and let c ∈ C−C(d1).

Let d2 be a diagram obtained under transformation 12, add contour: d1
+P−−→ d2,

where P is of the form (c, Zin , Zout , Sin , Sout) and satisfies the following:

1. Zin = Zout = Z(d1),

2. Sin ⊆ S(d1),

3. Sout = S(d1)− Sin .

Then we say that d2 is an add contour component of d1 for c. We denote the

set of all such unitary diagrams by ACC (c, d1).

In Figure 4.50, diagrams d2 and d3 are the add contour components of d1 for

the contour C.

d2

A B

C

.
d3

A B

C.
d1

A B.

Figure 4.50: Add contour components.
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When making use of add contour components in inference rules, we will require

them to be generalized diagrams with a single node, rather than unitary diagrams.

Thus, we define the add contour component diagrams.

Definition 4.3.3. Let d1 be a generalized unitary diagram, let c ∈ C−C(d1), let

d2 be an add contour component of d1 for c and let n ∈ V . Let D2 = (V,W,E, l)

be the generalized diagram with a single node, n, labelled by d2. That is, D2

satisfies

1. V = {n},

2. W = ∅,

3. E = ∅, and

4. l = {(n, d2)},

Then we say thatD2 is an add contour component diagram of d1 for c. We de-

note a minimal set of add contour component diagrams of d1 for c by ACCD(c, d1),

where each element of ACC (c, d1) labels a unique diagram in ACCD(c, d1).

We will define the rule which pushes contours in the context of an initial

diagram in ∧-linear normal form. The following example illustrates the reason

for this constraint: in Figure 4.51, the unitary diagrams d21 and d22 are the add

contour components for d2 in diagram D1, with respect to the unlabelled derived

contour in unitary diagram d1. Thus, to push forward the derived contour from

d1 to d2, we want to replace the node labelled by d2 with the disjunction of nodes

labelled by d21 and d22. Given that the immediate ancestor of the node labelled

by d2 is a non-linear ∧-labelled node, there is no clear way to do this, without

making complex changes to the structure of D1.

In Figure 4.52, diagram D2 has nodes labelled by the same unitary diagrams as

in diagram D1, Figure 4.51, but the non-linear node is labelled by ∨ rather than ∧.

To push forward the derived contour from d1 to d2, the add contour components

are the same as in the previous case, diagrams d21 and d22, Figure 4.51. In this

example, the node labelled by d2 can be replaced by the disjunction of the add

contour components in a straightforward way, resulting in diagram D3. It is for

this reason that we define the rule which pushes contours in the context of an
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Figure 4.51: Pushing contours without ∧-linear normal form.
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Figure 4.52: Pushing contours with ∧-linear normal form.

initial diagram in ∧-linear normal form. We will apply the same constraint to

the rules which push spiders, as they may also produce a disjunction.

Rule 11: Push contour. We now define the rule which pushes contours for-

wards in a diagram which is in ∧-linear normal form.

Formal description. Let D1 be a generalized diagram in ∧-linear normal form,

containing two diagram-labelled nodes, n1 and n2, labelled by generalized unitary

diagrams d1 and d2 respectively, such that n2 is an immediate diagram-labelled

descendant of n1. Let c be a contour in d1 but not d2: c ∈ C(d1) − C(d2).

Let D2 be the diagram obtained by replacing n2 by the disjunction of the set

of diagrams ACCD(c, d2) in D1 using transformation 23, replace inner node:

D1
ρ(n2,∨,ACCD(c,d2))−−−−−−−−−−−→ D2. Then D1 can be replaced by D2 and vice versa.

Next, we define two rules which push spiders forwards between unitary dia-
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grams having the same set of zones. Pushing forward a spider x from a unitary

diagram d1 to its immediate diagram-labelled descendant d2 gives rise to a dis-

junction representing the possibilities of the identity of x with regard to the

spiders sharing its habitat in d2. As we will see, the possibilities differ according

to whether the habitat of x is shaded in d2. We deal first with the case of pushing

a spider forward into a shaded zone.

When pushing a spider, x, into a shaded zone, we know that the zone contains

exactly as many elements as are represented by spiders. We therefore need to

represent the possibilities for the equality of x with each of the spiders in the zone

of the unitary diagram to which x will be pushed. In Figure 4.53, there are two

spiders in d1, labelled x and y. In d2, there are also two spiders inhabiting A, x

and z. The spider y is omitted from d2 and its habitat in d1 is shaded in d2.

d1 d2

.A

.xy .A

.xz

Figure 4.53: Preparing to push a spider into an shaded zone.

Figure 4.54 shows the result of pushing y forward from d1 to d2 in Figure 4.53.

We know from the shading in the zone ({A}, ∅) in d2, Figure 4.53, that the number

of distinct spiders in that zone cannot increase without changing the meaning of

d2, unless new spiders are joined by a tie to existing spiders. Therefore, pushing

y forwards gives the disjunction of d21 and d22, expressing the fact that y may

be equal to x or z (but not both, since we know that x 6= z from diagram d2,

Figure 4.53).

Similarly to the definition of add contour components, we define the set of

unitary diagrams that make up the possibilities for adding a spider with ties to

the spiders in a particular zone. In Figure 4.54, d21 and d22 are the add spider

with ties components of the spider y in Figure 4.53, diagram d1.

Definition 4.3.4. Let d1 be a generalized unitary diagram, let x ∈ S − S(d1),

let z ∈ Z(d1) and let y ∈ S(z, d1). Let d2 be the diagram obtained by using the

add spider with ties inference rule to add x to d1 with habitat z and with a tie
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d1

.A

.xy d21

.A

.xz

d22

.A

.xz

.y

.y

Figure 4.54: The result of pushing a spider into an shaded zone.

joining x and y. Then we say that d2 is an add spider with ties component

of d1 for x and z. We denote the set of add spider with ties components for all

spiders inhabiting z by ASTC (x, z, d1).

Definition 4.3.5. Let d1 be a generalized unitary diagram, let x ∈ S − S(d1),

let z ∈ Z(d1), let y ∈ S(z, d1) and let d2 be an add spider with ties component of

d1 for x and z. Let n ∈ V and let D2 = (V,W,E, l) be the generalized diagram

with a single node, n, labelled by d2. That is, D2 satisfies

1. V = {n},

2. W = ∅,

3. E = ∅, and

4. l = {(n, d2)},

Then we say that D2 is an add spider with ties component diagram of d1

for x and z. We denote a minimal set of add spider with ties component diagrams

of d1 for c by ASTCD(x, z, d1), where each element of ASTC (x, z, d1) labels a

unique diagram in ASTCD(x, z, d1).

Rule 12: Push spider (shaded habitat). Given two unitary diagrams, d1 and

d2, and a spider, x, in S(d1) − S(d2), there is a case in which there are no add
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spider with ties components for x. This is illustrated by Figure 4.55. There are

no add spider with ties components of d2 for the spider labelled x. We can see

that d1 and d2 are mutually inconsistent, as they make incompatible assertions

about the cardinality of the set represented by A. A rule which pushed x from d1

to be d2 would be unsound, and so we exclude this case in the following definition.

d1 d2

AA .x

Figure 4.55: Inconsistency due to spiders and shading.

Formal description. Let D1 be a generalized diagram in ∧-linear normal form,

containing two diagram-labelled nodes, n1 and n2, labelled by generalized unitary

diagrams, d1 and d2, respectively, such that:

1. n1 is the immediate diagram-labelled ancestor of n2,

2. Z(d1) = Z(d2),

3. there exists a spider, x, which is present in d1 and missing from d2: x ∈
S(d1)− S(d2),

4. the habitat of x is shaded in d2: ηd1(x) ∈ Z∗(d2), and

5. the habitat of x contains one or more spiders in d2: S(ηd1(x), d2) 6= ∅.

Let D = ASTCD(x, ηd1(x), d2) and let D2 be the diagram obtained by using

transformation 23, replace inner node, to replace n2 by the disjunction of the

diagrams in D in D1: D1
ρ(n2,∨,D)−−−−−→ D2. Then D1 can be replaced by D2 and vice

versa.

As we saw in the example illustrated by Figure 4.55, if conditions (1) to (4) of

the above rule are met, but condition (5) is not met, then the diagram in question

is inconsistent. When we encounter such a situation, we want to ‘record’ it, in

some sense, to make use of the information in later steps. We do this by taking

a diagram such as that shown in Figure 4.55, relabelling the first node in the
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pair that gives rise to the inconsistency (the root node, in this example) by ⊥,

the unitary diagram that represents falsity, and then removing the descendants

of the node.

Rule 13: Replace inconsistent pair. We now define an inference rule which

replaces diagrams such as that shown in Figure 4.55 with ⊥.

Formal description. Let D1 be a generalized diagram which includes two

diagram-labelled nodes, n1 and n2, labelled by generalized unitary diagrams, d1

and d2, respectively, such that:

1. n2 is an immediate diagram-labelled descendant of n1,

2. Z(d1) = Z(d2),

3. there exists a spider, x, which is present in d1 and missing in d2: x ∈
S(d1)− S(d2),

4. the habitat of x is shaded in d2: ηd1(x) ∈ Z∗(d2), and

5. the habitat of x contains no spiders in d2: S(ηd1(x), d2) = ∅.

Let X be the set of sub-diagrams of D1 induced by the immediate diagram-

labelled descendants of n2 and let D′1 be the diagram obtained by using transfor-

mation 13, remove sub-diagram, to remove all members of X from D1:

D1
−X1−−→ DX1 . . . DX(n−1)

−Xn−−→ D′1,

for X = {X1 . . . Xn}. Let D2 be the diagram obtained by using transformation 18,

relabel node, to relabel n2 by ⊥ in D′1: D
′
1

l(n2,⊥)−−−−→ D2. Then D1 can be replaced

by D2 and vice versa.

We now turn to pushing spiders into unshaded zones. Unlike the previous

case, this cannot give rise to inconsistencies.

Rule 14: Push spider (unshaded habitat). In Figure 4.56 the spider labelled

x in d1 is not present in d2. In order to push x from d1 to d2 we need to include the

case where x represents the same element as does the unlabelled spider inhabiting

the zone ({A}, ∅) in d2, and the case where it does not.
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d1 d2

. rA A

...x
r.

Figure 4.56: Preparing to push a spider into an unshaded zone.

Figure 4.57 shows the result of pushing the spider, x, from d1 to d2 in Fig-

ure 4.56. The possibilities for the equality or inequality of x with the spiders

sharing its habitat in d2 are represented by the disjunction of the diagrams d21

and d22. These diagrams comprise the add spider with ties components for x

and the zone ({A}, ∅) and one extra diagram, in which x represents a distinct

element.

d1

. rA

..x

A

.r.

A

.r..x

.x
d21

d22

Figure 4.57: The result of pushing a spider into an unshaded zone.

Formal description. Let D1 be a generalized diagram which includes two

diagram-labelled nodes, n1 and n2 labelled by generalized unitary diagrams d1

and d2 respectively such that

1. n1 is the immediate diagram-labelled ancestor of n2,

2. Z(d1) = Z(d2),

3. there exists a spider, x, which is present in d1 and missing in d2: x ∈
S(d1)− S(d2), and
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4. the habitat of x is unshaded in d2: ηd1(x) 6∈ Z∗(d2).

Let dx be the diagram obtained by adding x to d2 with habitat ηd1(x):

d2
+(x,ηd1 (x))−−−−−−→ dx. Let D be the set of diagrams formed as follows:

D = {dx} ∪ ASTCD(x, ηd1(x), d2).

Let D2 be the diagram obtained by using transformation 23, replace inner node,

to replace n2 by the disjunction of the diagrams in D in D1: D1
ρ(n2,∨,D)−−−−−→ D2.

Then D1 can be replaced by D2 and vice versa.

4.3.3 Validity of the inference rules which push syntax

In this section we show that the rules required by the process of pushing syntax

are sound.

Theorem 4.3.1: Rule 5, attach to trivial diagram, is valid. Let D1 be a gener-

alized diagram and let D> be the generalized diagram that consists of a single

node, n, labelled by the trivial diagram. Let D2 be the diagram obtained by

using the rule to attach the root node of D1 to n in D>. Then D1 ≡� D2.

Proof. Let I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ).

The formula for D2 is equal to the formula for D> conjoined with that for D1:

form(D2) = form(D>) ∧ form(D1). The formula for D> is always true, and so

the formula for D2 is true whenever the formula for D1 is true. Thus, if I ′ is valid

for D1, it is also valid for D2 and D1 � D2. We can see that D2 � D1 by a similar

argument, so D1 ≡� D2.

Theorem 4.3.2: Rule 6, add contour, is valid. Let D1 be a generalized diagram

that includes a node, n, labelled by a unitary diagram, d1, where d1 contains no

spiders, shading or arrows. Let c ∈ C−C(d1). Let D2 be the diagram obtained by

using the rule to relabel n by a unitary diagram that contains c. Then D1 ≡� D2.

Proof. As in the definition of the rule, let d2 be the unitary diagram obtained by

adding c to d1 using transformation 12, add contour, as follows:

d1
+P−−→ d2,

where P = (Zin , Zout , Sin , Sout) satisfies the following:
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1. Zin = Zout = C(d1), and

2. Sin = Sout = ∅.

Let I = (U,Ψ,Φ) be a model for d1 with valid extension I ′ = (U,Ψ′,Φ). In

[38, p74], in the proof of the corresponding add contour rule for SD2, it is shown

that Ψ′(Z(d1)) = Ψ′(Z(d2)). Therefore, the plane tiling condition holds for d2

under I ′. Since d1, and therefore d2, contain no spiders, shading or arrows, the

other conditions hold trivially and form(d2) is true under I ′. Diagram D2 is a

copy of D1 in which d1 is replaced by d2, so it follows that I ′ is valid for D2 and

D1 � D2. Conversely, the result in [38, p74] states that the plane tiling condition

is true for d1 whenever it is true for d2, so we can show that D2 � D1 by a similar

argument. Therefore, D1 ≡� D2 as required.

Before showing that the rule which adds missing zones to a diagram is valid,

we state the result which shows that missing zones represent the empty set.

Lemma 4.3.1. Let d be a generalized unitary diagram and let I = (U,Ψ,Φ) be a

model for d with valid extension I ′ = (U,Ψ′,Φ). Let z ∈ MZ (d). Then Ψ′(z) = ∅.

Proof. By the plane tiling condition for d, Ψ′(Z(d)) = U . Since distinct zones

represent disjoint sets in U , Ψ′(z) = ∅.

Theorem 4.3.3: Rule 7, add missing zone, is valid. Let d1 (6= ⊥) be a generalized

unitary diagram and z be a zone such that z ∈ MZ (d1). Let d2 be the diagram

obtained by using the rule to add z to d1. Then d1 ≡� d2.

Proof. Let I = (U,Ψ,Φ) be a model for d1 with valid extension I ′ = (U,Ψ′,Φ).

Since z is missing from d1 and by lemma 4.3.1, Ψ′(z) = ∅. The diagram d2 is a

copy of d1 which includes z as an untouched, shaded zone. Thus, the plane tiling

condition holds for d2 under I ′. We know that S(z, d2) = ∅, so the shaded zones

condition holds since

Ψ′(z) =
( ⋃
x∈S(z,d2)

Ψ′(x)
)

= ∅.

The other conditions hold trivially, and so I ′ is valid for d2 and d1 � d2. We

can show that d2 � d1 by a similar argument, and so d1 ≡� d2.
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Theorem 4.3.4: Rule 8, add missing zone (generalized), is valid. Let D be a

generalized diagram which contains a node, n, labelled by a unitary diagram, d1

( 6= ⊥), and let z ∈ MZ (d). Let D2 be the generalized diagram obtained by using

the rule to relabel n by a unitary diagram that contains z. Then D1 ≡� D2.

Proof. Let I = (U,Ψ,Φ) be a model for D1 with valid extension I ′ = (U,Ψ′,Φ).

As in the definition of the rule, let d2 be the unitary diagram obtained by using

the add missing zone rule to add z to d1. The formula for D2 is equivalent to

a copy of the formula for D1 in which the sub-formula form(d1) is replaced by

form(d2). By the soundness of the rule 7, add missing zone, d1 � d2 and so

form(d2) is true under I ′ if form(d1) is true under I ′. It follows that I ′ is valid

for D2 and D1 � D2. By theorem 4.3.3, it is also true that d2 � d1 and so, by the

same argument, D2 � D1 and D1 ≡� D2 as required.

Recall the definition of the Venn form of generalized diagrams, given in defi-

nitions 2.2.6 and 4.3.1. We can produce the Venn form of a generalized diagram,

D, by repeated application of rule 8, add missing zone (generalized). By the

soundness of this rule, the Venn form of D has an equivalent meaning to D.

Corollary 4.3.1. Let D be a generalized diagram. Then D ≡� Venn(D).

Proof. Each diagram-labelled node in Venn(D) is labelled by a unitary diagram,

say d̂, which is the Venn form of the diagram labelling the corresponding node in

D, say d. So, d̂ = Venn(d). Venn(d) can be produced by repeated applications

of rule 7, add missing zone, and by theorem 4.3.3, d ≡� Venn(d). Since the same

is true for each diagram-labelled node, it follows that D ≡� Venn(D).

Next, we show that the rules which push syntax are sound.

Theorem 4.3.5: Rule 9, push shading, is valid. Let D1 be a generalized diagram

which includes two diagram-labelled nodes, n1 and n2 labelled by generalized

unitary diagrams d1 and d2 respectively such that

1. n1 is the immediate diagram-labelled ancestor of n2,

2. Z(d1) = Z(d2),

3. S(d1) ⊆ S(d2), and
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4. there exists a zone, z, which is shaded in d1 and unshaded in d2: z ∈
Z(d1)− Z(d2).

Let d3 be the diagram obtained by adding shading to z in d2: d2
+z∗−−→ d3. Let

D2 be the diagram obtained by using the rule to relabel n2 in D1 by d3. Then

D1 ≡� D2.

Proof. Let I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ). We

will show that I ′ is valid for D1 if and only if I ′ is valid for D2. First, we show

that if I ′ is valid for d1 and d2, then I ′ is valid for d3. Now, the semantic formula

for d3 is equivalent to that for d2 conjoined with the shaded zones condition for

z:

form(d3) ≡ form(d2) ∧
(
Ψ′(z) =

⋃
x∈S(z,d2)

Ψ′(x)
)
. (4.2)

Trivially, we see that to establish the truth of form(d3), we must show Ψ′(z) =⋃
x∈S(z,d2)

Ψ′(x). Now, by the shaded zones condition for d1,

Ψ′(z) =
⋃

x∈S(z,d1)

Ψ′(x). (4.3)

By the spiders habitat condition for d2,⋃
x∈S(z,d2)

Ψ′(x) ⊆ Ψ′(z). (4.4)

Since S(z, d2) = S(z, d3) we have, by (4.4),⋃
x∈S(z,d3)

Ψ′(x) ⊆ Ψ′(z). (4.5)

Suppose there exists an element, e, where

e ∈ Ψ′(z)−
⋃

x∈S(z,d3)

Ψ′(x). (4.6)

That is, (4.5) is, in fact, a proper subset relationship. By (4.3), {e} is mapped

to a spider, say x, in d1: Ψ′(x) = {e}. Since x ∈ S(d1), we further know that
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x ∈ S(d2), since S(d1) ⊆ S(d2). By the spiders habitat condition for d2,

Ψ′(x) ⊆ Ψ′(ηd2(x)).

From this, and since distinct zones represent disjoint sets, it follows that

ηd2(x) = z. Now ηd2(x) = ηd3(x) = z, contradicting (4.6). Hence,⋃
x∈S(z,d3)

Ψ′(x) = Ψ′(z),

as required. Hence, form(d3) is true and I ′ is valid for d3. Diagram D2 is a copy

of D1 in which d2 is replaced by d3, and so I ′ is valid for D2 if I ′ is valid for D1.

Next, we show the reverse. By (4.2), we can see that form(d3) implies

form(d2), so if form(d1) and form(d3) are true under I ′, then form(d2) is true

under I ′. That is, I ′ is valid for d2 and, since D1 is a copy of D2 in which d3 is

replaced by d2, I
′ is valid for D1 if I ′ is valid for D2. Therefore, D1 ≡� D2 as

required.

Theorem 4.3.6: Rule 10, push arrow, is valid. Let D1 be a generalized diagram

which includes two diagram-labelled nodes, n1 and n2 labelled by generalized

unitary diagrams d1 and d2 respectively such that

1. n2 is an immediate diagram-labelled descendant of n1,

2. Z(d1) = Z(d2),

3. S(d1) ⊆ S(d2), and

4. there exists an arrow, (l, s, t), which is present in d1 and not in d2: (l, s, t) ∈
A(d1)− A(d2).

Let d3 be the diagram obtained by adding (l, s, t) to d2, or d2
+(l,s,t)−−−−→ d3 and

let D2 be the diagram obtained by using the rule to relabel n2 by d3 in D1. Then

D1 ≡� D2.

Proof. Let I = (U,Ψ,Φ) be a model for D1 with valid extension I ′ = (U,Ψ′,Φ).

We will show that I models D2, and in particular that I ′ is valid for D2. Consider

the semantic formula for D2. Now, the semantic formula for d3 is equivalent to
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that of d2 conjoined with Ψ′(s).Φ(l) = Ψ′(t):

form(d3) = form(d2) ∧Ψ′(s).Φ(l) = Ψ′(t). (4.7)

Moreover,

form(d1) ∧ (form(d2) . . . ) (4.8)

is equivalent to a sub-formula of form(D1), so by (4.7),

form(d1) ∧ ((form(d2) ∧Ψ′(s).Φ(l) = Ψ′(t)) . . . ) (4.9)

is a sub-formula of form(D2). If (4.8) is true, we know Ψ′(s).Φ(l) = Ψ′(t) since

(l, s, t) ∈ A(d1) and by the arrows condition for d1. So, if (4.8) is true then so

is (4.9). Clearly it follows then that I ′ is valid for D2 and D1 � D2. D2 is a

copy of D1 with one extra arrows, and so the argument which shows D2 � D1 is

straightforward. Hence, D1 ≡� D2.

Theorem 4.3.7: Rule 11, push contour, is valid. LetD1 be a generalized diagram

which includes two diagram-labelled nodes, n1 and n2, labelled by generalized

unitary diagrams d1 and d2 respectively, such that n1 is the immediate diagram-

labelled ancestor of n2. Let c be a contour in d1 but not d2: c ∈ C(d1)− C(d2).

Let D2 be the diagram obtained by using the rule to add c to d2. Then D1 ≡� D2.

Proof. Let I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ). We

will show that I ′ is valid for D1 if and only if I ′ is valid for D2. First, we show

that if I ′ is valid for d1 and d2, then I ′ is valid for one of the unitary diagrams

in the set ACC (c, d2), the add contour components for c in d2. First, we show

that the plane tiling condition is true for each di ∈ ACC (c, d2). By the definition

of add contour components, c is added to d2 so that it splits every zone, or

Zin = Zout = Z(d2). Thus, by the definition of the add contour transformation,

for each zone (in, out) ∈ Z(d2), the zones (in ∪ {c}, out) and (in, out ∪ {c}) are

in Z(di). By corollary 2.3.1,

Ψ′(in, out) = Ψ′(in ∪ {c}, out) ∪Ψ′(in, out ∪ {c})

= Ψ′((in ∪ {c}, out), (in, out ∪ {c})).
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Thus we have

Ψ′(Z(d2)) =
⋃

(in,out)∈Z(d2)

Ψ′(in, out)

=
⋃

(in,out)∈Z(d2)

Ψ′((in ∪ {c}, out), (in, out ∪ {c}))

= Ψ′(Z(di)). (4.10)

Therefore the plane tiling condition is true for di under I ′ if it is true for d2. Next,

we show that the remaining conditions hold for some member of ACC (c, d2),

beginning with the spiders habitat condition. Let Sin and Sout be defined as

follows:

Sin = {x ∈ S(d2) : Ψ′(x) ⊆ Ψ′(in ∪ c, out)}, (4.11)

and

Sout = {x ∈ S(d2) : Ψ′(x) ⊆ Ψ′(in, out ∪ c)}. (4.12)

By the spiders’ distinctness condition for d2, Sin and Sout partition S(d2).

By the definition of add contour components, we know that there is a unitary

diagram in ACC (c, d2) where c was added to d2 using Sin and Sout to parametrise

the add contour rule. Let di be such a unitary diagram. By the spiders habitat

condition for d2, and by (4.11) and (4.12), the spiders habitat condition is true

for di under I ′ if it is true for d2.

We now show that the shaded zones condition holds for di. Let (in, out) ∈
Z∗(di). Either c ∈ in or c ∈ out . Assume c ∈ in. In this case,

S((in, out), di) = {x ∈ Sin : x ∈ S((in − {c}, out), d2)}.

Let e be an element in Ψ′(in, out). Since c ∈ in and by the definition of Ψ′

for zones, e ∈ Ψ′(c) and e ∈ Ψ′(in − {c}, out). By the definition the rule, we

know that the zone (in − {c}, out) is shaded in d2 since (in, out) is shaded in di.

By the shaded zones condition for d2, e is represented by a spider, say x, in d2.

By (4.11), x ∈ Sin , so x ∈ S((in, out), di). Since this is true for any e, we have

Ψ′(in, out) =
⋃

x∈S((in,out),di)

Ψ′(x).
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Thus the shaded zones condition is true for (in, out) in di under I ′ if c ∈ in.

If c is instead in out , then the reasoning is similar. Therefore the shaded zones

condition is true for di under I ′ if it is true for d2. Now, the spiders’ distinctness

and arrows conditions are unaffected since di contains the same spiders and arrows

as d2. Thus, both conditions hold for di under I ′ if they hold for d2, and so

form(d2) implies form(di). Thus,

form(d2)⇒
∨

di∈ACC (c,d2)

form(di).

The formula for D2 is equivalent to a copy of the formula for D1 in which

form(d2) is replaced by the above disjunction. So we can see that the formula for

D2 is true under I ′ whenever the formula for D1 is true, and D1 � D2.

To show the reverse, we will show that the formula for any di ∈ ACC (c, d2)

implies the formula for d2. Let di ∈ ACC (c, d2). By (4.10), the plane tiling

condition is true for d2 under I ′ when it is true for di. To show the shaded zones

condition, let (in, out) ∈ Z∗(d2) and assume that the shaded zones condition is

true for di under I ′. By the definition of the rule, the zones (in ∪ {c}, out) and

(in, out ∪ {c}) are shaded in di. Then

Ψ′(in ∪ {c}, out) =
⋃

x∈S((in∪{c},out),di)

Ψ′(x), (4.13)

and

Ψ′(in, out ∪ {c}) =
⋃

x∈S((in,out∪{c}),di)

Ψ′(x). (4.14)

By corollary 2.3.1,

Ψ′(in, out) = Ψ′(in ∪ {c}, out) ∪Ψ′(in, out ∪ {c}), (4.15)

which we can rewrite by (4.13) and (4.14):

Ψ′(in, out) =
( ⋃
x∈S((in∪{c},out),di)

Ψ′(x)
)
∪
( ⋃
x∈S((in,out∪{c}),di)

Ψ′(x)
)
. (4.16)

By the definition of the rule, each spider x ∈ S((in, out), d2) is in S(di) and

either x ∈ Sin or x ∈ Sout . If x ∈ Sin , then x ∈ S((in ∪ {c}, out), di), and if
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x ∈ Sout , then x ∈ S((in, out ∪ {c}), di). Therefore,

S((in, out), d2) ⊆ S((in ∪ {c}, out), di) ∪ S((in, out ∪ {c}), di). (4.17)

We know that Sin and Sout partition the spiders of di, and thus they also

partition the spiders of d2. Therefore, if x ∈ Sin or x ∈ Sout , then x is in S(d2),

so

S((in ∪ {c}, out), di) ∪ S((in, out ∪ {c}), di) ⊆ S((in, out), d2).

By this and (4.17),

S((in, out), d2) = S((in ∪ {c}, out), di) ∪ S((in, out ∪ {c}), di).

By this and the shaded zones condition for di,

Ψ′(in, out) =
⋃

x∈S((in,out),d2)

Ψ′(x),

and the shaded zones condition is true for d2 under I ′ if it is true for di.

To show the spiders habitat condition, let x ∈ S(d2) and let (in, out) = ηd2(x).

Assume that the spiders habitat condition is true for di under I ′. We will show

that Ψ′(x) ⊆ Ψ′(in, out). We know that x ∈ S(di) and either x ∈ Sin , in which

case x ∈ S((in∪{c}, out), di), or x ∈ Sout , in which case x ∈ S((in, out∪{c}), di).
Therefore,

Ψ′(x) ⊆ Ψ′(in ∪ {c}, out) ∪Ψ′(in, out ∪ {c}) by SHC (di)

⊆ Ψ′(in, out) by (4.15).

Thus, the spiders habitat condition is true for d2 under I ′ if it is true for di.

Again, the spiders distinctness and arrows conditions are unaffected, so both con-

ditions hold for d2 under I ′ if they hold for d2, and so form(di) implies form(d2).

It follows that ( ∨
di∈ACC (c,d2)

form(di)
)
⇒ form(d2).

Similarly to before, the formula for D1 is equivalent to a copy of the formula

for D2 in which the above disjunction is replaced by form(d2). Thus, the formula
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for D1 is true under I ′ whenever the formula for D2 is true, and D2 � D1 and

D1 ≡� D2 as required.

Theorem 4.3.8: Rule 12, push spider (shaded habitat), is valid. Let D1 be a gen-

eralized diagram in ∧-linear normal form, containing two diagram-labelled nodes,

n1 and n2, labelled by generalized unitary diagrams, d1 and d2, respectively, such

that:

1. n1 is the immediate diagram-labelled ancestor of n2,

2. Z(d1) = Z(d2),

3. there exists a spider, x, which is present in d1 and missing from d2: x ∈
S(d1)− S(d2),

4. the habitat of x is shaded in d2: ηd1(x) ∈ Z∗(d2), and

5. the habitat of x contains one or more spiders in d2: S(ηd1(x), d2) 6= ∅.

Let D = ASTCD(x, ηd1(x), d2) and let D2 be the diagram obtained by using the

rule to replace the node n2 in D1 by the disjunction of D. Then D1 ≡� D2.

Proof. Let I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ). We

will show that I ′ is valid for D1 if and only if I ′ is valid for D2. First, we show

that if I ′ is valid for d1 and d2, then I ′ is valid for one of the unitary diagrams in

the set ASTC (x, ηd1(x), d2), the add spider with ties components for x in d2. The

plane tiling condition holds for each di ∈ ASTC (x, ηd1(x), d2) trivially, if it is true

for d1 and d2. By condition (5), the habitat of x contains one or more spiders in

d2. Thus, the shaded zones condition is true for each di ∈ ASTC (x, ηd1(x), d2)

if it is true for d2, since x is joined by a tie to a spider in the zone which it is

placed, and the number of distinct spiders is not increased. The spiders habitat

condition is true for each di ∈ ASTC (x, ηd1(x), d2) if it is true in d1, since x is

placed in the zone ηd1(x). To show the spiders’ distinctness condition, choose a

di ∈ ASTC (x, ηd1(x), d2) such that x is tied to exactly those spiders in d2 with

which it is equal:

(x, y) ∈ τdi ⇔ Ψ′(x) = Ψ′(y), (4.18)

for y ∈ S(ηd1(x), d2). It follows that the spiders’ distinctness condition is true for

di under I ′ if it is true for d2. By the definition of add spider with ties components,
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such a di exists. Thus, form(d1) and form(d2) imply form(di), and

(
form(d1) ∧ form(d2)

)
⇒

∨
di∈ASTC (x,ηd1 (x),d2)

form(di).

The formula for D2 is equivalent to a copy of the formula for D1 in which

form(d2) is replaced by the above disjunction. So we can see that the formula for

D2 is true under I ′ whenever the formula for D1 is true, and D1 � D2.

We can see that, for each di ∈ ASTC (x, ηd1(x), d2), form(di) implies form(d2),

since form(d2) is a sub-formula of form(di). Therefore,

( ∨
di∈ASTC (x,ηd1 (x),d2)

form(di)
)
⇒ form(d2).

As before, it follows from this that the formula for D1 is true under I ′ whenever

the formula for D2 is true, D2 � D1 and D1 ≡� D2 as required.

Theorem 4.3.9: Rule 13, replace inconsistent pair, is valid. Let D1 be a gen-

eralized diagram which includes two diagram-labelled nodes, n1 and n2, labelled

by generalized unitary diagrams, d1 and d2, respectively, such that:

1. n2 is an immediate diagram-labelled descendant of n1,

2. Z(d1) = Z(d2),

3. there exists a spider, x, which is present in d1 and missing in d2: x ∈
S(d1)− S(d2),

4. the habitat of x is shaded in d2: ηd1(x) ∈ Z∗(d2), and

5. the habitat of x contains no spiders in d2: S(ηd1(x), d2) = ∅.

Let D2 be the diagram obtained by using the rule to remove the descendants

of n2 from D1 and to relabel n2 by ⊥. Then D1 ≡� D2.

Proof. Let I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ).

If the spiders habitat condition is true for d1 then Ψ′(ηd1(x)) 6= ∅. However,

S(ηd1(x), d2) = ∅, and since ηd1(x) ∈ Z∗(d2), Ψ′(ηd1(x)) = ∅. Therefore, if the

spiders habitat condition is true for d1, then the shaded zones condition is false

for d2. By a similar argument, if the shaded zones condition is true for d2 then
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the spiders habitat condition is false for d1. Thus, form(d1) and form(d2) cannot

be true at the same time. Let Dn2 be the sub-diagram of D1 induced by n2. Let

X be the set of sub-diagrams of D1 induced by the immediate diagram-labelled

descendants of n1 and suppose that n�, the immediate descendant of n1, is labelled

by ∨. Then the formula for D1 contains the following subformula:

form(d1) ∧
∨
Xi∈X

form(Xi). (4.19)

We know that Dn2 ∈ X and that form(Dn2) is prefixed by form(d2). Since

form(d1)∧ form(d2) evaluates to ⊥, form(d1)∧ form(Dn2) evaluates to bot . Thus,

(4.19) is equivalent to

form(d1) ∧
∨

Xi∈(X−Dn2 )∪{⊥}

form(Xi). (4.20)

The formula for D2 is a copy of the formula for D1 in which (4.19) is replaced

by (4.20). Thus, if n�, the immediate descendant of n1, is labelled by ∨, then

D1 is satisfiable if and only if D2 is satisfiable. If n� is labelled by ∧, the result

follows by a similar argument. Therefore, D1 ≡� D2 as required.

Theorem 4.3.10: Rule 14, push spider (unshaded habitat), is valid. Let D1

be a generalized diagram which includes two diagram-labelled nodes, n1 and n2

labelled by generalized unitary diagrams, d1 and d2, respectively such that

1. n1 is the immediate diagram-labelled ancestor of n2,

2. Z(d1) = Z(d2),

3. there exists a spider, x, which is present in d1 and missing in d2: x ∈
S(d1)− S(d2), and

4. the habitat of x is unshaded in d2: ηd1(x) 6∈ Z∗(d2).

Let dx be the diagram obtained by adding x to d2 with habitat ηd1(x):

d2
+(x,ηd1 (x))−−−−−−→ dx. Let D be the set of diagrams formed as follows:

D = {dx} ∪ ASTCD(x, ηd1(x), d1).
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Let D2 be the diagram obtained by using the rule to replace the node n2 by the

disjunction of the diagrams in D. Then D1 ≡� D2.

Proof. Let I = (U,Ψ,Φ) be a model for D1 with valid extension I ′ = (U,Ψ′,Φ).

We will show that I models D2, and in particular that I ′ is valid for D2. If Ψ′(x)

is represented by a spider in d2, the proof is the same as that of theorem 4.3.8.

Suppose that this is not the case. That is, Ψ′(x) 6= Ψ′(y) for all y ∈ S(ηd1(x), d2).

The formula for dx is equal to the formula for d2 conjoined with the two statements

Ψ′(x) ∈ Ψ′(ηdx(x)) (the spiders’ habitat condition for dx) and Ψ′(x) 6= Ψ′(y) for

all spiders y ∈ S(ηd1(x), d2) (the spiders distinctness condition for dx). We know

that ηdx(x) = ηd1(x) and that Ψ′(x) ∈ Ψ′(ηd1(x)) by the spiders’ habitat condition

for d1, and so the spiders habitat condition is true for dx under I ′ if it is true

in d1. We know that x 6∈ S(d2) and have assumed that x is not represented by

any of the spiders of d2, so the spiders distinctness condition holds for dx under

I ′ if it holds for d2. The other conditions are trivially true, and so we have the

following: (
form(d1) ∧ form(d2)

)
⇒ form(dx).

Since dx ∈ D,

(
form(d1) ∧ form(d2)

)
⇒
∨
d′∈D

form(d′). (4.21)

The formula for D2 is equivalent to a copy of the formula for D1 in which

form(d2) is replaced by the above disjunction, and so I ′ is valid for D2 and

D1 � D2. The steps required to show that D2 � D1 are the same as those in the

proof of theorem 4.3.8, and so D1 ≡� D2 as required.

4.3.4 Pushed syntax normal form

We are now able to define the normal form possessed by a diagram in which

all syntax has been pushed to the leaves, and show that an initial diagram can

be transformed into an equivalent diagram that has this form. In Figure 4.58,

diagram D7 is the diagram obtained by pushing all syntax to the leaves in our

running example. So, diagram D7 is in pushed syntax normal form. Note that this

results in several inconsistencies: in the unitary diagram d32, the spider labelled

3 inhabits a zone outside of B, something which its immediate diagram-labelled
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ancestor tells us cannot be true. Such inconsistencies are detected and removed

in the following section.
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Figure 4.58: A running example: pushed syntax normal form.

Pushed syntax normal form will be defined in terms of an ordering over the

syntax of a generalized diagram. Given two unitary diagrams, d1 and d2, d1 is a

syntactic sub-diagram of d2 if and only if all of the syntax of d1 appears within

d2. In Figure 4.59, d1 is a syntactic sub-diagram of d2 and it is easy to see that

we can remove syntax from d2 to produce d1.

Definition 4.3.6. Let d1 and d2 be generalized unitary diagrams. We say that d1

is a syntactic sub-diagram of d2, denoted d1 ⊆S d2, if and only if the following

is true:

1. Z(d1) = Z(d2),

2. Z∗(d1) ⊆ Z∗(d2),
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d1 d2

A .
f

B A .
f

B.
.

g
.

Figure 4.59: The syntactic sub-diagram relationship.

3. S(d1) ⊆ S(d2),

4. A(d1) ⊆ A(d2).

Recall that a diagram in ∧-linear normal form is one in which all ∧-labelled

nodes are linear. We build on this normal form in the next definition.

Definition 4.3.7. Let D be a generalized diagram in ∧-linear formal form. If,

for each pair of diagram-labelled nodes n1 and n2, labelled by unitary diagrams

d1 and d2, where n1 is the immediate diagram-labelled ancestor of n2, it is the

case that either d1 ⊆S d2 or d2 = ⊥, then we say that D is in pushed syntax

normal form.

Next we state the algorithm used to transform a diagram in ∧-linear normal

form to one in pushed syntax normal form.

Algorithm 2 (∧-linear normal form to pushed syntax normal form). Let D1

be a generalized diagram in ∧-linear normal form which is not in pushed syntax

normal form and where each diagram-labelled node, ni, in D1 is labelled by a

unitary diagram named di. Transform D1 into a diagram, D2, using the following

steps.

1. Use rule 5, attach to trivial diagram, to attach D1 to the trivial generalized

diagram, obtaining E1. Let C be the (finite) contour set of E1.

2. Use repeated applications of rule 6, add contour (contours only), to add

each element of C to the root node of E1, obtaining E2.

3. Use rule 8, add missing zone (generalized), to add missing zones to each

unitary diagram labelling a node in E2 until each unitary diagram is trans-

formed to a Venn diagram, calling the resulting generalized diagram E3.
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4. Next, push the contours of E3 towards its leaves, as described below, start-

ing with the root node, say n0. If n0 is a leaf node then we are done.

Otherwise, pick an immediate diagram-labelled descendant, say n1. We

compare the contours of d0 to those of d1. If there exists a contour, c, in

C(d0) − C(d1), we use rule 11, push contour, to push c from d0 to d1, and

continue in this way until C(d0) = C(d1). Next, we push contours from

d0 to the unitary diagram labelling the next immediate diagram-labelled

descendant of n0, if any. We carry on in this way until all contours have

been pushed to each unitary diagram in E3, obtaining diagram E4, in which

each unitary diagram has the same zone set.

5. Next, push the spiders of E4 towards its leaves. Recall that the root node

of E4 contains no spiders; therefore, choose one of the immediate diagram-

labelled descendants of n0, say n1, and an immediate diagram-labelled de-

scendant of n1, say n2, and begin to push spiders from d1 to d2. Let x be

a spider in S(d1) − S(d2) and assume the habitat of x is shaded in d2. In

order for rule 12, push spider (shaded habitat), to be applicable, we require

the following to be true:

(a) Z(d1) = Z(d2),

(b) x is present in d1 and missing in d2,

(c) the habitat of x is shaded in d2, and

(d) the habitat of x contains one or more spiders in d2.

Conditions 5a to 5c are true since we have equalised the zone sets of the

unitary diagrams in E4 in step (4), and by assumption. If condition 5d is

true, use rule 12 to push x from d1 to d2, giving diagram E ′4. If condition 5d

is false, use rule 13, replace inconsistent pair, to relabel n1 by ⊥ and remove

its descendants from E4, giving diagram E ′4.

Otherwise, the habitat of x is not shaded in d2. Then we use rule 14, push

spider (unshaded habitat) to push x from d1 to d2. Note that the conditions

of the rule are met since Z(d1) = Z(d2). As with the contours, we carry on

this process until, for each branch, all spiders have been pushed as far as

the leaf or the branch has a leaf node labelled by ⊥. Let E5 be the resulting

generalized diagram.
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6. Next, we use rule 9, push shading, to push the shading in zones from each

unitary diagram in E5 to its immediate diagram-labelled descendants. Now,

during the previous step we may have introduced ⊥ as the label of leaf

nodes. Therefore we know that, for each unitary diagram di and immediate

diagram-labelled descendant dj, Z(di) = Z(dj) and S(di) ⊆ S(dj), or dj =

⊥. If dj = ⊥, we do not push shading. If dj 6= ⊥, the conditions for the use

of rule 9 to push the shading from each zone which is shaded in di but not

dj are met, and we do so. We continue this process for each branch until

we reach the leaf and call the resulting diagram E6.

7. Finally, we use rule 10, push arrow, to push arrows from each unitary

diagram to its immediate diagram-labelled descendants. As with shading,

we know that, for each unitary diagram di and immediate diagram-labelled

descendant dj, either Z(di) = Z(dj) and S(di) ⊆ S(dj), or dj = ⊥. If

dj = ⊥, we do not push arrows. If dj 6= ⊥, the conditions for the use of

rule 10 to push arrows from di to dj are met, and we do so. We continue

this process until we reach the leaves and call the resulting diagram D2.

Next we show that the above algorithm is terminating, produces a diagram

which is in both ∧-linear normal form and pushed syntax normal form, and which

is equivalent to the original diagram.

Theorem 4.3.11: Let D1 be a generalized diagram in ∧-linear normal form.

Then we can use algorithm 2 to produce a diagram, D2, in finite steps, where D2

is in ∧-linear normal form and pushed syntax normal form, and where D1 ≡� D2.

Proof. 1. In step (1), diagram E1 is obtained by using rule 5, attach to trivial

diagram, to attach D1 to the trivial generalized diagram. By theorem 4.3.1,

D1 ≡� E1.

2. Step (2) makes use of repeated applications of rule 6, add contour (contours

only), to add each element of the finite set C(E1) to the root node of E1,

obtaining E2. By theorem 4.3.2, E1 ≡� E2.

3. In step (3) we use rule 8, add missing zone (generalized), to add missing

zones to each unitary diagram labelling a node in E2 until each of those

unitary diagrams is transformed to a Venn diagram. Each unitary diagram
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has a finite set of missing zones. We call the resulting generalized diagram

E3. We can see that E3 = Venn(E2) and, by lemma 4.3.1, E2 ≡� E3.

4. In step (4), the (finite) set of contours of E3 are pushed towards its leaves,

giving diagram E4. By theorem 4.3.7, E3 ≡� E4.

5. In step (5), the (finite) set of spiders of E4 are pushed towards its leaves,

giving diagram E5. Let d1 and d2 be a unitary diagram labelling a node

in E5 and one of its immediate diagram-labelled descendants, respectively.

Let x be a spider in S(d1) − S(d2) and assume the habitat of x is shaded

in d2. Then either rule 12, push spider (shaded habitat), or rule 13, replace

inconsistent pair, is applicable, giving diagram E ′4. That is, E ′4 is a copy

of E4 in which either x is pushed forwards to d2, or n1 is relabelled by ⊥.

By theorems 4.3.8 and theorem 4.3.9, E ′4 ≡� E4. If the habitat of x is not

shaded in d2 then we use rule 14, push spider (unshaded habitat) to push

x from d1 to d2, giving diagram E4. By theorem 4.3.10, E ′4 ≡� E4. This

process is repeated until, for each branch, all spiders have been pushed as

far as the leaf or the branch has a leaf node labelled by ⊥. Diagram E5 is

the resulting diagram. By theorems 4.3.8, 4.3.9 and 4.3.10, E4 ≡� E5.

6. In step (6), shading is pushed into diagrams not equal to ⊥. E5 has a finite

set of shaded zones. We continue this process for each branch of E5 until

we reach the leaf and call the resulting diagram E6. By theorem 4.3.5,

E5 ≡� E6.

7. In step (7), the (finite) set of arrows of E6 are pushed forwards into unitary

diagrams not equal to ⊥. We continue this process for each branch until

we reach the leaf and call the resulting diagram D2. By theorem 4.3.6,

E6 ≡� D2.

Since D1 is in ∧-linear normal form and since none of the rules used increase

the number of non-linear ∧-labelled nodes in the diagram, D2 is in ∧-linear normal

form. Having pushed all types of syntax from the root to the leaves of D2, it must

be true that for all nodes ni with immediate diagram-labelled descendant nj,

di ⊆S dj or dj = ⊥. Thus D2 is in pushed syntax normal form. Since D1 contains

finite syntax, the process is terminating. Finally, since we have constructed a

sequence of equivalent diagrams, D1 ≡� D2.
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4.4 Disjunctive normal form

We are now ready to describe our final normal form, which we call disjunctive

normal form. A generalized diagram in disjunctive normal form is either a linear

diagram, or is composed of a root node labelled by the trivial diagram, followed

by a disjunctive-labelled node, to which are attached linear sub-diagrams. That

is, if a non-linear generalized diagram, D, is in disjunctive normal form, then D

has one ∨-labelled node and exactly one node, n, labelled by the trivial diagram,

which is the ancestor of that node. Furthermore, the sub-diagrams of D induced

by the immediate descendants of n are linear sub-diagrams of D. If a diagram has

this structure, we say that it has a trivial prefix. Figure 4.60 shows the result of

transforming our running example, using the rules we will develop in this section,

to disjunctive normal form. The diagram in Figure 4.60 has a trivial prefix.
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Figure 4.60: A running example: disjunctive normal form.

Definition 4.4.1. Let D be a generalized diagram in ∧-linear normal form. We

say that D has a trivial prefix if the following conditions are true:
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1. the root node, n1, of D is labelled by >,

2. the immediate descendant of n1 is a non-linear ∨-labelled node, and

3. each of the sub-diagrams of D induced by the immediate diagram-labelled

descendants of n1 is a linear sub-diagram of D.

Our definition of disjunctive normal form does not correspond exactly with

the disjunctive normal form found in Boolean logic. In Boolean logic, a formula

in disjunctive normal form is one which is a disjunction of conjunctive clauses.

The diagram in Figure 4.61 is in disjunctive normal form, and has the following

formula:

form(d1) ∧ ((form(d2) ∧ form(d3)) ∨ (form(d4) ∧ form(d5)) ∨ form(d6)),

A .

.
A

.
B

d1

d2

d4

d6

A .
d3

d5

..f

D

Figure 4.61: Diagrammatic disjunctive normal form.

which is not in disjunctive normal form. The way in which we use the term

is the diagrammatic equivalent of the standard sense, however; we require that

the only diagram that comes before an (optional) disjunction is labelled by the

trivial diagram. Linear diagrams correspond to conjunctive clauses. That is, in

Figure 4.61, form(d1) is trivially true and the meaning conveyed by D is entirely

determined by the formula

(form(d2) ∧ form(d3)) ∨ (form(d4) ∧ form(d5)) ∨ form(d6)).
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In general, the meaning of a generalized diagram in disjunctive normal form

is determined by a disjunction of conjunctive clauses.

Definition 4.4.2. Let D be a generalized diagram in ∧-linear normal form. We

say that D is in disjunctive normal form if and only if one of the following

conditions is true:

1. D is a linear diagram, or

2. D has a trivial prefix.

Figure 4.62 places this section in the larger context of the decision procedure.

The outer dashed box indicates the current stage, in which an original diagram

in pushed syntax normal form, D3, is transformed to a diagram in disjunctive

normal form, D4. The inner dashed box illustrates the fact that the algorithm

has two stages. We begin by removing all but one of the non-linear ∨-labelled

nodes from D3, giving D′4. This part of the process is described in section 4.4.1.

Next, we transform D′4 into a diagram in disjunctive normal form, D4, by applying

a trivial prefix as described in section 4.4.2.
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D1

disjunctive 
normal form

D4

apply trivial 
prefix

D5

reduce linear 
sub-diagrams

Algorithm 3

Figure 4.62: Disjunctive normal form in the context of the decision procedure.

The diagrams that we transform to disjunctive normal form are in both ∧-

linear and pushed syntax normal forms, and we have shown in previous sections

that any diagram can be transformed into an equivalent diagram in these normal

forms. When we describe the transformation of a diagram in both ∧-linear and

pushed syntax normal forms to disjunctive normal form, we will show that the

initial conditions are not affected by the transformation; that is, we will show
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that the resulting diagram is in ∧-linear, pushed syntax and disjunctive normal

forms. We will first consider how to remove non-linear ∨-labelled nodes.

4.4.1 Removing non-linear ∨-labelled nodes

A non-linear ∨-labelled connective, n, in a diagram D, is ‘nested’ when the path

from n to the root of D contains another non-linear ∨-labelled node. Also, we

say that n is an ‘outer’ nested non-linear ∨-labelled node when n is nested and

no non-linear ∨-labelled nodes appear in any path from n to the leaves of D.
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Figure 4.63: Removing a non-linear ∨-labelled connective.

Figure 4.63 shows two diagrams, D1 and D2. In D1, n4 is an outer non-linear

∨-labelled node and is nested within n2. If each diagram-labelled node, ni, in

D1 is labelled by a unitary diagram, di, then the formula for D1 contains the

sub-formula form(d3)∧ (form(d5)∨ form(d6)). By the distributivity of ∧ over ∨,

this is equivalent to (form(d3) ∧ form(d5)) ∨ (form(d3) ∧ form(d6)), which is a

sub-formula of the formula for D2. Thus, the diagrams D1 and D2 have different

structure but equivalent meanings. In this section we define an inference rule

that transforms D1 to D2.

We will analyse the series of operations that are required to transform D1

to D2 in Figure 4.63. First, we identify an outer nested non-linear ∨-labelled

connective; in our example the only candidate is n4. Next, we remove the branch

of the nearest inner non-linear ∨-labelled node, n2, that contains the outer node

n4. For our example, the result of removing this sub-diagram from D1 is shown

in Figure 4.64, diagram D′1. Next, we take the sub-diagram that we have just

removed from D1 and remove n4 and its descendants, calling the result H (for
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Head , since this sub-diagram is the head of the node to be removed); see Figure

4.64.

The next step is to take the set of sub-diagrams induced by immediate de-

scendants of n4 in the original diagram, D1, (see the two diagrams labelled T , for

Tails , in Figure 4.64) and attach each of them to a copy of H. In our example

this results in the two diagrams labelled HT , shown in Figure 4.64. Finally, this

set of diagrams is attached to n2 in D′1, resulting in diagram D2, Figure 4.63.

D '1

n1 n7 n3 n6

n5

n2

n +3 n5m1

n +3 n6m2

H

Figure 4.64: Intermediate steps in removing a nested non-linear ∨-labelled con-
nective.

We define the rule which removes ∨-labelled nodes so that it removes outer

nodes with respect to the nearest inner non-linear node. The diagram in Fig-

ure 4.65 contains three non-linear ∨-labelled connectives, n2, n4 and n6. The

node n4 is nested within n2, and n6 is nested within both n2 and n4. There is a

path from n4 to n6 that contains no non-linear connectives. Furthermore, each

branch of n6 is a linear sub-diagram of D1. Syntactically, these are the conditions

required for n6 to be an outer nested non-linear connective and for n4 to be the

nearest inner non-linear node to n6. Thus, when removing ∨-labelled connectives

from the diagram in Figure 4.65, we begin by removing n6 with respect to n4.

Rule 15: Remove disjunct. The following inference rule removes a single non-

linear ∨-labelled node. We can apply the rule repeatedly to a diagram in ∧-linear

normal form to obtain a diagram that contains at most one non-linear ∨-labelled

node.

Formal description. Let D1 be a generalized diagram in ∧-linear normal form,

let H ⊆ D1 and let n1 and n2 be nodes in D1 such that the following is true:

1. n1 and n2 are non-linear ∨-labelled connectives of D1 such that n1 ∈
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n8

n7
n6

n1
n10

n3
n2 n9

n5
n4

Figure 4.65: Multiple nested non-linear ∨-labelled connectives.

Anc(n2, D1),

2. H is the sub-diagram of D1 whose nodes are in Des(n1, D1)∩Anc(n2, D1),

3. each connective-labelled node in H is linear in D1, and

4. each member of the set of sub-diagrams of D1 induced by the immediate

descendants of n2 is a linear sub-diagram of D1.

Let r be the root node of H, let Dr be the sub-diagram of D1 induced by

r, and let D′1 be the diagram obtained by using transformation 13, remove sub-

diagram, to remove Dr from D1: D1
−Dr−−→ D′1. Let T be the set of sub-diagrams

of D1 induced by the immediate descendants of n2, and let HT be the result

attaching each element of T to H using ∧:

HT = {H +(nl,∧,Ti)−−−−−−→ HT i : Ti ∈ T },

where nl is the (unique) leaf node of H. Let D2 be the diagram obtained by

attachingHT to n1 in D′1 using transformation 19, attach diagrams to connective:

D′1
+(n1,HT )−−−−−−→ D2. Then D1 can be replaced by D2 and vice versa.

The next rule relabels linear ∨-labelled nodes by ∧. This is justified by the fact

that, whenever an ∨-labelled connective has exactly one branch, its interpretation

is equivalent to that of a node labelled by ∧. When interpreting a diagram, the

information provided by the set of sub-diagrams which are descendants of an

∨-labelled node is interpreted in conjunction with that which came before it.

In Figure 4.66, if diagram-labelled nodes in the diagram D1, ni, are labelled

by unitary diagrams, di, the formula for D1 is given by form(d1) ∧ (form(d3) ∨
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D1

n1
n4

n3
n2 n1 n3n2 n1 n3n2

D2 D3

Figure 4.66: Relabelling a linear ∨-labelled node.

form(d4)), or

form(d1) ∧ (
∨

d∈{d3,d4}

d).

Removing one of the sub-diagrams attached to the ∨-labelled node, n2, results

in diagram D2, Figure 4.66. The formula for D2 is given by

form(d1) ∧ (
∨

d∈{d3}

d).

The ∨ connective is redundant in this formula and the formula for D2 is

equivalent to form(d1)∧ form(d3). This is the same as the formula for D3, which

is a copy of D2 in which n2 is relabelled by ∧.

Rule 16: Relabel linear disjunct. We now define the rule which allows us to

relabel linear ∨-labelled nodes.

Formal description. Let D1 be a generalized diagram that contains a linear

∨-labelled node, n. Let D2 be the diagram obtained by using transformation 18,

relabel node, to relabel n in D1 by ∧: D1
l(n,∧)−−−→ D2. Then D1 can be replaced by

D2 and vice versa.

4.4.2 The trivial prefix

In the previous section we defined rules that can be used to ensure that a diagram,

D, contains at most one ∨-labelled node. We have defined disjunctive normal form

so that, if D is a linear diagram, then D is in disjunctive normal form. If not,

having reduced the number of ∨-labelled nodes to one, it remains for us to supply

D with a trivial prefix. That is, to manipulate D so that a single node, labelled
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by the trivial diagram, appears before the single disjunctive-labelled node. We

have already defined a rule which provides D with a trivial root: rule 5, attach to

trivial diagram. After using this rule, we take the unitary diagram, d, immediately

before the unique non-linear ∨-labelled node in D, n, and push copies of d past

n until the original node labelled by d can be removed without changing the

meaning of D. We repeat this process until the root node, labelled by the trivial

diagram, is the only node before n.

d1

.
.

.A
A

d2

d3

Figure 4.67: A generalized diagram with a root node labelled by the trivial dia-
gram.

The diagram shown in 4.67 is in ∧-linear and pushed syntax normal forms,

contains a single non-linear ∨-labelled node, and has a root node labelled by the

trivial diagram. In order to transform this diagram to disjunctive normal form,

we push copies of the unitary diagram, d1, which is the immediate ancestor of

the ∨-labelled node, past that node into every disjunctive branch. This results

in the diagram shown in Figure 4.68.

d1

.
.
.A

A

d2

d3

d1

.

d1

.

Figure 4.68: Pushing copies of a unitary diagram past the ∨-labelled node.

The formula for the diagram in Figure 4.68 is as follows:

> ∧ form(d1) ∧ ((form(d1) ∧ form(d2)) ∨ (form(d1) ∧ form(d3))).
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By the distributivity of ∧ over ∨, the first occurrence of form(d1) can be

removed from that formula without changing its meaning. Thus, we can remove

the immediate ancestor of the ∨-labelled node without changing the meaning of

the diagram, resulting in the diagram shown in Figure 4.69, which is in disjunctive

normal form.

.
.A

A

d2

d3

d1

.

d1

.

Figure 4.69: A generalized diagram in disjunctive normal form.

Rule 17: Push node. First, we define the rule that allows us to push copies of

a unitary diagram past a connective-labelled node.

Formal description. Let D1 = (V1,W1, E1, l1) be a generalized diagram that

contains nodes n1, n� and n2 such that the following is true:

1. n1 is the immediate ancestor of n�,

2. n� is the immediate ancestor of n2,

3. n1 and n2 are labelled by the unitary diagrams d1 and d2, respectively.

Let D′1 = (V ′1 ,W
′
1, E

′
1, l
′
1) be the sub-diagram of D1 induced by n2. Let m1 and

m2 be nodes not in D1, and let D′′1 = (V2,W2, E2, l2) be the generalized diagram

which satisfies the following:

1. V2 = {m1} ∪ V ′1 ,

2. W2 = {m2} ∪W ′
1,

3. E2 = {(m1,m2), (m2, root(D′1))} ∪ E ′1, and

4. l2 = {(m1, d1), (m2,∧)} ∪ l′1.
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Let D2 be the diagram obtained by using transformation 22, replace sub-

diagram, to replace D′1 by X2 in D′′1 : D1

ρ(D′1,D
′′
1 )−−−−−→ D2. Then D1 can be replaced

by D2 and vice versa.

Rule 18: Discard redundant node. After using the previous rule to push

copies of a node past a non-linear ∨-labelled node into every branch, the following

rule allows us to remove the original node.

Formal description. Let D1 be a generalized constraint diagram containing

nodes n1 and n∨ such that the following is true.

1. n1 is not the root node of D1,

2. n1 is labelled by the unitary diagram, d1,

3. n1 is the immediate ancestor of n∨, which is a non-linear ∨-labelled node,

and

4. each node, ni, in the set of immediate diagram-labelled descendants of n1

is labelled by d1.

Let D2 be the diagram obtained by removing n1 from D1 using transformation 15,

remove diagram-labelled node: D1
−n1−−→ D2. Then D1 can be replaced by D2 and

vice versa.

4.4.3 Validity of the inference rules required by disjunc-

tive normal form

We now show that the rules which produce disjunctive normal form are sound.

Theorem 4.4.1: Rule 15, remove disjunct, is valid. Let D1 be a generalized

diagram in ∧-linear normal form, let H ⊆ D1 and let n1 and n2 be nodes in D1

such that the following is true:

1. n1 and n2 are non-linear ∨-labelled connectives of D1 such that n1 ∈
Anc(n2, D1),

2. H is the sub-diagram of D1 whose nodes are in Des(n1, D1)∩Anc(n2, D1),

3. H is a linear sub-diagram of D1, and
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4. each member of the set of the sub-diagrams of D1 induced by the immediate

descendants of n2 is a linear sub-diagram of D1.

Let D2 be the diagram obtained by using the rule to remove n2 from D1.

Then D1 ≡� D2.

Proof. Let I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ). We

will begin by showing that if I ′ is valid for D1 then it is also valid for D2. As

in the definition of the rule, let T be the set of the sub-diagrams of D1 induced

by the immediate descendants of n2, and let HT be the result of attaching each

element of T to H using ∧:

HT = {H +(nl,∧,Ti)−−−−−−→ HT i : Ti ∈ T },

where nl is the (unique) leaf node of H. We know that H is a linear sub-diagram

of D1. We also know that each element of T is a linear sub-diagram of D1. Let

D1X be the sub-diagram of D1 induced by n1 and let d1 be the unitary diagram

labelling n1. Then D1X has the following formula:

form(d1) ∧ form(H) ∧ (
∨
Ti∈T

form(Ti)). (4.22)

Each diagram in the set HT is the result of attaching an element of T to the

leaf node of H. The elements of T and H are all linear diagrams. Thus, the

formula for the disjunction of the diagrams in HT is as follows:∨
Ti∈T

(form(H) ∧ form(Ti)). (4.23)

In diagram D2, the set of diagrams in HT is attached to the node n1. There-

fore, D2 contains the following sub-formula:

form(d1) ∧
∨

Ti∈T

(form(H) ∧ form(Ti)). (4.24)

By the distributivity of ∧ over ∨, (4.22) is equivalent to (4.24). Diagram D2

is a copy of D1 in which the descendants of n1 are replaced by the disjunction of

the diagrams in the set HT . In terms of the formulae, that is to say that (4.22)
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is replaced by (4.24). It follows that the formula for D2 is true under I ′ whenever

the formula for D1 is true under I ′, and so D1 � D2. We can show that D2 � D1

by a similar argument and thus D1 ≡� D2 as required.

Theorem 4.4.2: Rule 16, relabel linear disjunct, is valid. Let D1 be a generalized

diagram that contains a node n which is a linear ∨-labelled connective. Let D2 be

the diagram obtained by using the rule to relabel n in D1 by ∧. Then D1 ≡� D2.

Proof. Let I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ). We

begin by showing that the formula for D2 is true under I ′ whenever it is true for

D1. Let nA and nD be the immediate ancestor and descendant of n, respectively.

D1 has the following sub-formula:

form(nA) ∧ (
∨

n′∈{nD}

form(n′)).

Since {nD} has a single element, this is equivalent to form(nA) ∧ form(nD),

which is the sub-formula for the corresponding sub-diagram of D2. Thus the

formula for D2 is true under I ′ whenever the formula for D1 is true under I ′,

and so D1 � D2. We can see that D2 � D1 by a similar argument and thus

D1 ≡� D2.

Theorem 4.4.3: Rule 17, push node, is valid. Let D1 be a generalized diagram

that contains nodes n1, n� and n2 such that the following is true:

1. n1 is the immediate ancestor of n�,

2. n� is the immediate ancestor of n2,

3. n1 and n2 are labelled by the unitary diagrams d1 and d2, respectively.

Let D2 be the diagram obtained by using the rule to push a copy of n1 past

n�. Then D1 can be replaced by D2 and vice versa.

Proof. Let I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ). Let

d1 and d2 be the unitary diagrams labelling n1 and n2, respectively. We will show

that the formula for D2 is true under I ′ whenever the formula for D1 is true by

considering the cases for �, the connective used to label n�. Assume that n� is

labelled by ∨ and is a non-linear node. Let X be the set of sub-diagrams of D1
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induced by the immediate descendants of n�. Then the formula for D1 contains

the following sub-formula:

form(d1) ∧
∨
Xi∈X

form(Xi). (4.25)

As in the definition of the rule, let D′1 = (V ′1 ,W
′
1, E

′
1, l
′
1) be the sub-diagram

of D1 induced by n2. Furthermore, let m1 and m2 be nodes not in D1, and let

D′′1 = (V2,W2, E2, l2) be the generalized diagram which satisfies the following:

1. V2 = {m1} ∪ V ′1 ,

2. W2 = {m2} ∪W ′
1,

3. E2 = {(m1,m2), (m2, root(D′1))} ∪ E ′1, and

4. l2 = {(m1, d1), (m2,∧)} ∪ l′1.

Since D′1 ∈ X , we can rewrite (4.25) as follows:

form(d1) ∧
(
form(D′1) ∨

∨
Xi∈X−{D′1}

form(Xi)
)
. (4.26)

The formula for D2 is equivalent to a copy of the formula for D1 in which

the sub-formula for D′1 is replaced by that for D′′1 , which is equal to form(d1) ∧
form(D′1). So, the formula for D2 is a copy of that for D1 in which (4.26) is

replaced by the following.

form(d1) ∧
(
(form(d1) ∧ form(D′1)) ∨

∨
Xi∈X−{D′1}

form(Di)
)
. (4.27)

Again, we can see that (4.27) is true whenever (4.26) is true, and vice versa.

Therefore, D1 ≡� D2 if n� is a non-linear ∨-labelled node. If n� is a non-linear

∧-labelled node, the argument is similar.

Assume that n� is a linear ∧-labelled node. Then the formula for D1 contains

the following sub-formula:

form(d1) ∧ form(d2). (4.28)
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The formula for D2 is a copy of that for D1 in which (4.28) is replaced by

form(d1) ∧ form(d1) ∧ form(d2). (4.29)

Clearly, (4.29) is true whenever (4.28) is true, and so I ′ is valid for D2 if n� is a

linear ∧-labelled node. Equally, (4.28) is true whenever (4.29) is true, and so any

valid extension for D2 is valid for D1, and D1 ≡� D2 if n� is a linear ∧-labelled

node. If n� is a linear ∨-labelled node, the argument is similar. Thus, D1 ≡� D2

as required.

Theorem 4.4.4: Rule 18, discard redundant node, is valid. Let D1 be a gener-

alized constraint diagram containing nodes n1 and n∨ such that the following is

true.

1. n1 is not the root node of D1,

2. n1 is labelled by the unitary diagram, d1,

3. n1 is the immediate ancestor of n∨, which is a non-linear ∨-labelled node,

and

4. each node, ni, in the set of immediate diagram-labelled descendants of n1

is labelled by d1.

Let D2 be the diagram obtained by using the rule to remove n1 from D1.

Then D1 can be replaced by D2 and vice versa.

Proof. Let I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ). We

begin by showing that the formula for D2 is true under I ′ whenever the formula

for D1 is true under I ′. Let X be the set of sub-diagrams of D1 induced by the

immediate diagram-labelled descendants of n1. Then the formula for D1 contains

the following sub-formula:

form(d1) ∧
( ∨
Xi∈X

form(Xi)
)
. (4.30)

The root node of each member of X is labelled by d1. Thus, for each sub-

diagram, Xi, of D1 in X , Xi has the formula

form(d1) ∧ Yi, (4.31)
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where Yi is the formula for the sub-diagram or sub-diagrams of Xi induced by the

immediate diagram-labelled descendants of the root node of Xi. (If the immediate

descendant of the root node of Xi, say x2, is a non-linear connective, then Yi is

a disjunction or conjunction of clauses, depending on the label of x2.) Rewriting

(4.30) by (4.31),

form(d1) ∧
∨
Xi∈X

(form(d1) ∧ Yi). (4.32)

By the distributivity of ∧ over ∨, and by idempotency, this is equivalent to

the following: ∨
Xi∈X

(form(d1) ∧ Yi). (4.33)

The formula for D2 is equivalent to a copy of that of D1 in which (4.32) is

replaced by (4.33). As we have shown that these are equivalent sub-formulae, the

formula for D2 is true whenever the formula for D1 is true, and so D1 � D2. By a

similar argument, any valid extension for D2 is also valid for D1, and so D2 � D1

and D1 ≡� D2 as required.

4.4.4 Obtaining disjunctive normal form

We can now use the definitions of the inference rules in sections 4.4.1 and 4.4.2 to

state the algorithm which transforms an initial diagram, D1, which is in ∧-linear

and pushed syntax normal forms, to a diagram, D2, where D2 is in disjunctive

normal form. We then show that the algorithm ensures that D2 has an equivalent

meaning to D1, and that the algorithm maintains the syntactic conditions of D1

implied by ∧-linear and pushed syntax normal forms.

The latter point means it must be true that D2 contains no non-linear ∧-

labelled nodes, and that di ⊆S dj or dj = ⊥ for all unitary diagrams, di and dj,

where di labels a node in D2 and dj is an immediate diagram-labelled descendant

of di. In fact, ∧-linear normal form is implied by the definition of disjunctive

normal form, and so the obligation is to show that the process of obtaining

disjunctive normal form does not interfere with the property of pushed syntax

normal form. We address this next, at the same time as showing that the rules

we have are sufficient to remove ∨-labelled nodes.

Lemma 4.4.1. Let D1 be a generalized diagram in ∧-linear normal form and
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pushed syntax normal form. Then there is a sequence of inference rules which

can be used to transform D1 into D2, where D2 satisfies the following:

1. D2 contains at most one ∨-labelled node,

2. D1 ≡� D2, and

3. D2 is in pushed syntax normal form.

Proof. To show (1), we know that D1 is in ∧-linear normal form. Thus, we can

use rule 15, remove disjunct, to remove all outer nested non-linear ∨-labelled

nodes from D1 to produce a diagram, D′1, which contains at most one non-linear

∨-labelled node. We can then use rule 16 to relabel any linear ∨-labelled nodes

by ∧ in D′1, obtaining diagram D2, containing at most one ∨-labelled node.

Next, we show that (2) is true for the diagram D2 obtained in the previous

step. The diagram D′1 is produced by repeated application of rule 15, remove

disjunct. Let D̂1 be the diagram obtained by removing a single non-linear ∨-

labelled node from D1. By theorem 4.4.1, D1 ≡� D̂1. It follows that D1 ≡� D
′
1.

By theorem 4.4.2, we know that rule 16 is an equivalence and so, by a similar

reasoning, D′1 ≡� D2. Thus, D1 ≡� D2 as required.

Finally, it remains to show (3): that D2 is in pushed syntax normal form. We

know that D1 is in this normal form, and we can reason that the only stage at

which we could have affected this is by application of rule 15, remove disjunct.

This rule works by identifying the ‘head’, a linear diagram, and ‘tails’, a set of

linear diagrams, which are the prefix and suffix of a non-linear ∨-labelled node,

respectively. The ‘head’ and ‘tails’ are then reconnected in a diagram which is

the conclusion of the rule. Since the leaf node of the ‘head’ is the immediate

diagram-labelled ancestor of the root node of each member of the ‘tails’, D2 is in

pushed syntax normal form.

Next, we show that the use of rule 17, push node, does not affect the conditions

of ∧-linear and pushed syntax normal form. This is a necessary part of the

argument that says that the transformation to disjunctive normal form maintains

the normal form conditions of the original diagram.

Lemma 4.4.2. Let D1 = (V,W,E, l) be a generalized diagram in ∧-linear normal

form and pushed syntax normal form that contains nodes n1, n� and n2 such that

the following is true:
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1. n1 is the immediate ancestor of n�,

2. n� is the immediate ancestor of n2,

3. n1 and n2 are labelled by the unitary diagrams d1 and d2, respectively.

Let D2 be the diagram obtained by using rule 17, push node, to push a copy

of n1 past n�. Then D2 is in ∧-linear normal and pushed syntax normal forms.

Proof. The push node rule does not introduce any new non-linear ∧-labelled nodes

and so, trivially, D2 is in ∧-linear normal form. Let M be the set of immediate

diagram-labelled descendants of n1 in D1. Since D1 is in pushed syntax normal

form then, for each node, mi ∈ M, either l(n1) ⊆S l(mi) or mi = ⊥. Let M′

be the set of immediate diagram-labelled descendants of n1 in D2. M′ does

not contain n2, but contains a node labelled l(n1). By the definition of ⊆S, the

syntactic sub-diagram relation is reflexive, so l(n1) ⊆S l(n1). The other diagram-

labelled nodes in D2 are not affected, and so D2 is in pushed syntax normal

form.

We are now able to state the algorithm used to transform a generalized dia-

gram in ∧-linear normal form and pushed syntax normal form, D1, to a second

diagram, D2, where D2 is in disjunctive normal form.

Algorithm 3 (Pushed syntax normal form to disjunctive normal form). Let D1

be a generalized diagram in ∧-linear normal form and pushed syntax normal form.

Transform D1 to a second diagram, D2, using the following steps:

1. If D1 is a linear diagram, let D2 = D1 and we are done.

2. Otherwise, D1 is a non-linear diagram. Use the steps described in lemma 4.4.1

to transform D1 into a diagram, E1, where E1 is in ∧-linear normal form

and pushed syntax normal form.

3. Next, use rule 5, attach to trivial diagram, to prefix E1 with a node labelled

by >, giving diagram E2.

4. Let n∨ be the unique non-linear ∨-labelled node in E2, let n1 be the imme-

diate ancestor of n∨ and let d1 be the unitary diagram labelling n1. If n1 is

the root node of E2, let D2 = E2 and we are done.
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5. Otherwise, n1 is not the root node of E2. If each ni in the immediate

diagram-labelled descendants of n1 is labelled by a unitary diagram di,

such that di = d1, use rule 18 to remove n1 from E2, giving E3. Continue

at (4) in the context of E3.

6. Otherwise, n1 is not the root node of E2 and there exists a diagram-labelled

descendant, n2, of n1 labelled by a unitary diagram, say d2, where d1 6= d2.

Then we use rule 17, push node, to push a copy of d1 past n∨ towards n2,

giving diagram E3. Continue at (5) in the context of E3.

Next we show that we can use the above algorithm to transform a generalized

diagram in ∧-linear normal form and pushed syntax normal form, D1, into a sec-

ond diagram, D2, where D2 is in ∧-linear, pushed syntax and disjunctive normal

forms, and has an equivalent meaning to D1. Also, we show that algorithm 3

terminates.

Theorem 4.4.5: Let D1 be a generalized diagram in ∧-linear normal form and

pushed syntax normal form. Let D2 be the diagram obtained by using algorithm 3

to transform D1. Then the following is true:

1. D2 is in ∧-linear normal form,

2. D2 is in pushed syntax normal form,

3. D2 is in disjunctive normal form,

4. D1 ≡� D2, and

5. algorithm 3 terminates.

Proof. 1. If the algorithm terminates at step (1), then the four conditions are

trivially true.

2. In step (2), D1 is transformed into a diagram, E1, where E1 contains a

single non-linear disjunct and is in ∧-linear normal form and pushed syntax

normal forms. By lemma 4.4.1, D1 ≡� E1. Clearly, the normal forms are

not affected by this operation, and E1 is in ∧-linear and pushed syntax

normal form.
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3. In step (3) we use rule 5, attach to trivial diagram, to prefix E1 with a node

labelled by >, giving E2. By theorem 4.3.1, E1 ≡� E2. Again, the normal

forms are not affected by this operation, and E2 is in ∧-linear and pushed

syntax normal form.

4. Let n∨ be the unique non-linear ∨-labelled node in E2, let n1 be the imme-

diate ancestor of n∨ and let d1 be the unitary diagram labelling n1. If n1 is

the root node of E2, then E2 is in ∧-linear, pushed syntax and disjunctive

normal forms. The process assigns D2 = E2 and terminates.

5. If we reach step (5) then n1 is not the root node of E2. If each ni in

the immediate diagram-labelled descendants of n1 is labelled by a unitary

diagram di, such that di = d1, we use rule 18 to remove n1 from E2, giving

E3. By theorem 4.4.4, E2 ≡� E3. The use of this rule does not affect

the normal forms, and so E3 is in ∧-linear normal form and pushed syntax

normal form. The process continues at (4) in the context of E3.

6. Otherwise, n1 is not the root node of E2 and there exists a diagram-labelled

descendant, n2, of n1, labelled by a unitary diagram, say d2, where d1 6= d2.

Then we use rule 17, push node, to push a copy of d1 past n∨ towards

n2, giving diagram E3. By theorem 4.4.3, E2 ≡� E3. By lemma 4.4.2, E3

is in ∧-linear normal form and pushed syntax normal form. The process

continues at (5) in the context of E3.

Since all of the inference rules employed are equivalences, D1 ≡� D2. The

inference rules do not affect the normal forms, and so D2 is in ∧-linear, pushed

syntax and disjunctive normal form as required.

Next, we will show that the above algorithm describes a terminating process.

If the process does not terminate at step (1), it proceeds to step (4). In step (4),

we know that n∨ exists, since E2 is a non-linear diagram in pushed syntax normal

form. We also know that n∨ has a finite number of ancestors, since E2 is finite.

During the process, two conditions are tested:

a P : n∨ has exactly one ancestor, and

b Q: each node, ni, in the immediate diagram-labelled descendants of n1, is

labelled by d1.
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The process terminates when n∨ is found to have a single ancestor. That

is, in step (4), if P is found to be true, the process terminates. If the process

reaches step (5), we know that P is not true, i.e., the number of ancestors of n∨ is

greater than one. Q is true in step (5), however. The inference rules used mean

that the number of ancestors of n∨ decreases by one, and the process continues

at step (4). In step (6), both P and Q are false and there are, say, j immediate

diagram-labelled descendants of n1 which are not labelled by d1, for some j > 0.

The use of rule 17, push node, means that j reduces by one, and the process

continues at step (5), where Q is tested again. So we can see that, at each step,

the number of ancestors of n∨ is reduced or, if we are unable to take that step,

the number of diagram-labelled descendants of n1 which stop us from taking the

former step is reduced. Thus, we have shown the following as required:

1. D2 is in ∧-linear normal form,

2. D2 is in pushed syntax normal form,

3. D2 is in disjunctive normal form,

4. D1 ≡� D2, and

5. algorithm 3 terminates.

4.5 Reducing linear generalized diagrams

In this section we present the final stage of the decision procedure for the full exis-

tential fragment. This depends on an algorithm which, given a linear generalized

diagram, D, in pushed syntax normal form reduces D to a generalized diagram,

D′, where D′ has a single node and is equivalent in meaning to D. Clearly, D′ is

satisfiable if and only if the unitary diagram labelling its root node is satisfiable,

and it also follows that D is satisfiable if and only if D′ is satisfiable. Figure 4.70

shows the algorithm we will develop in this section in the context of the decision

procedure.

Although the algorithm we will state deals solely with linear diagrams, we

will apply it repeatedly to reduce the branches of a diagram in disjunctive normal



4.5 REDUCING LINEAR GENERALIZED DIAGRAMS 188

D2

EF
-linear 

normal form

D3

pushed syntax 
normal form

D4

disjunctive 
normal form

D1

D5

reduce linear 
sub-diagrams

Algorithm 4

Figure 4.70: The algorithm which reduces linear generalized diagrams, in context.

form. From this, we are able to show that a generalized diagram in disjunctive

normal form, D, is satisfiable if and only one of its branches is satisfiable. In

Figure 4.71, diagram D7 is the disjunctive normal form of our running example.

Each branch of the disjunctive-labelled node, n, is a linear sub-diagram of D7,

and is also in pushed syntax normal form.

The branches of the ∨-labelled node, n, in diagram D7 are in pushed syntax

normal form. Thus, for each such branch, D′, the unitary diagram, dl, labelling

the leaf node of D′ contains every syntactic element found in its ancestors, or

dl = ⊥. This means that, if D′ is consistent, we can remove non-leaf diagram-

labelled nodes fromD′, starting with the root node, without changing its meaning.

Consider the unitary diagrams d2,3 and d2,4 in diagram D7, Figure 4.71. In

d2,3, the zone ({A}, {B}) is shaded and untouched, whilst in d2,4, the same zone

is shaded and contains a spider. Clearly, these diagrams are inconsistent with

respect to each other, although they are both satisfiable in their own right. We

are unable to remove the node labelled by d2,3 from this branch without changing

the meaning of D7 because to do so would be to discard the information that this

branch is inconsistent. The same type of inconsistency exists between the pairs of

unitary diagrams d4,3 and d4,4, and d6,3 and d6,4. In section 4.3.2, we encountered

inconsistency between pairs of diagrams when pushing spiders into shaded zones.

As before, we record the inconsistencies by relabelling diagrams with ⊥. In

cases where no inconsistency is found, we remove diagram-labelled nodes until

we reduce the linear sub-diagram to a single diagram-labelled node. Note that

the step of removing nodes is not strictly necessary, and that we could achieve
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Figure 4.71: A running example: linear sub-diagrams in pushed syntax normal
form.

the same purpose by comparing pairs of unitary diagrams, looking for the kind of

inconsistency seen in the previous example. However, removing nodes repeatedly

means that the process always compares the root node of a linear sub-diagram

to its immediate diagram-labelled descendant, which makes the process simple to

describe.

We begin by defining the type of inconsistency that can exist between pairs

of (potentially satisfiable) unitary diagrams. We then show that we can use the

presence or absence of this property to reduce a linear diagram in pushed syntax

normal form to a single node.
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4.5.1 Removing syntax from a linear diagram

First, we develop the sub-diagram relation for pairs of unitary diagrams. The

syntactic sub-diagram relation is given in definition 4.3.6, page 163: given two

unitary diagrams, d1 and d2, d1 is a syntactic sub-diagram of d2 if and only if

all of the syntax of d1 appears within d2. This does not imply that d1 and d2

are consistent with each other. We provide a syntactic characterisation of such

consistency which, in conjunction with the notion of syntactic sub-diagrams, is

the basis of the sub-diagram relation. Figure 4.72 shows two diagrams, d1 and

d2, where d1 ⊆S d2. In this case, it is also true that the meanings of d1 and d2

are consistent, so we say that d1 is a sub-diagram of d2, denoted d1 ⊆ d2.

d1 d2

A .
f

B A .
f

B.
.

g
.

Figure 4.72: The sub-diagram relationship.

The definition of ⊆S ensures that, given two unitary diagrams d1 and d2, if

d1 ⊆S d2, then if a zone z is shaded in d2 but not in d1, there are at most as

many spiders inhabiting z in d1 as there are in d2. However, if z is shaded in both

d1 and d2, the definition of syntactic sub-diagrams does not ensure that there

are the same number of spiders inhabiting z in each diagram. If this is not true

then no interpretation can satisfy d1 and d2 at the same time. In Figure 4.73,

d1 ⊆S d2 but, because of the different number of spiders inhabiting the shaded

zone ({A}, {B}) in each diagram, the shaded zones condition cannot be true for

both diagrams simultaneously in any interpretation.

The second syntactic condition that can cause two unitary diagrams, d1 and

d2, to be inconsistent, despite the fact that d1 ⊆S d2, is that of ties between

spiders. In Figure 4.74, d1 ⊆S d2, but while the spiders x and y represent distinct

elements in d1, they represent the same element in d2. In this case, no interpre-

tation can satisfy the spiders’ distinctness condition for the two diagrams at the

same time.



4.5 REDUCING LINEAR GENERALIZED DIAGRAMS 191

d1 d2

A .
f

B A .
f

B.
.

g
.

.

Figure 4.73: A syntactic sub-diagram which is inconsistent due to the shaded
zones condition.

d1 d2

.y.x .y.x

Figure 4.74: A syntactic sub-diagram which is inconsistent due to the spiders’
distinctness condition.

Finally, we may have two unitary diagrams, d1 and d2, where d1 ⊆S d2 but

where the habitat functions, ηd1 and ηd2 , are in disagreement. In Figure 4.75,

diagram d1, the spider labelled x inhabits the zone outside of the derived contour

dc, but this is not true in diagram d2. We can see that no interpretation can

satisfy the spiders habitat condition for d1 and d2 simultaneously.

d1 d2

.x .xdc dc

Figure 4.75: A syntactic sub-diagram which is inconsistent due to the spiders
habitat condition.

The constraints we can infer from these examples enable us to give a syntactic

characterisation of what it means for a pair of unitary diagrams, d1 and d2, where

d1 ⊆S d2, to be consistent. We call this the sub-diagram relation.
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Definition 4.5.1. Let d1 and d2 be generalized unitary diagrams such that the

following is true:

1. d1 ⊆S d2,

2. for each x ∈ S(d1), ηd1(x) = ηd2(x),

3. for each zone, z, which is shaded in d1, any spider, x, which is in z in d2

but not in d1 is joined to a spider, y, by a tie in d2, and y is present in d1:

∀z ∈ Z∗(d2)x ∈ S(z, d2)− S(z, d1)⇒ ∃y ∈ S(z, d1) ∩ [x]d2 ,

and

4. for each pair of spiders x, y ∈ S(d1), x and y are joined by a tie in d1 if and

only if they are joined by a tie in d2:

∀x, y ∈ S(d1) ((x, y) ∈ τd1 ⇔ (x, y) ∈ τd2).

Then we say that d1 is a sub-diagram of d2, denoted d1 ⊆ d2.

Next, we define an inference rule which allows us to relabel a diagram-labelled

node, n1, by> if n1 has a unique diagram-labelled descendant, n2, and the unitary

diagram labelling n1 is a sub-diagram of the unitary diagram labelling n2.

Rule 19: Relabel sub-diagram. In Figure 4.76, diagram D1 is composed of

two nodes labelled by the unitary diagrams d1 and d2. Diagram d1 is a sub-

diagram of d2. This means, informally, that the information provided by d1 is

a subset of that provided by d2. In particular, d2 � d1, so form(d2) ∧ form(d1)

is equivalent to form(d2). Informally, we can throw away d1 without weakening

information, and this justifies a rule that will produce D2 from D1, where D2 is a

copy of D1 in which the node labelled by d1 is relabelled by the trivial diagram.

Formal description. Let D1 be a linear generalized diagram that contains nodes

n1 and n2 such that the following is true:

1. n1 is the immediate diagram-labelled ancestor of n2,

2. n1 and n2 are labelled by the unitary diagrams d1 and d2 respectively, and
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d1 d2

A .
f

B A .
f

B.
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g
.

d2

A .
f

B.
g
.

D1 D2

Figure 4.76: An application of the relabel sub-diagram rule.

3. d1 ⊆ d2.

Let D2 be the diagram obtained by using transformation 18, relabel node, to

label n1 in D1 by >: D1
l(n1,>)−−−−→ D2. Then D1 can be replaced by D2 and vice

versa.

The counterpart to the above rule is the fact that, given two nodes, n1 and

n2, within a linear diagram, D, where n1 and n2 are labelled by unitary diagrams

d1 and d2 respectively, if d1 ⊆S d2 but d1 6⊆ d2, then D is unsatisfiable. We use

this fact to define a rule which can be used to simultaneously remove n2 and its

descendants from D, and to relabel n1 by ⊥. Note that this implication holds in

one direction only; it may be that, for each unitary diagram dj and immediate

diagram-labelled ancestor, di, of dj in D, di ⊆ dj, but that D is unsatisfiable. The

sub-diagram relation provides information about the consistency of two diagrams

vis á vis each other, but not about the satisfiability of the unitary diagrams

involved.

Rule 20: Relabel inconsistent sub-diagram. In Figure 4.77, diagram D1

contains nodes labelled by the unitary diagrams d1 and d2. Diagram D1 is a

linear diagram and d1 ⊆S d2, so D1 is in pushed syntax normal form. In diagram

d1, the spiders labelled x and y are not joined by tie, whilst in diagram d1, the

same spiders are joined by a tie. Thus, d1 6⊆ d2 and d1 and d2 are inconsistent

with each other. We will go on to show (in lemma 4.5.2) that D1 is unsatisfiable

and that we are justified in replacing D1 by ⊥.

Formal description. Let D1 be a linear generalized diagram in pushed syntax

normal form, containing nodes n1 and n2 which satisfy the following:

1. n1 and n2 are labelled by the unitary diagrams d1 and d2, respectively,

2. n1 is the immediate diagram-labelled ancestor of n2, and
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d1 d2

A .
f .

D1

x .y A .
f .x .y

D2

Figure 4.77: An application of the relabel inconsistent sub-diagram rule.

3. d1 6⊆ d2.

Let D2 be the unitary diagram which consists of a single node labelled by ⊥.

Then D1 can be replaced by D2.

The final rule we require when reducing linear diagrams is one which removes

the root node, n, of a linear diagram when n is labelled by >.

Rule 21: Remove root node. If a node, n, of a linear generalized diagram, D,

is labelled by the trivial diagram, we can remove n without changing the meaning

of D. This follows immediately from the interpretation of >, which is trivially

true. Since we will use this rule in the algorithmic process to remove the root

node of a linear diagram, we define the rule in this context.

Formal description. Let D1 be a linear generalized diagram which contains

nodes n1 and n2 such that the following is true:

1. n1 is the root node of D1 and is labelled by >,

2. n2 is the immediate diagram-labelled descendant of n1.

Let D2 be the diagram obtained by using transformation 14, remove root

node, to remove n1 from D1: D1
−n1−−→ D2. Then D1 can be replaced by D2 and

vice versa.

4.5.2 Validity of the inference rules required to reduce

linear diagrams

We will now show that the rules which relabel sub-diagrams and remove nodes

labelled by the trivial diagram are sound. First, we establish two results con-

cerning the sub-diagram relation and satisfiability. The first of these shows that,
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given unitary diagrams d1 and d2, if d1 is a sub-diagram of d2, then the semantic

formula for d2 implies that of d1.

Lemma 4.5.1. Let D be a generalized diagram that contains nodes n1 and n2,

labelled by unitary diagrams d1 and d2 respectively, such that d1 ⊆ d2. Let

I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ). Then, under

I ′, form(d2)⇒ form(d1).

Proof. Assume form(d2) is true under I ′. The diagrams d1 and d2 have the

same zone set, and so the plane tiling condition is true for d1 since it is true for

d2. By the definition of sub-diagrams we know that, for all spiders x ∈ S(d1),

ηd1(x) = ηd2(x). Thus, the spiders’ habitat condition is true in d1 since it is true

in d2. By the same definition, we also know that two spiders in S(d1), x and y,

are joined by a tie if and only if they are joined by a tie in d2. Let x and y be

spiders in S(d1). Then x and y are

1. in S(d2) since S(d1) ⊆ S(d2), and

2. joined by a tie if and only if they are joined by a tie in d2.

Therefore, if x and y are joined by a tie in d1, Ψ′(x) = Ψ′(y) by form(d2).

Similarly, if x and y are not joined by a tie in d1, we know Ψ′(x) 6= Ψ′(y) by

form(d2). Hence, the spiders distinctness conditions holds for d1 since it holds

for d2. The sub-diagram relation further states that, for each zone z which is

shaded in d1, the set of spiders S(z, d1) contains a full set of equivalence class

representatives for τd2 with regard to S(z, d2). That is, if y ∈ S(z, d2) then either

y ∈ S(z, d1) or there is a spider x in S(z, d1) ∩ S(z, d2) where x and y are joined

by a tie in d2. Thus, the shaded zones condition is true in d1 since it is true in

d2. The arrows condition for d1 is implied by that of d2 since A(d1) ⊆ A(d2).

Therefore, I ′ is valid for d1 if it is valid for d2, and form(d2) ⇒ form(d1) as

required.

The next result concerning the sub-diagram relation shows that, given a di-

agram, D, containing nodes n1 and n2, labelled by unitary diagrams d1 and d2

respectively, if d1 ⊆S d2 but d1 6⊆ d2, then D is unsatisfiable.
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Lemma 4.5.2. Let D be a linear generalized diagram that contains nodes, n1

and n2, such that the following is true:

1. n1 is the immediate diagram-labelled ancestor of n2,

2. n1 and n2 are labelled by the unitary diagrams d1 and d2, respectively, and

3. d1 ⊆S d2.

If d1 6⊆ d2 then D is unsatisfiable.

Proof. Assume that d1 6⊆ d2 and that D is satisfiable; we will show that this

is a contradiction. Let I = (U,Ψ,Φ) be a model for D with valid extension

I ′ = (U,Ψ′,Φ). Since d1 6⊆ d2, we know by the definition of sub-diagrams that

one or more of the following is true:

1. there is a spider, x, in S(d1) such that ηd1(x) 6= ηd2(x),

2. there is zone, z, which is shaded in d1 and which is the habitat of a spider,

x, in d2 where x is missing from d1 and, in d2, x is not joined by a tie to

any spider, y, where y is present in d1, or

3. there is a pair of spiders x, y ∈ S(d1) that are joined by a tie in d1 and not

in d2, or that are not joined by a tie in d1 and are joined by a tie in d2:

∃x, y ∈ S(d1) ((x, y) ∈ τd1 ∧ (x, y) 6∈ τd2) ∨ ((x, y) 6∈ τd1 ∧ (x, y) ∈ τd2).

We will show that, if one of the three conditions is true, form(d1) ∧ form(d2)

is false. Assume that (1) is true. Then there is a spider, say x, in S(d1), where

ηd1(x) 6= ηd2(x). Let ηd1(x) = z1 and ηd1(x) = z2. Since z1 6= z2 and since,

semantically, distinct zones represent distinct subsets of the universal domain,

it must be that Ψ′(z1) ∩ Ψ′(z2) = ∅. Thus, Ψ′(x) ⊆ Ψ′(ηd1(x)) implies Ψ′(x) 6⊆
Ψ′(ηd2(x)), and the spiders’ habitat condition cannot be true in form(d1) and

form(d2) simultaneously. Thus form(d1) ∧ form(d2) is false.

Alternatively, assume that (2) is true. Let z be a zone in Z∗(d2), which

contains a spider, x, where x ∈ S(z, d2) − S(z, d1) and where there is no spider

y ∈ S(z, d1)∩S(z, d2) such that (x, y) ∈ τd2 . That is, z is shaded in d2, x inhabits

z in d2 but is missing from d1, and x is not joined by a tie to any spider which
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is present in d1. Given these facts, then if the spiders’ distinctness condition is

true for d1 and d2, the following must be true:

( ⋃
x∈S(z,d1)

Ψ′(x)
)
6=
( ⋃
x∈S(z,d2)

Ψ′(x)
)
. (4.34)

Since d1 ⊆S d2, Z∗(d1) ⊆ Z∗(d2) and so z is shaded in both unitary diagrams.

The shaded zones condition for d1 includes the sub-formula for z:

Ψ′(z) =
⋃

x∈S(z,d1)

Ψ′(x).

Equally, the shaded zones condition for d2 states the following:

Ψ′(z) =
⋃

x∈S(z,d2)

Ψ′(x).

By (4.34), we know that the shaded zones condition cannot be true for d1 and

d2 at the same time, and so form(d1) ∧ form(d2) is false.

Finally, assume (3) is true. Then there is a pair of spiders, say x and y, which

are distinct spiders in S(d1) and are joined by a tie in S(d2), or vice versa. If x

and y are distinct spiders in d1 then they represent distinct elements: form(d1)

contains the sub-formula Ψ′(x) 6= Ψ′(y). But we know that x and y are joined

by a tie in d2, so Ψ′(x) = Ψ′(y), which is a contradiction. Alternatively, x and y

are joined by a tie in d1 but not in d2. Here we have Ψ′(x) = Ψ′(y) in form(d1)

and Ψ′(x) 6= Ψ′(y) in form(d2), again reaching a contradiction. Thus the spiders’

distinctness condition for d1 cannot be true.

Since one or more of conditions (1), (2) and (3) is true, it must be the case

that form(d1)∧ form(d2) is false in any extended interpretation. We know that D

is a linear diagram, and thus that the formula for D is a conjunction that includes

the sub-formula form(d1)∧ form(d2), which reduces to ⊥. Therefore, form(D) is

false and we have shown that D is unsatisfiable as required.

Theorem 4.5.1: Rule 19, relabel consistent sub-diagram, is valid. Let D1 be a

linear generalized diagram that contains nodes n1 and n2 such that the following

is true:
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1. n2 is the immediate diagram-labelled descendant of n1,

2. n1 and n2 are labelled by the unitary diagrams d1 and d2 respectively, and

3. d1 ⊆ d2.

Let D2 be the diagram obtained by using the rule to label n1 in D1 by >.

Then D1 ≡� D2.

Proof. Let I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ).

We will show that the formula for D2 is true under I ′ whenever the formula

for D1 is true under I ′. Diagram D2 is a copy of D1 in which n1 is relabelled

by the trivial diagram. That is, the formula for D1 contains the sub-formula

form(d1) ∧ form(d2) which is replaced in the formula for D2 by > ∧ form(d2).

Clearly, form(d1) ∧ form(d2) implies > ∧ form(d2), and so the formula for D2 is

true whenever the formula for D1 is true. Thus, D1 � D2.

We now show the reverse. We know that d1 ⊆ d2. By lemma 4.5.1, form(d2)⇒
form(d1) and so > ∧ form(d2) implies form(d1) ∧ form(d2). Thus, the formula

for D1 is true under I ′ if the formula for D2 is true under I ′ and it follows that

D2 � D1 and D1 ≡� D2 as required.

Theorem 4.5.2: Rule 20, relabel inconsistent sub-diagram, is valid. Let D1 be

a linear generalized diagram in pushed syntax normal form, containing nodes n1

and n2 which satisfy the following:

1. n1 and n2 are labelled by the unitary diagrams d1 and d2, respectively,

2. n1 is the immediate diagram-labelled ancestor of n2, and

3. d1 6⊆ d2.

Let D2 be the unitary diagram obtained by using rule 20 to transform D1.

Then D1 ≡� D2.

Proof. By lemma 4.5.2, D1 is unsatisfiable, and so form(D1) is false under any

interpretation. The same is true of D2, and since neither D1 or D2 have any

models, D1 ≡� D2 as required.

Theorem 4.5.3: Rule 21, remove root node, is valid. Let D1 be a linear gener-

alized diagram which contains nodes n1 and n2 such that the following is true:
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1. n1 is the root node of D1 and is labelled by >,

2. n2 is the immediate diagram-labelled descendant of n1.

Let D2 be the diagram obtained by using the rule to remove n1 from D1.

Then D1 ≡� D2.

Proof. Let I = (UΨ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ). The

formula for D1 consists of the formula for n1, which is trivially true, conjoined

with the formula for D2. Thus, whenever the formula for D1 is true under I ′, the

formula for D2 must also be true under I ′. By a similar argument, the formula

for D1 is true under I ′ whenever the formula for D2 is true under I ′. Thus

D1 ≡� D2.

4.5.3 A decision procedure for linear generalized diagrams

We can use the rules defined and shown to be sound in the previous sections

to describe a decision procedure for linear generalized diagrams. The procedure

is based on the following algorithm which is used to reduce a linear diagram

in pushed syntax normal form to a generalized diagram consisting of a single

diagram-labelled node.

Algorithm 4 (Linear diagram in pushed syntax normal form to single dia-

gram-labelled node). Let D1 be a linear generalized diagram in pushed syn-

tax normal form. Transform D1 to a generalized diagram consisting of a single

diagram-labelled node, D2, using the following steps:

1. If the root node of D1 is a leaf node, then let D2 = D1 and we are done.

2. Otherwise, let n1 and n2 be the root node of D1 and its immediate diagram-

labelled descendant, labelled by the unitary diagrams d1 and d2 respectively.

If d1 6⊆ d2, then the conditions exists to apply rule 20, relabel inconsistent

sub-diagram, giving a diagram, D2, which consists of a single diagram-

labelled node labelled by ⊥. Alternatively, d1 ⊆ d2 and we are able to use

rule 19, relabel sub-diagram, to relabel n1 by > in D, giving E1. Next, we

use rule 21, remove root node, to remove n1 from E1, giving E2. We repeat

the process at step (1) in the context of E2.
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Next we show that the above algorithm is terminating and produces a diagram

which is equivalent in meaning to the original.

Lemma 4.5.3. Let D1 be a linear generalized diagram in pushed syntax normal

form and let D2 be the diagram obtained by using algorithm 4 to transform D1.

Then the following is true:

1. D2 consists of a single diagram-labelled node,

2. D1 ≡� D2, and

3. algorithm 4 terminates.

Proof. If algorithm 4 halts at step (1) then D1 ≡� D2 trivially. Let n1 and n2 be

the root node of D1 and its immediate diagram-labelled descendant, labelled by

the unitary diagrams d1 and d2 respectively. In step (2), if d1 6⊆ d2, then we use

rule 20, relabel inconsistent sub-diagram, to replace D1 by D2, the generalized

diagram consisting of a single node labelled by ⊥. By theorem 4.5.2, D1 ≡� D2.

Alternatively, if d1 ⊆ d2 in step (2), we use rule 19, relabel sub-diagram, to relabel

n1 by > in D, giving E1. By theorem 4.5.1, D1 ≡� E1. Next, we use rule 21,

remove root node, to remove n1 from E1, giving E2. By theorem 4.5.3, E1 ≡� E2

and so D1 ≡� E2. Each step of the algorithm either halts the process or reduces

the number of nodes in D1. Thus, since D1 is finite, the process is terminating,

results in a diagram consisting of a single diagram-labelled node, and D1 ≡� D2

as required.

To close this section we state the conditions under which a linear diagram

in pushed syntax normal form, D, is satisfiable; D is satisfiable if and only if D

can be transformed into a diagram that consists of a single node labelled by a

satisfiable unitary diagram. First, we show that a linear diagram containing an

unsatisfiable unitary diagram is itself unsatisfiable.

Lemma 4.5.4. Let D = (V,W,E, l) be a linear generalized diagram containing

a node, n, labelled by a unitary diagram, d. If d is unsatisfiable then D is

unsatisfiable.
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Proof. Let I = (U,Ψ,Φ) be an interpretation with extension I ′ = (U,Ψ′,Φ).

Assume that d is unsatisfiable. The formula for D is as follows:

form(D) =
∧
n∈V

form(l(n)). (4.35)

We know that n ∈ V , l(n) = d and form(l(n)) = ⊥, since d is unsatisfiable.

Therefore (4.35) reduces to ⊥ and D is unsatisfiable.

Lemma 4.5.5. Let D1 be a linear generalized diagram in pushed syntax normal

form and let D2 be the diagram obtained by using algorithm 4 to transform D1.

Then D1 is satisfiable if and only if D2 is satisfiable.

Proof. Assume that D1 is satisfiable. By lemma 4.5.3, D1 ≡� D2 and so D2 is

satisfiable. Next, assume that D2 is unsatisfiable. Since D2 was obtained by using

algorithm 4 to transform D1, one of the following must be true:

1. D1 contains an unsatisfiable unitary diagram, or

2. D1 contains diagram-labelled nodes n1 and n2 such that the following is

true:

(a) n1 is the immediate diagram-labelled ancestor of n2,

(b) n1 and n2 are labelled by unitary diagrams d1 and d2 respectively, and

(c) d1 6⊆ d2.

If the first condition is true, then D1 is unsatisfiable by lemma 4.5.4. If the

second condition is true, then D1 is unsatisfiable by lemma 4.5.2. Thus, if D2

is unsatisfiable then D1 is also unsatisfiable. Hence we have shown that D1 is

satisfiable if and only if D2 is satisfiable.

4.6 The decision procedure

We now have the results we need to describe the decision procedure for the

existential fragment. For convenience, we combine the algorithms relating to

normal forms given earlier in this chapter to form an algorithm which transforms

a generalized diagram into disjunctive normal form in one step. In Figure 4.78,



4.6 THE DECISION PROCEDURE 202

the dashed box illustrates the way that the new algorithm combines the steps

required to convert a diagram from the existential fragment to a diagram in

disjunctive normal form.

D2

EF
-linear 

normal form

D3

pushed syntax 
normal form

D4

disjunctive 
normal form

D1

Algorithm 1 Algorithm 2 Algorithm 3

D5

Algorithm 4

reduce linear 
sub-diagrams

Algorithm 5

Figure 4.78: The algorithm to convert a generalized diagram to disjunctive normal
form.

Algorithm 5 (Generalized diagram to disjunctive normal form). Let D1 be a

generalized diagram. TransformD1 into a second diagram, D2, using the following

steps:

1. Use algorithm 1, generalized diagram to ∧-linear normal form, to transform

D1, giving E1.

2. Use algorithm 2, ∧-linear to pushed syntax normal form, to transform E1,

giving E2.

3. Use algorithm 3, pushed syntax to disjunctive normal form, to transform

E2, giving D2.

We show that the above algorithm terminates, and results in a diagram which

is equivalent to the original diagram, and is in each of the normal forms.

Theorem 4.6.1: Let D1 be a generalized diagram and let D2 be the diagram

obtained by using algorithm 5 to transform D1. Then the following is true:

1. D2 is in ∧-linear, pushed syntax and disjunctive normal forms,
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2. D1 ≡� D2, and

3. algorithm 5 terminates.

Proof. This follows from theorems 4.2.2, 4.3.11 and 4.4.5.

After using algorithm 5 to convert a generalized diagram, D1, to an equivalent

diagram in disjunctive normal form, D2, we examine the set of linear branches

of D2, B. For each branch B ∈ B, we use algorithm 4, which reduces linear

generalized diagrams, to reduce B to a generalized diagram, B′, consisting of a

single node. Then, either B′ is labelled by ⊥, in which case B′ and hence B are

unsatisfiable, or B′ is labelled by a unitary diagram b′ 6= ⊥. In this case, we

appeal to the decision procedure for unitary diagrams given in chapter 3. These

steps form the decision procedure for the existential fragment, which we use as

the basis for the main theorem of this chapter; a diagram from the existential

fragment, D, is satisfiable if and only if, after transforming D to a diagram in

disjunctive normal form with a set of disjunctive branches, B, some element of B
can be reduced to a satisfiable unitary diagram.

Theorem 4.6.2: The existential fragment is decidable.

Proof. Let D1 be a diagram drawn from the existential fragment. By theo-

rem 4.6.1, we can use algorithm 5 to convert D1 in finite steps to a diagram,

D2, where D2 is in ∧-linear, pushed syntax and disjunctive normal form, and

D1 ≡� D2. If D2 is a linear diagram, then by lemma 4.5.3, we can use algo-

rithm 4 to reduce D2 to a generalized diagram, D3, consisting of a single node

and where D2 ≡� D3. Let d3 be the unitary diagram labelling the root node of

D3. Clearly, D3 ≡� d3. By theorem 3.3.5, we can determine the satisfiability of

d3. By lemma 4.5.5 and since D1 ≡� D2 ≡� D3 ≡� d3, D1 is satisfiable if and only

if d3 is satisfiable. There is a decision procedure for determining the satisfiability

of d3, so there is such a procedure for D3 and we are done.

If D2 is not a linear diagram, let n∨ be the (unique) ∨-labelled node in D2

and let B be the set of sub-diagrams of D2 induced by the immediate descendants

of n∨. Let B′ be the set obtained by applying algorithm 4 to each of the sub-

diagrams of D2 in the set B. Then by lemma 4.5.3, the following holds for any

interpretation: ( ∨
B∈B

form(B)
)
≡
( ∨
B′∈B′

form(B′)
)
. (4.36)
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Each generalized diagram in B′ consists of a single diagram-labelled node.

Let B′ ∈ B′ and let b′ be the unitary diagram labelling the root node of B′.

By theorem 3.3.5, we can determine the satisfiability of b′, and thus B′. Since

B′ ≡� b′, B′ is satisfiable if and only if b′ is satisfiable. There is a decision

procedure for the satisfiability of b′, and so there is one for B′. Since B′ is finite,

we have a decision procedure for determining whether B′ contains a satisfiable

diagram. By (4.36), we can determine the same for B. Hence, we can determine

the satisfiability of D2. Since D1 ≡� D2, D1 is satisfiable if and only if D2 is

satisfiable, and the existential fragment is decidable.

In this chapter we have constructed a set of algorithms, based on syntactic

operations and normal forms, that can be used to judge the satisfiability of a

generalized diagram. Theorem 4.6.2, which shows that the existential fragment

is decidable, concludes the main part of the thesis.



Chapter 5

Conclusions and further work

We begin by summarising the results and the contribution of the thesis, before

discussing several promising areas of further work in which our work can be

extended.

5.1 Results and contribution of this thesis

After an examination of the manner in which syntax interacts to give rise to

inconsistency in generalized unitary diagrams, we defined the class of unitary γ-

diagrams. In this class, the consistency of a unitary diagram can be judged by an

inspection of its spiders and arrows. We developed standard interpretations for

γ-diagrams, building on work in [38] which, in turn, is analogous to the canonical

models used in the classical decision problem. Making use of standard interpreta-

tions, we established the relationship between our definitions of consistency and

satisfiability. Using γ-diagrams as a reduction class for the unitary fragment, we

extended this result to develop a decision procedure for all unitary diagrams.

d2 d3

A
C

f

d1

.
...

fB

A
C

f

.
...

B

A
C

f

.
...

B

.

x x xf f

Figure 5.1: A unitary diagram and its γ-components.

To recap the unitary decision procedure, consider Figure 5.1, in which d1

205
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is a diagram from our unitary existential fragment. Diagram d1 is not a γ-

diagram since there is a zone, ({A}, {B,C}), which is unshaded and contains

no spiders. We cannot determine the consistency of d1 simply by inspecting its

spiders and arrows (that is, by using the method devised in this thesis). Diagrams

d2 and d3 are the γ-components of d1, in which the zone ({A}, {B,C}) is either

shaded or contains a spider, and theorem 3.3.4 establishes that d1 is equivalent

to the disjunction of d2 and d3. Taking two disjoint sets of the arrows of d2,

X = {(f, A,C)} and Y = {(f,B, x)}, we can see that if we subtract the target

spiders of Y from the target spiders of X, there are spiders remaining. If we

subtract the source spiders of Y from the source spiders of X, however, there

are no spiders remaining. By definition 3.1.4, diagram d2 is inconsistent, and,

by theorem 3.1.1, unsatisfiable. Carrying out the same process with diagram d3,

we can see that it is satisfiable. Since d1 ≡� d2 ∨ d3 and d3 is satisfiable, we can

determine that d1 is satisfiable. A simplified version of the contents of chapter 3

was published in [4].

D1

A .f
B . g

A .d1

d3

d2

Figure 5.2: A non-unitary generalized diagram.

In chapter 4, we extend the decision procedure to the entire existential frag-

ment. We developed a series of normal forms that allow us to transform a gen-

eralized diagram such as D1, Figure 5.2, into a form whereby we can determine

its consistency. In particular, we showed that we can linearise ∧-labelled nodes

to give ∧-linear normal form, push syntax forwards through a diagram to give

pushed syntax normal form, and remove nested ∨-labelled nodes to give disjunc-

tive normal form. We showed that transforming a diagram through this sequence

of the normal forms produces a sequence of semantically equivalent diagrams,

resulting in one whose meaning is contained in a set of unitary diagrams. These
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results, in combination with the decision procedure for unitary diagrams, allow us

to describe a decision procedure for the entire system. In Figure 5.3, diagram Dn

shows the result of applying this procedure to the diagram in Figure 5.2. We can

determine the consistency of Dn by applying the unitary procedure of chapter 3

to the unitary diagrams labelling its leaf nodes.

Dn

d0

l1

B
g

A
f...

B
g

A
f...

B
g

A
f.

B
g

A
f.

..

..

l2

l3

l4

Figure 5.3: A generalized diagram in disjunctive normal form.

As we discussed in section 1.1.2, the decision problem for the more expressive

diagrammatic logics, such as constraint diagrams, has not yet been widely stud-

ied. Our study of the ways in which syntax interacts to give rise to inconsistency

in generalized unitary diagrams adds to the knowledge of the Euler/Venn family

of notations. This study leads to the decision procedure for unitary diagrams,

which was our first main contribution. It is interesting, although perhaps unsur-

prising, that our unitary decision procedure depends on techniques first developed

to tackle the decision problem in symbolic logic, such as canonical models and

reduction classes, although we use these strategies in a diagrammatic context.

The tree structure of generalized diagrams is novel within the Euler/Venn
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family; our decision procedure for the non-unitary case consists of sound manip-

ulations of that tree structure, as well as sound manipulations of the content of

unitary diagrams labelling nodes in the tree. The decision procedure for the full

existential fragment was our second main contribution.

The fragment of GCDs we study was selected to be decidable. Although

the expressiveness of our fragment is an open problem, we conjecture that the

fragment is strictly less expressive than the Bernays-Schönfinkel-Ramsey class

with equality, which consists of sentences with two place predicates and a ∃∗∀∗

prefix [2]. This seems to be the case because translating the semantic formula of

a generalized constraint diagram in the existential fragment to first order logic

yields a sentence in which all ∃ come before ∀, but there are formulae with the

prefix ∃∗∀∗ which cannot be expressed as diagrams in the EF, such as ∃x∀y f(y, x).

It would be possible to translate each diagram to a sentence in symbolic language

then use an existing decision procedure; an efficient decision procedure for this

class of formulae, building on techniques used to solve the Boolean satisfiability

problem, is given in [9]. The benefit of the current work, however, is found in the

focus on the diagrammatic nature of the logic in question. Symbolic logic decision

procedures give no real insight into how unsatisfiability arises in diagrammatic

notations, something which is of key interest to users of the notations.

Although our fragment is a restriction of the full system of GCDs, our results

could be of practical benefit to users of the whole system. As a step towards

verifying the consistency of a model, it would be possible to develop software

tools which implement partial model checking, used to judge the consistency of

that part of a model which does not include universal spiders, and to identify

inconsistency arising solely from the presence or absence of existential spiders in

any model. This information is of fundamental importance to those using the

notation to model, for instance, software systems. We discuss the implications of

implementing the decision procedure in the next section.

Unlike earlier work, the inference rules in our system are based on purely

syntactic transformations. We believe that there are a number of benefits to be

gained from this approach, which we have previously explored in [3]. The use

of transformations leads to more concise definitions of rules and to the benefits

of modularity, whereby a transformation is defined once and used in the defini-

tion of several rules of inference. Furthermore, we have defined transformations



5.1 RESULTS AND CONTRIBUTION OF THIS THESIS 209

with a level of generality that allows them to be used in a wide range of rea-

soning contexts. For example, the add contour transformation (see page 82) is

parametrised with the sets of zones which will be either inside or outside of the

new contour, called Zin and Zout respectively, and with the sets of spiders which

will be either inside or outside of the new contour, Sin and Sout . In [38], an add

contour inference rule is defined so that the new contour splits every zone in the

premise diagram. We define rule 6, add contour, to have this effect by assigning

Zin = Zout = C(d). Figure 5.4 shows an example of this choice of Zin and Zout.

A

r B

CA

r B

Figure 5.4: Adding a contour so as to split every zone.

In the case of rule 2, add contour over spider, we define a valid rule which

adds a contour so that it splits a single zone, which is the habitat of a particular

spider (see Figure 5.5). In the definition of the rule, we achieve this effect using

the same add contour transformation with a different choice of Zin and Zout ,

demonstrating the flexibility of the transformations approach.

d1 d2

.
A B

x .y .z C
.

A B

x .y .z C

Figure 5.5: Adding a contour without splitting every zone.

In summary, we have devised novel decision procedures for γ-diagrams, uni-

tary diagrams and compound diagrams from the existential fragment of GCDs.

These decision procedures provide insight into how the diagrammatic syntax gives

rise to inconsistent formations. In addition we have devised a set of sound in-
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ference rules that can be used to transform diagrams into various normal forms,

which could well be of use when considering the issue of completeness, further

discussed below.

5.2 Further work

Finally, we highlight and discuss areas for further work. Some of these areas are

directly supported by the contribution of our thesis, such as the development of a

completeness proof, and some are more indirectly related, such as our discussion

of usability.

5.2.1 The relationship between the existential fragment

and the full system

Our work presents a system of generalized constraint diagrams which differs from

the original presentation in various ways: we exclude universal spiders, resulting

in a decidable system, we restrict spiders to have a single foot, so that all unitary

diagrams are α-diagrams, and we have added ties between spiders, represent-

ing equality. Of these changes, the restriction to α-diagrams and the addition

of ties are relatively superficial, and all of our results can be adapted to a sys-

tem including spiders with multiple feet and excluding ties with little difficulty.

Spiders with several feet represent disjunctive information and thus a constraint

diagram which contains a spider with several feet is equivalent to a disjunction

of α-diagrams [46]. Ties between spiders are a notational convenience which can

be removed by altering the syntax. The exclusion of universal spiders, on the

other hand, reduces the expressiveness of the system and we would need to make

a number of significant changes to accommodate universal spiders.

As well as changes to the syntax, the semantics of our diagrams would be

altered by the reintroduction of universal spiders. As in the original presen-

tation [41], the formulae of a diagram would need to introduce new universal

quantifiers to quantify over all extended interpretations, as well as the current

existential quantification which interprets derived contours and existential spi-

ders. We would also need to reintroduce the invariant found in the original sys-

tem that each diagram-labelled node which introduces a universal spider can not
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introduce any other spider. Since the reintroduction of universal spiders would

result in semantic formulae with arbitrary quantifier alternation, this would result

in an undecidable system.

The original work on generalized constraint diagrams does not discuss in-

consistency, but the forms of inconsistency which arise from universal spiders in

non-generalized constraint diagrams are described in [38]. Figure 5.6 shows three

examples of inconsistency arising from arrows sourced on universal spiders.

.A
B

f.

.A
B

D3

A
B

f

* .
A

B

.A
B

f

f

*

.A
B

f

f.
*

D2

D1

. .

.f

... .

d1 d2

d4d3

d5 d6

Figure 5.6: Inconsistency arising from arrows sourced on universal spiders.

The type of inconsistency found in diagrams D1 and D2, Figure 5.6, extends

the notion of target inconsistency, described in section 3.1.1, page 55. In each

case, the target of an arrow supplies contradictory information. In D1, given an

extended interpretation (U,Ψ′, φ), the formula for the unitary diagram d1 is as

follows:

∃x∃y(PTC (d1) ∧ SZC (d1) ∧ (Ψ′(x) ⊆ Ψ′({A}, {B})

∧Ψ′(y) ⊆ Ψ′(∅, {A,B})) ∧ SDC (d1) ∧ AC (d1)), (5.1)

where only the spiders habitat condition is given in full. In the formula for d2,
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the arrows condition contains the following two clauses:

∀x(x ∈ S(({A}, {B}), d2)⇒ Ψ′({x}).Φ(f) = Ψ′({y})), (5.2)

and

∀y(y ∈ S(({A}, {B}), d2)⇒ Ψ′({y}).Φ(f) = Ψ′(B)). (5.3)

By the spiders habitat condition in (5.1), we can deduce that there is at

least one element in the set Ψ′({A}, {B}), and thus Ψ′(A) is not empty. Also

by (5.1), we know that Ψ′(y) ⊆ Ψ′(∅, {A,B}) and thus, by the definition of

Ψ′, Ψ′(y) 6⊆ Ψ′(B). It follows that (5.2) and (5.3) contradict each other. Note

that the contradiction depends on the fact that Ψ′({A}, {B}), the mapping for

the zone over which the universal spider quantifies, is not empty. Otherwise,

both (5.2) and (5.3) are true.

In diagram D2, Figure 5.6, contradictory information is again supplied by the

targets of arrows. The type of inconsistency found in diagram D3 extends the

notion of source inconsistency (section 3.1.1), as there are too few source spiders

to satisfy the relation represented by an arrow label. Both source and target con-

sistency are accommodated by our definition of consistency, and we can see that

it would be possible to extend the definition to accommodate universal spiders.

This extension would enable us to show that inconsistent diagrams containing

universal spiders are unsatisfiable. The reverse, to show that unsatisfiable dia-

grams are inconsistent, would not be possible since the full system is undecidable.

5.2.2 Implementing the decision procedure

Although tools exist for drawing constraint diagrams [15], there are currently no

tools for reasoning with them. Were such tools to be developed, their authors

could make immediate use of our decision procedure. However, the definitions and

algorithms developed throughout our work were developed without consideration

for computational complexity. When implementing the decision procedure, we

need to consider performance, complexity, and the possibility of creating an opti-

mised procedure. The task of judging the satisfiability of a unitary γ diagram has

deterministic exponential complexity. For example, consider Figure 5.7, diagram
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d. Let X be the set of arrows in d:

X = {(f, x, B), (f, y, z), (f, A,C)}.

The decision procedure compares source and target spiders for each element

of the powerset of X, and its complement. That is, the process examines the

sets of arrows ∅ and X, followed by {(f, x, B)} and {(f, y, z), (f, A,C)}, and so

on. If n is the cardinality of PX then the process takes 2n steps. In general, this

gives an upper bound on the steps required by the procedure, since the process

can stop when we encounter inconsistency. The process compares arrows with

the same label, and for each arrow label, l, in a unitary diagram, d, the largest

number of steps is determined by, and is exponential in, |PA(l, d)|.

d

y
x. .. z

A

C

Bf

f

f .

Figure 5.7: The complexity of the unitary decision procedure.

Several of the other steps in the unitary decision procedure, such as finding

the γ components of an α diagram, are similarly computationally expensive.

Such complexity is typical for a decision procedure of this type. For example,

in [2], Börger et al. describe a decision procedure for the Bernays-Schönfinkel-

Ramsey class. They show that a satisfiable sentence in this class has a model,

m, with a finite domain, U , give a constructive method for finding m, and show

that the complexity of the method is exponential in the cardinality of U [2,

p259]. The decision procedure for (non-unitary) generalized diagrams also has

deterministic exponential complexity. In this case, however, there are various

ad hoc optimisations which could be used to improve the performance of the

process in real time, such as pruning the graph underlying a generalized diagram

at various stages, reducing the number of calculations needed in following stages.

For instance, when pushing contours, we form the set of all add contour com-

ponents for a unitary diagram (see section 4.3.2). In Figure 5.8, diagrams d3 and
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Figure 5.8: Inconsistent branches produced by pushing contours.

d4 are the add contour components for B in d2. When pushing B from d1 to

d2 in the generalized diagram D, our procedure replaces d2 by the disjunction

of d3 and d4. However, we can see that d3 is inconsistent in the context of D:

it contains a spider in the zone ({A,B}, ∅), which is shaded and untouched in

d1. Our procedure would discard the unitary diagram d3 in the final stage of

the decision procedure, that which reduces linear diagrams. In the case of dia-

grams larger than D, Figure 5.8, removing diagrams such as d3 immediately after

pushing contours would provide a considerable optimisation. The same strategy

could be used to reduce the number of add spider with ties components (again,

see section 4.3.2).

5.2.3 Usability

In the literature review we discussed the usability of diagrammatic notations,

and the rôle played by usability in the development of generalized constraint di-

agrams. We noted that the usability of constraint diagrams, as opposed to their

underlying Euler diagram notation, requires further study, and highlighted the

recent small study in [11]. We also believe it would be profitable to compare

the usability of generalized constraint diagrams with that of the non-generalized

notation. In [8], the author, in collaboration with Coppin and Hockema, conjec-

tured that certain properties of a notation may make the notation effective for

communicating proofs, and showed that these properties are held by generalized

constraint diagrams. Cognitive factors are central to the adoption of a notation

by users, and much further investigation is required to establish the ways in which
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these factors interact, given a notation and a specific task. We believe it would be

possible to identify the effect of the features distinctive to GCDs by conducting a

study in which software engineers undertake a comprehension task using GCDs

and non-generalized constraint diagrams.

5.2.4 Completeness

The next natural step in the metatheory of generalized constraint diagrams is to

show the completeness of a set of inference rules. In this section we discuss this

goal and possible strategies for achieving it. Stapleton [38] showed completeness

for a (non-generalized) constraint diagram system. The strategy used is illus-

trated in Figure 5.9, which is taken from [38, p250]. Given two diagrams, D1 and

D2, where D1 � D2, the problem is to show that D1 ` D2. That is, we need to

show that we have sufficient (sound) inference rules to transform D1 into D2. Sta-

pleton’s strategy proceeds as follows: first, manipulate both diagrams until they

are transformed into diagrams, Dβ
1 and Dβ

2 respectively, where Dβ
1 and Dβ

2 have

the same zone sets and are disjunctions of β-diagrams. In Figure 5.9 this process

is covered by steps 1 to 5. In the process of building our decision procedures,

we have provided sound inference rules which accomplish the generalized version

of each of the steps. Thus, diagrams Dβ
1 and Dβ

2 have a structure which is the

non-generalized equivalent of the disjunctive normal form presented in chapter 4.

The next step in this strategy is to add syntax to Dβ
1 , to produce its maximal

form, say D′1, where D1 ≡` D′1. Next, remove syntax from Dβ
2 to produce its

minimal form, say D′2, where D2 ≡` D′2. Then we need to show that we can

embed D′2 in D′1 in some sense, possibly by showing that we can remove syntax

from D′1 until it is isomorphic to D′2.

We have begun to investigate the use of this strategy for generalized constraint

diagrams, developing the notion of potential and redundant syntax for GCDs,

although this preliminary work is not in the thesis. To give a flavour of the task,

we describe the task of finding potential shading and redundant arrows.

Potential syntax is that which can be added to a diagram without changing

its meaning. For instance, in the diagram in Figure 5.10, we can add shading to

the zones ({B}, {A,C}) and ({C}, {A,B}) without changing the meaning of the
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Figure 5.9: Stapleton’s completeness proof strategy.

diagram; we say that these zones are shadeable. We can infer their shadeability

as follows: the arrow (f, A,B) tells us that, when the domain of the relation rep-

resented by f is restricted to the empty set, then the image is the set represented

by B. It must be true that the relational image of f is the empty set in this case,

and so we can infer that the set B represents is empty in any model. Thus, we

can describe a valid inference rule which adds shading to the zone inside B. The

same reasoning allows us to shade the zone inside C.

This form of shadeability, which arises from the relative placement of arrows, is

the only form of shadeability found in constraint diagram systems without derived

contours. Informally, we can see that, in the semantics, we need positive evidence

to infer the cardinality of a given set. Derived contours, however, represent

arbitrary subsets, and their semantics is given by asserting the existence of an

extended interpretation. Thus, we can restrict their cardinality by adding shading

at any time, providing this does not change the meaning of the underlying diagram

in which they are placed.

In Figure 5.11, diagram d1, c1 is a derived contour. If (U,Ψ,Φ) is an inter-

pretation for d1, the zone ({c1}, {A}) represents an unnamed subset of U −Ψ(A)
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A
Bf

C
f

Figure 5.10: Shadeable zones.

which contains at least one element. Clearly, there exists some extension of Ψ,

Ψ′, where Ψ′({c1}, {A}) contains exactly one element, and thus ({c1}, {A}) is

shadeable. Any of the other zones in the diagram is shadeable by the same

reasoning, but adding shading to certain zones limits the shadeability of the re-

maining zones. In d2, the zones ({A}, {c1}) and ({c1}, {A}) are shaded, and

d1 � d2. To add shading to ({A, c1}, ∅) in d2 would be to claim that the set

represented by A contains exactly two elements, something which is not true for

all interpretations. Since one zone inside A is left unshaded in d2, any model for

d1 is a model for d2. We say that the diagrams d2 to d5 are the maximally shaded

forms of d1. Adding potential shading to a diagram may therefore give rise to

choice and leads, in general, to a set of maximally shaded diagrams. This is the

first difficulty in adapting Stapleton’s strategy to the generalized case: there is

no unique maximal form of d1.

Next, we consider the task of finding the minimal form of a generalized unitary

diagram, which is achieved by removing redundant syntax. Redundant syntax

is that which can be removed without changing the meaning of a diagram. The

presence of derived contours increases the ways in which syntax can be considered

redundant. In Figure 5.12 we can infer that (f, s2, t) is redundant since (f, s1, t)

tells us, informally, that some element of s1 is related to the element represented

by the spider inside t. In any model for the diagram in Figure 5.12, the only

elements available to be related to the element represented by the spider in t

are those in s2, as all other elements in s1 are in the source of an arrow labelled

f which targets the empty set. The arrow (f, s1, t) is redundant by a similar

argument.

When constructing the minimal form of a unitary diagram, the goal is to show
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Figure 5.11: Shadeable zones and derived contours.

that the semantic and syntactic notions of redundancy for arrows coincide. The

syntactic notion of redundancy is the set of syntactic conditions that allow us

to identify when an arrow is redundant. The conditions relate to the presence

of a set of arrows; intuitively, we can see that if an arrow (l, s, t) is a semantic

redundant arrow for a unitary γ-diagram d, there must be a set of arrows in

A(d)− {(l, s, t)} which allows us to infer this fact.

In Figure 5.13 we can infer that (f, s1, t) is redundant due to the arrows

sourced on s2 and s3, neither of which is redundant itself. It is easier to see that

this is true if we remove certain zones from the diagram.

In Figure 5.14, d1 is the diagram obtained by removing all but one of the

untouched and shaded zones from the diagram in Figure 5.13. In d2 the arrow

(f, s1, t) is removed, and it is easy to see that the arrows of d2 provide the same

information as those of d1. Diagram d3 is obtained by removing the arrow (f, s3, t)
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Figure 5.14: Redundancy inferred from a set of arrows continued.

from d1. In this case we have weakened the information provided by the diagram,

as it is no longer necessary that elements inside s3 be related to anything under

f . Thus, (f, s3, t) is not a redundant arrow. Diagram d4 (to which shading is



5.2 FURTHER WORK 220

added so that d4 is a γ-diagram) illustrates this, since it is satisfiable and entails

d3 but not d1.

So far we have seen examples in which an arrow’s redundancy is inferred from

a set of arrows whose source spiders are equal to those of the redundant arrow; in

general, this need not be the case. In Figure 5.15 the arrow (f, s2, t) in diagram

d1 is redundant. The arrow (f, s1, t) asserts that the single element in t is related

to at least one element of s1 under f ; (f, s2, t) asserts that the element in t is

related to one or more elements of s2 under f .

.
. t

f
s1

f

s2 ..

d1

.
. ts1

f

..

d2

Figure 5.15: Redundancy and the sources of arrows.

The information provided by (f, s2, t) is thus, in some sense, a subset of that

provided by (f, s1, t). The redundancy of (f, s2, t) depends on two further condi-

tions: the fact that all spiders within s1 in d1 − {(f, s2, t)} are indistinguishable

modulo derived contours, and the fact that t contains exactly one spider. Two

pieces of syntax x and y in a unitary diagram d can be considered indistinguish-

able if there is an automorphism on d (a structure-preserving mapping from d to

d) that maps x to y. After removing the derived contour, s2, from diagram d1, Fig-

ure 5.15, as is done in diagram d2, the two spiders inside s1 are indistinguishable,

and so we say that the spiders in s1, diagram d1, are indistinguishable modulo

derived contours. Thus, when identifying redundant syntax in generalized uni-

tary diagrams, derived contours give rise to the need to consider indistinguishable

syntax.

In Figure 5.16, diagram d1, the derived contours are labelled s1, s2, s3 and t.

The arrow (f, s2, t) is redundant. We can infer this by combining the information

provided by the other arrows in the diagram, (f, s1, t) and (f, s3, t). Diagram

d2 shows d1 with the redundant arrow removed. To mix syntax and semantics

temporarily, we can infer that, because of (f, s3, t), the image of f when the
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Figure 5.16: Inferring redundancy from a subset of the source spiders.

domain is restricted to s2 is at least t; because of (f, s1, t), it as at most t.

Diagram d3 shows d2 after the removal of (f, s3, t). Because the only arrow in

the diagram gives us no information on which of the spiders of s1 are related to

the spider in t, we have no basis on which to add (f, s2, t) to d3. Another way

of thinking of this is that if we have three sets A, B and C where A ⊃ B ⊃ C,

and we have a relation R on A, then we know that A.R ⊇ B.R ⊇ C.R. It follows

that if we know that A.R = C.R then we can deduce that A.R = B.R = C.R.

t .
l

s2

t ...s1 s2

d1 d2

..s1

t ...s1 s2

d3

l
l l l

Figure 5.17: Redundancy with no subset relation of source spiders.

There is one case left to consider, in which the source spiders of a redundant

arrow a are not a subset of or equal to the source spiders of any set of arrows X

that excludes a, where X allows us to infer the redundancy of a. In Figure 5.17,

d1, the arrow (l, s1, t) is redundant. We can see that this is true if we consider

d2, which illustrates d1 − {(l, s1, t)}. If (U,Ψ′,Φ) is an extended interpretation

which satisfies d2, Ψ′(s2).Φ(l) = U . We know that Ψ′(s1) ⊇ Ψ′(s2), and so

Ψ′(s1).Φ(l) ⊇ Ψ′(s2).Φ(l). Thus, Ψ′(s1).Φ(l) = U . This is only the case because

Ψ′(s2).Φ(l) = U . In other words, there are no elements outside of t in any model

for d1 or d2. In diagram d3 the zone outside t is unshaded and so there are models

for d3 in which U − Ψ′(t) 6= ∅. In this case (l, s1, t) is not a redundant arrow, as

we cannot infer that we can replace it in d3 − {(l, s1, t)}.
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Thus, derived contours and the presence of arrows sourced on contours greatly

increase the types of syntactic configuration we need to consider when adapting

Stapleton’s strategy. These two features also interact to result in non-unique

minimal and maximal forms. At the underlying level, these issues stem from the

fact that generalized constraint diagrams have a second-order semantics. Unlike

the completeness proofs for earlier, related notations, we need to reason about

extensions rather than interpretations. That is, when we say that a generalized

diagram is satisfiable, we posit the existence of an extension that maps spiders and

derived contours to subsets of a universe. Rather than showing that two diagrams,

D1 and D2, have all the same models, we need to show that any valid extension

of a model for D1 is also valid for D2 and vice versa. While far from being an

intractable problem, this gives rise to added complexity. Notwithstanding this

difficulty, a completeness proof is an important component of the metatheory of

generalized diagrams.



Glossary

τd τd is the equality relation on the spiders of the generalized unitary diagram d.

35

[x]d The equivalence class of the spider x under τd. 74

⊆ See sub-diagram. 194

⊆S See syntactic sub-diagram. 167

> The trivial diagram. 108

∧-linear normal form A generalized diagram, D, is said to be in ∧-linear nor-

mal form if and only if all ∧-labelled nodes in D are linear nodes. 128

β-diagram A generalized unitary diagram is called a β-diagram if it is an α-

diagram in which each zone is shaded or contains a spider or both. 56

η A mapping from spiders to zones which returns the zone a spider inhabits. The

restriction of the domain of η to the spiders of a given diagram d is denoted

ηd. 35

⊥ The generalized unitary diagram which represents falsehood. In the abstract

syntax, ⊥ = (∅, ∅, ∅, ∅, ∅, ∅, ∅). 35

γ-diagram A generalized unitary diagram is called a γ-diagram if it is a β-

diagram in which each arrow is sourced on a contour. 56

A(d) The set of arrows of the generalized unitary diagram d. 35

ACC (c, d) The add contour components of d for c. 145

223
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ASTC (x, z, d) The add spider with ties components of d for x in z. 148

ACCD(c, d) The add contour component diagrams of d for c. 146

ASTCD(x, z, d) The add spider with ties component diagrams of d for x in z.

149

add contour component Given a generalized unitary diagram, d, and a con-

tour, c, which does not appear in d, then the generalized unitary diagram

d′ is an add contour component of d for c if d′ is obtained by adding c to d

so that it splits every zone, given a choice of the habitats for the spiders of

d in d′ . 145

add contour component diagram A generalized diagram consisting of a sin-

gle node labelled by a generalized unitary diagram which is an add contour

component of a generalized unitary diagram, d, for a contour, c. 146

add spider with ties component Given a generalized unitary diagram, d, a

zone, z, in d and a spider, x, which does not appear in d, then the generalized

unitary diagram d′ is an add spider with ties component of d for z and x if

d′ is obtained by adding x to z in d so that it is tied to some spider, y, in

S(z, d). 148

add spider with ties component diagram A generalized diagram consisting

of a single node labelled by a generalized unitary diagram which is an add

spider with ties component of a unitary diagram, d, for a spider, x, in a

zone, z. 149

A(l, d) The arrows of the generalized unitary diagram, d, which have the label l.

59

Anc(n,D) The ancestors of n in D. 44

arrow A triple of label, source and target, where the label is drawn from AL
while the source and target are arrow ends. 34

arrow end Either a contour or a spider. 34
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arrows condition The arrows condition for a generalized unitary diagram, d,

asserts that, for each arrow in d, the set represented by the arrow’s target is

the image of the relation represented by the label when the domain of that

relation is restricted to the set represented by the source. Denoted AC (d).

47

associated contour-source form An associated contour-source form of a gen-

eralized unitary diagram, d, is a unitary diagram in contour-source form

which has an equivalent meaning to d. 99

associated singleton-τ form An associated singleton-τ form of a generalized

unitary diagram, d, is a unitary diagram in singleton-τ form which has an

equivalent meaning to d. 97

C(d) The contours of the generalized unitary diagram d. 35

containment condition The containment condition for a generalized unitary

diagram, d, asserts that the set represented by a basic region of d is the

same as that represented by the containing contour. 48

contour In drawn diagrams, a contour is a closed curve which represents a set.

Contours may be given contours, which are labelled to identify the set

which is represented, or derived contours, which are unlabelled and repre-

sent anonymous subsets. In the abstract syntax, given contours are iden-

tified by their labels, whereas derived contours, which have no label, are

assumed to represent themselves. 34

contour source form A generalized unitary diagram, d, is said to be in contour

source form if and only if each arrow in d is sourced on a contour. 87

DC (d) The set of derived contours of a generalized unitary diagram d. 37

derived contour See contour. 34

Des(n,D) The descendants of n in D. 44

descendants The transitive closure of the immediate descendant relation. 44
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disjunctive normal form A generalized diagram is said to be in disjunctive

normal form if and only if D is either a linear diagram or has a trivial

prefix. 173

existential spider In drawn diagrams, an existential spider is an solid circle

which represents the existence of an element in its habitat. All spiders

in our system are existential spiders, and they are referred to simply as

‘spiders’, unless the context requires clarification. 30

extended interpretation An extended interpretation I ′ of an interpretation I

is produced for a given generalized diagram d, such that I ′ extends I to

interpret the spiders and derived contours of d. 46

form(d) The formula for the generalized unitary diagram, d, is the conjunction

of the plane tiling, shaded zones, spiders’ habitat, spiders distinctness and

arrows conditions for d. 47

γ component Each unitary α-diagram in single-τ and contour-source forms, d,

entails the disjunction of a set of γ-diagrams which we call the γ components

of d. 101

GCD A generalized constraint diagram. 40

generalized constraint diagram A generalized constraint diagram is a tree

whose nodes are labelled by generalized unitary diagrams or by one of the

logical connectives ∧ and ∨. 40

generalized unitary diagram A generalized unitary constraint diagram, d =

(C,Z, Z∗, S, η, τ, A), is a tuple of sets of zones, Z, shaded zones, Z∗, spiders,

S, a habitat function, η, which returns the habitat of spiders, an equality

relation, τ , on the spiders, and a set of arrows, A. 35

given contour See contour. 34

GuCD A generalized unitary constraint diagram. 35

habitat The habitat of a spider is that zone in which it is placed. 36
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ImmDes(n,D) The immediate descendants of n in D. 44

immediate ancestor Given a generalized diagram, D, that contains two nodes,

n1 and n2, n1 is the immediate ancestor of n2 if and only if the edge (n1, n2)

is in D. 44

immediate descendants Given a generalized diagram, D = (V,W,E, l), that

contains a node, n, the immediate descendants of n is the set {n′ : (n, n′) ∈
E}. 44

immediate diagram-labelled ancestor Given a generalized diagram, D, that

contains two nodes, n1 and n2, n1 is the immediate diagram-labelled an-

cestor of n2 if and only if there is a path of length two from n1 to n2 in

D. Unlike immediate diagram-labelled descendants, immediate diagram-

labelled ancestors are unique. 44

immediate diagram-labelled descendants Given a generalized diagram, D,

that contains two nodes, n1 and n2, n2 is an immediate diagram-labelled

descendant of n1 if and only if there is a path of length two from n1 to n2

in D. Immediate diagram-labelled descendants are not necessarily unique.

44

inconsistency A generalized unitary diagram, d, is said to be inconsistent or to

include inconsistency if, for some arrow label l ∈ AL(d), there are two sets of

arrows X and Y such that St(X, d)−St(Y, d) 6= ∅ but Ss(X, d)−S)s(Y, d) =

∅. 60

induced (sub-diagram) Given a generalized diagram, D1, with a diagram-

labelled node n, we say that the sub-diagram, D2 = (V,W,E, l), of D1

with root node n and with V ∪W = {n} ∪ Des(n,D1) is the sub-diagram

of D1 induced by n. 109

inhabits A spider is said to inhabit the zone in which it is placed. 36

interpretation An interpretation is a triple (U,Ψ,Φ) where U is a set, Ψ maps

contours, regions and zones to subsets of U and Φ maps arrow labels to

relations on U . 46
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linear connective Given a generalized diagram, D, that contains a node, n, n

is a linear connective of D if and only if n is a connective labelled node with

an out-degree of one. 43

MZ (d) The set of zones which are missing from the generalized unitary diagram,

d. 38

model (compound case) An interpretation, I, is a model for a generalized

diagram, D, if I satisfies D. 51

non-linear connective Given a generalized diagram, D, that contains a node,

n, n is a non-linear connective of D if and only if n is a connective labelled

node with an out-degree of more than one. 43

plane tiling condition The plane tiling condition for a generalized unitary di-

agram, d, asserts that the union of the sets represented by the zones of d is

the universal set. Denoted PTC (d). 47

pushed syntax normal form A generalized diagram, D, is said to be in pushed

syntax normal form if and only if for each pair of nodes, ni and nj, in D,

where ni is the immediate diagram-labelled ancestor of nj and the nodes

are labelled by the unitary diagrams di and dj respectively, either di ⊆S dj
or dj = ⊥. 167

region A region is a collection of zones. 34

root(D) The function which returns the root node of D. 43

S(d) The set of spiders of a generalized unitary diagram d. 35

S(z, d) The set of spiders inhabiting the zone z in the diagram d. 36

S(c, d) The set of spiders inhabiting the zones which contain the contour c. 37

semantic formula The semantic formula of a generalized (non-unitary) dia-

gram d at vertex v, which is a sentence expressing the logical meaning of d.

Denoted SemForm(v, d). 50
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shaded zones condition The shaded zones condition for a generalized unitary

diagram, d, asserts that all of the elements in the sets represented by shaded

zones of d are represented by spiders. Denoted SZC (d). 47

singleton-τ form A generalized unitary diagram, d, is in singleton-τ form if

and only if the only ties present in d are those from each spider to itself. 87

source The arrow end at the opposite end of an arrow from the arrow head. 34

source spiders The source spiders of an arrow (l, s, t) are those contained in

the source, s. 59

spider See universal spider and existential spider. 30

spiders distinctness condition The spiders distinctness condition for a gen-

eralized unitary diagram, d, asserts that distinct spiders represent distinct

elements. Denoted SDC (d). 47

spiders’ habitat condition The spiders’ habitat condition for a generalized

unitary diagram, d, asserts that the elements represented by the spiders

of d are in the sets represented by their habitats. Denoted SHC (d). 47

Ss Ss(X, d) denotes the union of the source spiders of the arrows contained in

the set X, where X ⊆ A(d). 59

S(s, d) The singleton set of spiders containing s. 37

St St(X, d) denotes the union of the target spiders of the arrows contained in the

set X, where X ⊆ A(d). 59

standard extension The standard interpretation of a γ-diagram, d, where Ψ is

extended to interpret spiders and derived contours. 67

standard interpretation The standard interpretation of a γ-diagram d is that

interpretation in which the universe is the spiders of d and Ψ and Φ are

‘natural’ mappings from contours, regions and zones to subsets of S(d) and

from arrow labels to relations on S(d), respectively. 66

sub-diagram A generalized unitary diagram, d1, is a sub-diagram of a second

unitary diagram, d2, denoted d1 ⊆ d2, if and only if the following is true:
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1. d1 ⊆S d2,

2. ηd1 ⊆ ηd2 ,

3. each zone which is shaded or missing in d1 contains the same spiders

as in d2: ∀z ∈ Z∗(d1) ∪MZ (d1) (S(z, d1) = S(z, d2)), and

4. for each pair of spiders x, y ∈ S(d1), x and y are joined by a tie in d1 if

and only if they are joined by a tie in d2: ∀x, y ∈ S(d1) ((x, y) ∈ τd1 ↔
(x, y) ∈ τd2).

194

sub-diagram (compound) A generalized diagram, D1 = (V1,W1, E1, l1), is a

sub-diagram of a second generalized diagram, D2 = (V2,W2, E2, l2), denoted

D1 ⊆ D2, if and only the following is true:

1. V1 ⊆ V2,

2. W1 ⊆ W2,

3. E1 = E2 ∩ ((V1 ×W1) ∪ (W1 × V1)), and

4. l1 = l2|V1∪W1 .

41

syntactic sub-diagram A generalized unitary diagram, d1, is a syntactic sub-

diagram of a second unitary diagram, d2, denoted d1 ⊆S d2, if and only if

the following is true:

1. Z(d1) ⊆ Z(d2),

2. Z∗(d1) ⊆ Z∗(d2),

3. S(d1) ⊆ S(d2), and

4. A(d1) ⊆ A(d2).

167

target The arrow end at the same end of an arrow as the arrow head. 34

target spiders The target spiders of an arrow (l, s, t) are those contained in the

target, t. 59



Glossary 231

tie In drawn diagrams, a tie between two spiders is a pair of parallel lines extend-

ing between the spiders, and represents equality. In the abstract syntax,

two spiders, x and y, in a generalized unitary diagram, d, are tied (i.e. x

and y represent the same element) if and only if (x, y) ∈ τd. 34

trivial diagram The generalized unitary diagram which contains no syntax

other than the zone (∅, ∅). The trivial diagram is true under any inter-

pretation. 108

trivial prefix A generalized diagram, D, is said to have a trivial prefix if the

following conditions are true:

1. the root node of D, n1, is labelled by >,

2. the immediate descendant of n1 is a non-linear ∨-labelled node, and

3. each of the sub-diagrams of D induced by the immediate diagram-

labelled descendants of n1 is a linear sub-diagram of D.

171

universal spider In drawn diagrams, a universal spider is an asterisk which rep-

resents universal quantification over the elements in its habitat. Universal

spiders are excluded from our system. 30

VZ (d) The Venn zone set of the generalized unitary diagram, d. 38

Venn form (compound) A generalized diagram, D, is said to be in Venn form

if and only if all generalized unitary diagrams labelling nodes in D are in

Venn form. 140

Venn form (unitary) A generalized unitary diagram, d, is said to be in Venn

form if d contains no missing zones. 38

Z(c, d) The zones of the generalized unitary diagram d which are contained in

the contour c. 37

zone Given a generalized unitary diagram, d, a zone, (in, out), is a pair of disjoint

sets of contour labels of d, where in ∪ out = C(d). 34
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Z(d) The set of zones of the generalized unitary diagram d. 35

Z∗(d) The set of shaded zones of the generalized unitary diagram d. 35



Bibliography
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