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Abstract: Site response analysis, namely the analysis of the wave propagation of
shear waves through a soil deposit, requires the specification of the input ground
motion and the dynamic characterization of the soil deposit. While the stochastic
approach is commonly used for modelling seismic excitation, the use of proba-
bility density functions for describing the soil properties is consistent only when
precise informations based on a large amount of data from soil surveys are avail-
able. Conversely, a non-probabilistic approach based on fuzzy set theory would
be more appropriate for dealing with uncertainties that are just expressed by
vague, imprecise, qualitative, or incomplete information and supplied by en-
gineering judgement. In this paper, a hybrid fuzzy-stochastic 1D site response
analysis approach for dealing with soil uncertainties defined as convex normal
fuzzy sets is addressed. Zadeh’s extension principle, in combination with an ef-
ficient implementation of the Differential Evolution Algorithm is used for global
minimization and maximization. Results are presented as fuzzy median value of
the largest peaks of the peak ground acceleration at the surface by considering
four types of soil classified in accordance with the European seismic building
code.

1 Introduction
Site response analysis aims to predict the influence of the local site effects on the characteristics
of the earthquake motion. The most widely used technique is the study of the one-dimensional
amplification of vertically propagating waves by solving the dynamic wave equation in the
frequency domain with equivalent linear elastic soil properties. While the traditional practice
deals the seismic input motion as the only source of uncertainty by considering it as random,
owing to the complexity of its intrinsic structure, soil characterization manifests various sources
of uncertainties due to the soil spatial variability and to the dispersion of the soil parameters that
should be taken into account. Although site property variabilities are sometime assumed having
a normal or lognormal distribution, e.g. [3] , due to the geologic process, the natural spatial
variability of the soil can be relevant resulting in a strong variation of the properties even over
small distances; soil properties maps, generated from soil surveys, do not provide sufficient
information about soil deposits and rock formation. Furthermore, due to the large amount of
data required to estimate the parameters for the dynamic geotechnical characterization of the
soil deposit, the use of probability density functions for all of them becomes inconsistent; a
probabilistic model dealing with these uncertainites requires supplying greater knowledge than
that gained from actual experience. [2] showed, for geotechnical systems, the high sensitivity
in calculating the failure probability when different distributions obtained by fitting the same
input data from laboratory tests are used.



The genuine lack of knowledge or imprecision in the definition of a property, in addition to
the dispersion of the data caused by systematic measurement errors, fluctuations and sample
disturbance, determine unavoidable uncertainty of an epistemic nature. Converse to aleatory
uncertainty, epistemic uncertainty can eventually be reduced through the collection of more and
better data. In order to avoid misleading representations, several approaches alternative to the
probabilistic method, referred to as non-probabilistic methods, have been developed. In partic-
ular, fuzzy set theory [6] can be applied for dealing with non-random, incomplete, imprecise
information as well as linguistic vagueness, namely the use of natural linguistic information in
engineering judgement knowledge, for classifying generic class of soil (e.g. soft, medium, rigid)
or the soil deposit type (e.g. class A-B-C-D according to the EN 1998-1). Fuzzy set theory uses
the concept of possibility in which a fuzzy set Ã, is described as a class of objects with a contin-
uum of grades of membership µÃ, ranging from α = 0, i.e. the object does not belong to the set,
to α = 1, i.e. the object completely belongs to the set. In this paper, the fuzzy logic approach is
used for dealing with uncertainties of the main parameters involved in the site response analy-
sis, i.e. the shear wave modulus G0, the soil unit density ρ0, the critical damping ratio ξ , and
the depth of the soil deposit h. The membership function of the fuzzy output ãPGA(h̃, G̃0, ρ̃0, ξ̃ )
representing the fuzzy median value of the largest peaks of the free field acceleration at the
top surface, as a function of the fuzzy parameters G̃0, ρ̃0, h̃ and ξ̃ , is obtained by the Zadeh’s
extension principle, in combination with an efficient implementation of the Differential Evo-
lution Algorithm for global minimization and maximization [4]. In section 2 we describe the
one-dimensional site response analysis problem in terms of its associated stochastic equation.
Section 3 briefly describes the basic concepts and tools of fuzzy numbers and fuzzy calculus,
including the application of the differential evolution (DE) algorithm to the extension principle.
The fuzzy stochastic site response model and the results of its application to four different soil
deposits are illustrated in section 4. Conclusions are drawn in section 5.

2 Stochastic 1D site response analysis problem
The stochastic equation of the one-dimensional (1D) site response analysis problem is addressed
in this section by considering the seismic motion uncertain, in particular random. The site re-
sponse analysis aims to evaluate the effects of the local soil conditions on the amplitude and
frequency content of the seismic motion that propagates through the soil deposit during an
earthquake event. By applying the approach based on Random Vibration Theory, the stochastic
process of the ground motion acceleration Üg(ω), modelled as a zero-mean stationary Gaussian
stochastic process fully described by the knowledge of its power spectral density function, de-
noted by SÜgÜg

(ω), where ω ≥ 0 is the circular frequency and each superscript dot indicates time
differentiation, is propagating vertically through the soil deposit from the bedrock (z = zbed) to
the ground surface acceleration through the following expression in the frequency domain:

SÜÜ(ω) = |H(ω)|2SÜgÜg
(ω) (1)

where H(ω) is the transfer function of the soil deposit representing the ratio between the accel-
eration Ü(ω) at the surface and the acceleration Üg(ω) at the bedrock computed by solving the
one-dimensional soil amplification problem described in the frequency domain by the following
dynamic equation:

G(1+2iξ )
d2U(ω,z)

dz2 = ρω
2U(ω,z) (2)

where z is the depth from the ground surface, ρ is the soil density, G is the shear stiffness
modulus of the soil, ξ is the critical damping ratio, and i is the imaginary unit. It is worth noting
that the dependency of the soil properties, ρ , G, ξ in the transfer function H(ω) has been



omitted. In order to take into account the nonlinearities of the soil properties, a discretization of
the soil deposit in more layers with constant properties and a equivalent linear methodology is
applied. Statistical quantities of the response are thus derived from the stochastic Eq. (1) for each
i-th layer of local coordinate ζi; in particular, the characteristic acceleration XÜ is computed as
the fractile of order p (usually the median, i.e. p = 0.5ζi) of the distribution of maxima through
the first crossing problem defined as follows:

XÜ ,i(Ts, p,ζi) = ηÜ ,i(Ts, p,ζi)
√

λ0,Ü ,i (3)

where Ts is the time length of the stationary part of the signal; ηÜ ,i are the peak factors deter-
mined by the relation obtained by [5]; λ0,Ü ,i is the zero-order response spectral moment of the
acceleration, expressed as

λ0,Ü ,i =
∫

∞

0
SÜÜ ,i(ω)dω, (4)

It should be stressed that the dependency of the spectral moment of Eq. (4) to the system pa-
rameters has been omitted for brevity. Therefore, objective of this paper is the investigation of
XÜ from Eq. (3) when the soil properties are uncertain but not random.

3 Fuzzy approach for accounting soil parameter uncertainty
In this section, a fuzzy logic approach for stochastic 1D site response analysis, when soil pa-
rameters are uncertain, is established. In our soil amplification problem, in combination with
the random nature of the input motion, sources of uncertainty include variability in material
properties, such as the shear elastic modulus, the unit density, and the damping ratio as well as
geometric boundaries as the thickness of the soil deposit. These uncertainties are mainly caused
by measurement errors, sampling disturbance and/or incomplete knowledge about soil descrip-
tion and the use of natural language for classifying the ground type (e.g. soft, soft-to-firm, stiff,
very stiff) or the soil type (e.g., as classified by the Unified Soil Classification System). In this
context, Fuzzy sets theory [6] has been shown to be effective for dealing with the epistemic
nature of these uncertainties (e.g see [1]). Especially when evidences do not allow a probability
interpretation of the data sets, fuzzy logic is a reasonable approach for capturing the vagueness
meaning of their properties; moreover, contrary to the use of interval analysis, where only up-
per and lower bounds are assigned to each parameter, the fuzzy sets provide further information
about the grade of possibility (or possibility distribution) on the interval.

3.1 Fuzzy sets and Intervals
Given the soil property, or more generally, the system parameter A, its representation as a fuzzy
set Ã over a given set (or space) X of elements (the universe) is usually defined by its member-
ship function

µÃ : X−→ [0,1] (5)

and a fuzzy (sub)set Ã of X is uniquely characterized by the pairs (x,µÃ(x)) for each x ∈X; the
value µÃ(x) ∈ [0,1] is the membership grade of x to the fuzzy set Ã.
Our interest are fuzzy sets when the space X is R (unidimensional real fuzzy sets). Denote by
F (R) the collection of all the fuzzy sets over R. Fundamental concept in fuzzy theory is the
level-sets (or level-cuts) of its membership function); for α ∈]0,1], the α−level cut of Ã (or
simply the α− cut) is defined by

[Ã]α = {x|x ∈ R, µÃ(x)≥ α} (6)

. It can be related to the level of knowledge of the fuzzy set A, in which for increasing values of
α , the uncertainty of the system parameter decreases.



The α− cuts of a fuzzy number or interval are non empty, compact intervals of the form

[Ã]α = [A−α ,A
+
α ]⊂ R. (7)

If A−α = Â− and A+
α = Â+, ∀α ∈ [0,1] we have a crisp interval or a crisp number (if, in addition,

Â− = Â+).
Any fuzzy number or interval Ã ∈F 1 has the well known LR-representation (L for left, R for
right), i.e. its membership function is of the form

µÃ(x) =


AL(x) if a≤ x≤ c
1 if c≤ x≤ d
AR(x) if d ≤ x≤ b
0 otherwise

(8)

where a≤ c≤ d≤ b, the function AL : [a,c]→ [0,1] is non-decreasing with AL(a)= 0, AL(c)= 1
and the function AR : [d,b]→ [0,1] is non-increasing with AR(d) = 1, AR(b) = 0. The interval
[a,b] is the support and [c,d] is the core. If c = d, we obtain a fuzzy number. We refer to the
functions AL(.) and AR(.) as the lower and upper sides of Ã, respectively.

3.2 Fuzzy Extension Principle
Elements of F 1 will be denoted by letters Ã, B̃, C̃ and the corresponding membership functions
by µÃ, µB̃, and µC̃. Given two fuzzy numbers Ã, B̃ ∈ F 1, the four arithmetic operations are
defined by the use of the Zadeh’s extension principle (◦ ∈ {+,−,×,/}):

µÃ◦B̃(z) = sup
z=x◦y

min{µÃ(x),µB̃(y)}. (9)

Consider the extension of a function f : Rn → R to a vector Ã = (Ã1, Ã2, ..., Ãn) of n fuzzy
numbers, with k-th component Ãk ∈F 1 given, in terms of α-cuts, by [Ãk]α = [A−k,α ,A

+
k,α ] for

k = 1,2, ...,n.
Denote by B̃ = f̃ (Ã1, Ã2, ..., Ãn) the corresponding fuzzy interval. For a continuous function
f :Rn→R, the α−cuts [B−α ,B

+
α ] of the fuzzy extension B̃ are obtained by solving the following

box-constrained global optimization problems (α ∈ [0,1]):

B−α = min
{

f (x1,x2, ...,xn)|xk ∈ [Ãk]α , k = 1,2, ...,n
}

(10)

B+
α = max

{
f (x1,x2, ...,xn)|xk ∈ [Ãk]α , k = 1,2, ...,n

}
. (11)

For general functions, we need to solve numerically the global minimization and maximization
problems above; regarding the particular nature of our problem, a differential evolution (DE)
Method is applied which adopted strategy is the following: SPDE (Single Population DE pro-
cedure): start with the (α = 1)− cut back to the (α = 0)− cut so that the optimal solutions
at a given level can be inserted into the ”starting” populations of lower levels; use two distinct
populations and perform the recombinations such that, during generations, one of the popula-
tions specializes to find the minimum and the other to find the maximum. In this paper, the
procedure SPDE has been implemented using MATLAB ; a detailed description with extended
computational results can be found in [4].

4 Numerical Analysis
Stochastic 1D site response analyses are carried out by considering uncertainty in the definition
of the soil parameters described according to the fuzzy approach. Four different soil deposits



Figure 1: Power spectral density function defined at the outcrop bedrock

classified into ground types A-B-C-D complying with the seismic code EN 1998-1:2004 are in-
vestigated. The soil profiles consist of saturated clays with different consistency, ranging from
soft to rigid, resting upon a uniform linear visco-elastic bedrock. The mechanical parameters
of the soil deposits and the underlying bedrock, intended as crisp or ”best-estimate” values, are
reported in Table 1; furthermore the table indicates the shear wave velocity of the soil calcu-
lated according to the relation Vs =

√
G0
ρ

with which each soil deposit has been characterized.
The initially homogeneous profile is discretized in 0.5 m thick-layers assuming constant equiv-
alent linear properties, compatible with the current shear strain computed at each iteration,
according to the modulus reduction curve and the damping ratio curve proposed by Seed and
Sun (1989) and Idriss (1990), respectively. The input seismic process applied at the outcrop
bedrock is fully described by the stationary power spectral density, SÜ0Ü0

(ω), determined from
the response-spectrum-compatible modeldepicted in Figure 1, consistent with the soil type A
and peak ground acceleration a0 = 0.96 ms−2.

Table 1: Crisp soil parameters

Ground type Vs[m/s] G0[MPa] ρ[kg/m3] ν ξ0
A/bedrock 1000 2.1×106 2100 0.45 0.025

B 400 3.36×105 2100 0.45 0.05
C 250 1.3×105 2100 0.45 0.05
D 150 4.7×104 2100 0.45 0.05

4.1 Fuzzyfication of the stochastic site response analysis
The fuzzy logic approach to the analysis entails a transformation process of the crisp or deter-
ministic system parameters into fuzzy sets with grades of membership, referred to as fuzzifica-
tion; different levels of fuzziness can be defined according to which parameters are considered
fuzzy sets and which are not, being described by crisp or deterministic values. Afterwards, the
hybrid fuzzy-stochastic site response analysis is conducted in order to provide fuzzy outputs.
Our computational results are obtaining by the Zadeh’s extension principle, in combination
with an implementation of the DE algorithm SPDE as described above. Analysis outcome is
intended to provide information on both the quantification of the random and epistemic uncer-
tainties on the main output results of the analysis and the propagation of the uncertainty through



the system; it is defined as follows:

X̃Ü ,i(Ts, p,ζi) = ηU,i(Ts, p,ζi)
√

λ̃0,Ü ,i(Ã) (12)

in which λ̃0,Ü ,i(Ã) is the fuzzy zero-order response spectral moment derived from Eq. (3) by
considering fuzzy system parameters (Ã), namely the soil/site properties involved in the site
response analysis. In the present study, subjective informations are considered by construct-
ing membership functions based on the knowledge acquisition procedure, preliminary carried
out by several experts merging the objective available but imprecise information. The pro-
posed input reference membership function has a symmetric trapezoidal shape described three
characteristics: i) the core mid-point A of the parameter representing the ”best-estimate” or
crisp value, ii) the confidence, in non-probabilistic sense, or radius σcore = A−,+1 /A defined as
the ratio between the edge of the core interval to the core mid-point, and iii) the confidence,(
σL

supp = σR
supp
)
= A−,+0 /A defined as the ratio between the edges left and right, respectively, of

the interval of the support to the core mid-point.
The investigated uncertainties are the position of the bedrock that determines the soil deposit
thickness h, the initial shear modulus G0, the unit density, ρ , as well as the initial critical damp-
ing ratio ξ0 expressed as fuzzy sets, i.e. h̃, G̃0, ρ̃ and ξ̃0, respectively. Based on subjective
information, symmetric trapezoidal-shaped membership functions are constructed for describ-
ing the uncertain parameters for the four soil deposits considered in the analysis; Table 2 reports
the parameters that determine each membership function. The fuzzy set h̃ has σcore = 0, thus it
is a symmetric triangular fuzzy number whose core is crisp owing to the sharp interface bound-
ary. It is worth noting that the classification of each soil deposit based on the crisp values, still
remains valid for values on the core while for larger uncertainties, i.e. by decreasing the α-cut,
the same soil deposit might change rank.
The simulation is carried out by developing a numerical algorithm in MATLAB environment
used to solve the α-cut problem of at each α level. Eleven α-cuts are considered although five
of them, namely α = 0, 0.25, 0.5, 0.75 and 1 are highlighted. Differential evolution method is
applied in order to obtain the fuzzy extension of the function as defined in Eq. (12). Noteworthy,
the result of the partial differential equation is the power spectral density thus a functional
depending on frequency and fuzzy variables, therefore in order to deal with the optimization
procedure, a parameter of synthesis is defined. In particular, in this paper, results of problem
solving are presented in terms of fuzzy set of the median value ãPGA

(
h̃, G̃0, ρ̃, ξ̃0

)
of the largest

peak of the acceleration at the top surface as follows:

ãPGA

(
h̃, G̃0, ρ̃, ξ̃0

)
= X̃Ü(20,0.5,0) (13)

in which Ts = 20s, p = 0.5 and ζ0 = 0 have been assigned (see Eq. 3).

Table 2: Fuzzy sets parameters

Fuzzy set Core mid-point σcore σ
L,R
supp

h̃ 40 m 0.00 0.2
G̃0 (210,33.6,13.0,4.7)×104MPa 0.05 0.3
ρ̃ 2100 kgm−3 0.02 0.2
ξ̃0 0.05/0.025 0.02 0.1

Results of the parametric analyses are described in terms of membership functions of the fuzzy
output ãPGA for each of the four soil deposits. It is worth mentioning that each black dot on



the left and right side of the MFs is obtained by a specific quadruple (h,G0,ξ0,ρ0) of crisp
values belonging to the specific α-cut of each fuzzy input calculated by solving the optimization
problems (min and max) corresponding to the fuzzy extension of Eq. (13), i.e., for each α ∈
[0,1], we have two quadruples of values h ∈ [h̃]α , G0 ∈ [G̃0]α , ρ0 ∈ [ρ̃0]α , and ξ0 ∈ [ξ̃0]α ,
corresponding to the minimization and the maximization problems.

4.2 Soil Type A
The fuzzy input memberships functions of the soil type A used in the analysis are depicted in
Figure 2a while Figure 2b shows the analysis output in terms of membership function of the
median peak ground surface acceleration. It is worth noting the the core mid-point value is ex-
actly corresponding to the peak input ground acceleration a0 = 0.96 ms−2, since the soil deposit
is characterized by the same properties as the outcropping bedrock. The fuzzy output has a
nonlinear LR-shaped membership function, fairly asymmetric with respect to the core towards
the right branch as indicated by the dotted black curve collecting the mid-points of each inter-
val associated with every α-cuts calculated in the analysis. Therefore, a higher uncertainty on
the input parameters, namely a small value of α-cut, leads to an overestimate of the expected,
possible, peak ground acceleration on the ground surface with respect to the mid-core value. In
Table 3 are reported the parameters of the membership functions resulting from the analysis in
terms of core mid-point aPGA as well as core and support confidences σcore and σ

L,R
supp, respec-

tively. In soil type A, the measured global confidences of both the core and support of the result
are lower than maximum values of confidences assumed for the describing the fuzzy uncertain-
ties of the input soil parameters. Therefore, the reduced degree of the uncertainty indicates a
small sensitivity of the seismic response for this type of ground.

Figure 2: Membership functions of the: a) input soil parameters; b) surface peak ground acceleration
for ground soil A

4.3 Soil Type B
Fuzzy input memberships functions for the investigated soil type B are depicted in Figure 3a.
The result of the analysis in terms of membership function of the median peak ground surface



Table 3: Parameters of the output membership functions for the investigated soils.

Ground type aPGA σcore σL
supp σR

supp
A 0.960 m/s2 0.017 -0.115 0.164
B 1.481 m/s2 0.014 -0.121 0.164
C 1.483 m/s2 0.011 -0.143 0.203
D 1.251 m/s2 0.026 -0.297 0.282

acceleration is illustrated in Figure 3b. The fuzzy output has a nonlinear LR-shaped member-
ship function, asymmetric with respect to the core towards the right branch as indicated by the
dotted black curve resulting in overrating the expected peak ground acceleration on the ground
surface with respect to the mid-core value. Moreover, as the previous case as shown Table 3,
the uncertainty valued by the confidences is reduced with respect to the uncertainty assumed for
the input parameters.

4.4 Soil Type C
The investigated soil type C is characterized by the fuzzy soil properties depicted in Figure 4a.
The result of the analysis in terms of membership function of the median peak ground surface
acceleration is illustrated in Figure 4. The membership function of the fuzzy output is strongly
nonlinear, asymmetric with respect to the core towards the right branch resulting in overrat-
ing the expected peak ground acceleration on the ground surface with respect to the mid-core
value. It can be observed from the dotted black curve that the propagation of the uncertainty is
associated with a change of the slope at around α-cut = 0.5. Moreover, as shown Table 3, the
maximum value of the confidence of the support is as high as the mean confidence assumed for
the input parameters.

4.5 Soil Type D
The result of the fuzzy optimization carried out by considering the fuzzy input memberships
functions reported in Figure 5a for the last investigated soil type D is depicted in Figure 5b; the
membership function of the median peak ground surface acceleration is characterized by fairly
symmetric trapezoidal shape but converse to the previous case, the values of the mid-points
are smaller than the mid-core value inducing an underestimate of the expected, possible, peak
ground acceleration on the ground surface with respect to the crisp, deterministic value.
Furthermore, in soil type D, the measured global confidences of the support of the result are
higher of the average confidence values assumed for describing the fuzzy uncertainties of the
input soil parameters, reaching a value around 30% as shown in Table 3. Therefore, an important
sensitivity of the seismic response is expected for this type of ground.

5 Conclusion
A fuzzy logic approach for dealing with soil uncertainties has been applied to the stochastic 1D
site response analysis.
The fuzzy output is the median value of the largest peak of the accelerations at the ground sur-
face determined for various α-cuts representing the grade of membership to the set for 4 types
of soil classified as A-B-C-D in accordance with the European Seismic Code. Results showed
trapezoidal shaped membership functions, usually asymmetric towards the higher values except
for the soil ground D. A strong influence of the soil uncertainties has been observed, in particu-
lar the effect of the nonlinearities becomes relevant on the propagation of uncertainty when for
soft soil are considered.



Figure 3: Membership functions of the: a) input soil parameters; b) surface peak ground acceleration
for ground soil B

Figure 4: Membership functions of the: a) input soil parameters; b) surface peak ground acceleration
for ground soil C



Figure 5: Membership functions of the: a) input soil parameters; b) surface peak ground acceleration
for ground soil D
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