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Abstract
The generalised fully Lagrangian approach (gFLA) is an extension of the original fully Lagrangian approach (FLA,
also known as Osiptsov’s method), which aims to model polydisperse evaporating sprays. The FLA is known for
its advantages in application to particle-laden flows. This approach makes it possible to capture detailed structures
in the particulate clouds, including where particle trajectories cross and particles collect in narrow regions. It has
proven to be an efficient approach for dilute mixtures and recently it was applied to polydisperse evaporating sprays.
This work is focused on two-way coupling, where the effect of droplets on the carrier phase is taken into account.
Kernel regression is used for interpolation of Lagrangian data in calculation of momentum and mass exchange
terms. The implementation has been validated against the existing two-way coupling procedures within OpenFOAM.

Introduction
Gas-droplet flows are widely observed in engineering and environmental settings [1], for example aerosols gener-
ated when coughing and sneezing [2], and in applications, for example aerosol drug delivery [3] and during fuel
injection in internal combustion engines [4]. The fundamental physics involved is essentially the interaction between
a dispersed phase of droplets and a carrier phase, that includes not only momentum exchange, but also phase
change in some applications. To accurately capture the effect of droplets on the carrier phase, it is essential to have
a rigorous calculation of momentum and mass exchange terms, especially in areas of droplet accumulation.
This paper follows the chain of works on development of the fully Lagrangian approach for dilute mixtures. In such
flows, the admixture forms high concentration regions with folds (local zones of crossing particle/droplet trajecto-
ries, hereafter referred to as droplets) and caustics. At the edge of a local region of crossing particle trajectories
(caustics), the particle number density has a singularity. This is a well-known feature of the mathematical model
of the collisionless continuum of point particles (see details in [8], where typical examples of flows with singulari-
ties in the particle number density field were analysed). It was shown that for an integrable singularity of particle
number density, at the singular points the mean distance between the particles remains finite and the model of
collisionless particles remains valid. The fully Lagrangian approach (FLA) has become known for its potential to
capture such complex structures in gas-droplet flows while providing number density values in Lagrangian droplet
positions [5, 6]. Moreover, it has been demonstrated that the FLA is an efficient method for calculating droplet
distributions in comparison to other Lagrangian approaches [6]. In [7], a generalised FLA (gFLA) was applied to
polydisperse evaporating sprays. It was shown that while the gFLA maintained advantages of the original FLA, there
was a need to develop a robust method for interpolation of Lagrangian data to a Eulerian mesh. This was achieved
by implementation of kernel regression [9], which takes advantage of the continuum description provided by the
FLA to realize the potential computational economy of the approach through an efficient statistical procedure. The
kernel regression retains the detail of complex structures in droplet clouds, caustics and voids, by sizing the kernel
domain of influence using the information about the local droplet deformation field provided by the FLA or gFLA.
This paper is concerned with the next step in the development of the FLA/gFLA; implementation of two-way coupling.
In our approach, the momentum and mass source terms, which describe the effect of droplets on the carrier phase
flow, are calculated using kernel regression [9]. The paper is arranged as follows: mathematical models of the
gas-droplet flow are described in Section 1; results of the application of the new OpenFOAM solver to the analysis
of a two-phase flow around a cylinder are presented and discussed in Section 2; and the main results of the paper
are summarised in Section 3.

Mathematical models of the carrier and dispersed phases
Note that in the paper we use non-dimensionalised equations and expressions, where the flow parameters are
scaled using characteristic length and velocity values, L and U . The values of L and U are chosen for specific flow
scenarios and are explained in Section 2.

Carrier phase
The carrier phase is modelled as an incompressible or compressible viscous flow of fluid described by the mass
continuity and Navier–Stokes equations. In the case of an incompressible flow these equations are presented as

∇ · u = 0, (1a)
∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u+ SMom, (1b)
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where u is the gas velocity, p is the static pressure, and SMom is the momentum exchange term from the droplet
phase. The flow Reynolds number is

Re =
ρLU

µ
,

where L and U are characteristic length and velocity scales, µ is the fluid dynamic viscosity, and ρ is the carrier
phase density. Since the focus of the work is on sprays, hereafter, the carrier phase considered is gaseous.
The passive scalar equation describing droplet liquid vapour diffusion and advection is taken in the following form

∂c

∂t
+∇ · (D∇c) +∇ · (uc) = SMass, (2)

where c is the droplet vapour concentration, D is the vapour-carrier gas diffusion coefficient, and SMass is the mass
exchange term. The source terms SMom and SMass describe the effect of droplets on the carrier flow gas, and these
terms will be described in the following section.

Physical models for droplets
Whilst the FLA/gFLA formulation (described in the section below) is applicable to general equations of motion and
evaporation/condensation for particle and droplets modelled as point masses in a dilute suspension, we restrict our
analysis to gas-droplet flows. Since the liquid density is much greater than the carrier flow gas density, buoyancy,
added-mass, and Basset-Boussinesq forces can be ignored. Assuming low droplet Reynolds number enables us
to model the droplet momentum using the Stokes drag law. For a simplified physical model of evaporation, all heat
at the droplet surface is taken to be spent on evaporation, then the droplet evaporation rate only depends on the
droplet radius. Under these conditions, the expressions for the force per unit of droplet mass and the droplet’s
evaporation rate take form:

f =
1

St0 r2
(u− vd) , (3a)

ϕ = − δ

2r
, (3b)

where St0 is a reference droplet Stokes number corresponding to the initial modal droplet size, u is the carrier flow
velocity, vd is droplet velocity, f is the force per unit mass, ϕ is the rate of droplet radius change due to evaporation,
and δ is the rate of change of the droplet surface area.

The generalised fully Lagrangian approach for droplet distribution calculations
The governing equations and corresponding initial conditions for droplet motion and evaporation are:

ẍd(t) = f(xd(t),vd(t), rd(t), t), (4a)

ṙd(t) = ϕ(xd(t),vd(t), rd(t), t), (4b)

xd(t0) = x0, (4c)

ẋd(t0) = v0, (4d)

rd(t0) = r0, (4e)

where f is the force per unit mass exerted on a droplet, which is usually a known function of the droplet size, droplet
velocity, and other parameters; ṙd = ϕ is the rate of droplet size change, which is usually a known function of
the droplet size and thermodynamic parameters, and the subscript d denotes that parameters are described in a
Lagrangian frame of reference along droplet trajectories.
According to the fully Lagrangian approach, the droplet cloud is represented as a continuum. The Lagrangian
variables are the droplet initial position coordinates x0, which together with time t define the current droplet location.
Extending the set of Lagrangian variables to include the initial size r0 makes it possible to describe polydisperse
and evaporating droplets [5, 7]. The droplet distribution function p(xd, rd, t) can be found from the Lagrangian form
of the continuity equation

p(xd, rd, t) =
p(x0, r0, t0)

|det(J(x0, r0, t))|
, (5)

where the Jacobian tensor J(x0, r0, t) is defined by

J(x0, r0, t) =

[
Jxx Jxr

Jrx Jrr

]
=

[
∂xd
∂x0

∂xd
∂r0

∂rd
∂x0

∂rd
∂r0

]
. (6)

The equations for the Jacobian components are obtained by taking partial derivatives of Eqs. (4) with respect to the
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Lagrangian variables

J̈xx =
∂fd
∂x
· Jxx +

∂fd
∂v
· J̇xx +

∂fd
∂r

Jrx, (7a)

J̈xr =
∂fd
∂x
· Jxr +

∂fd
∂v
· J̇xr +

∂fd
∂r

Jrr, (7b)

J̇rx =
∂ϕd
∂x
· Jxx +

∂ϕd
∂v
· J̇xx +

∂ϕd
∂r

Jrx, (7c)

J̇rr =
∂ϕd
∂x
· Jxr +

∂ϕd
∂v
· J̇xr +

∂ϕd
∂r

Jrr, (7d)

Jxx(x0, r0, t0) = I, (7e)

J̇xx(x0, r0, t0) =
∂v0

∂x0
, (7f)

Jxr(x0, r0, t0) = 0, (7g)

J̇xr(x0, r0, t0) = 0, (7h)

Jrx(x0, r0, t0) = 0, (7i)

Jrr(x0, r0, t0) = 1, (7j)

where I is the identity matrix. The initial conditions for the system (7) are found from the initial conditions associated
with the governing equations (4).
In the case of monodisperse droplets (standard FLA), the probability density p(xd, rd, t) reduces to the number
density n(xd, t), which is a function of droplet position xd only.
Returning to the momentum and mass exchange terms in equations (1b) and (2), these can be defined using the
droplet distribution function as follows:

SMom = −
∫
r

p(xd, rd, t)m(r)v̇d dr, (8a)

SMass = −
∫
r

p(xd, rd, t)ṁ(r) dr, (8b)

in which m is the mass of a droplet with radius r.

Kernel regression and its application to calculating phase exchange terms
The FLA described in the previous section is used to calculate the droplet parameters, droplet number density
values in particular, along trajectories (in Lagrangian coordinates). This data then needs to be remapped onto an
Eulerian field. In [9], it was proposed to use kernel regression for droplet data interpolation due to the flexibility
of this approach. There is no limit on the minimal number of data points needed (one is sufficient), and it can be
extended to the case of multivalued droplet parameter fields and polydisperse droplets. In our study, we consider
the Nadaraya-Watson estimator [10]

p(x, r, t) =

∑N
i=1KH(x, r,xid, r

i
d) p(x

i
d, r

i
d, t)∑N

j=1KH(x, r,xjd, r
j
d)

, (9)

where p(xid, r
i
d, t) is the instantaneous probability density along the phase space trajectory (xid, r

i
d) associated with

the ith droplet at time t as obtained from the gFLA, p(x, r, t) is the Eulerian probability density field, N is the number
of droplets that contribute at the phase space point (x, r), andKH(x, r,xid, r

i
d) is the kernel. A multivariate Gaussian

form is chosen in this work, and a corresponding kernel can be defined as

KH(x, r,xid, r
i
d) =

1√
det(H)

exp

[
−1

2

(
x− xid
r − rid

)>
·H−1 ·

(
x− xid
r − rid

)]
, (10)

where H is the bandwidth matrix that contains information about the smoothing lengths in different directions, e.g.
H = h2I corresponds to a spherical kernel with a smoothing length h. In the case of polydisperse droplets, which
includes the behaviour of the droplet radius rd, the bandwidth matrix H is defined as

H(x0, r0, t) =

[
h2
x0|Jxx(x0, r0, t)|2/nI 0

0 h2
r0|Jrr(x0, r0, t)|2

]
(11)

where hx0 and hr0 are the initial smoothing lengths in physical and radial space respectively, and n is the spa-
tial dimensionality of the problem. This form of the bandwidth matrix takes into account information about local
deformation in the droplet phase by including the Jacobian blocks.
In this study, it is assumed that the droplet liquid density remains the same, which makes the droplet mass calcula-
tions straightforward, where droplet mass depends only on its size. The droplet distribution function is reconstructed
using equation (9). Note, however, that in the expressions for the source terms (8), it is required to calculate con-
tributions to momentum and mass exchange from droplets of all the sizes weighted by the distribution function.
Therefore, equation (9) is adapted for calculation of the integrands in (8); then the source terms are evaluated using
the trapezoidal rule.
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Figure 1. The 2D computational domain of the gas flow past the circular cross-section of a cylinder with a diameter of 2. lin, lout
and lw represent the distance from the centre of the cylinder to the inlet boundary on the left, the outlet boundary on the right and

the periodic boundaries on the top and the bottom.

Results and discussion
The developed approach of combining the gFLA with kernel regression has been implemented in the open-source
CFD code OpenFOAM as an additional library. In this section we discuss 2D steady-state and periodic gas-droplet
flows around a cylinder with both monodisperse and polydisperse droplets. The gas (carrier phase) parameters are
calculated using the OpenFOAM pimpleFoam solver, whereas the droplet parameters are reconstructed using the
newly implemented library. For the purposes of verification of the implementation and testing the functionality, we
limit our study to Stokes’s drag law, neglecting other forces and assuming low droplet Reynolds numbers. As in
Section 1, it is assumed that droplets evaporate into their own vapour and all heat at the droplet surface is spent
on its evaporation. These assumptions lead to simplified expressions for the force f and evaporation rate ϕ used in
equation (3). The above assumptions on physical models can be relaxed by replacing the expressions for f and ϕ
by models corresponding to more realistic flow scenarios.
Fluid flow around a cylinder is a classical problem and is often used as a benchmark for computational fluid dynamics
codes [11]. Depending on the flow Reynolds number, various flow regimes may be observed, including symmetric
stationary flow with attached recirculation zones and periodic flows [12].
The flow domain and some notation used in the simulations is shown in Figure 1; x ∈ [−lin, lout] and y ∈ [−lw, lw],
and the origin of the Cartesian coordinate system is located in the centre of the circle. The length and velocity scales
are chosen to be the radius of the cylinder and the free-stream velocity. The Reynolds number values used in this
paper are half of those in works where the diameter of the cylinder is used as the length scale, as in for example
[12]. The values of lin, lout and lw are set at 20, 30, and 20 respectively. See [7] for full details of the numerical
setup, including assessment of the mesh and domain size.
The inlet velocity is normal to the inlet. The outlet velocity condition is set as zero-gradient. The inlet and outlet
pressure are set as zero-gradient and a fixed value of zero, respectively. On the cross-section of the cylinder wall,
there is a no-slip condition for the velocity and zero-gradient condition for pressure. The boundary conditions at the
top and bottom edges of the computational domain are set as periodic.
Normally, in such a study of flow past a cylinder, the inlet velocity is fixed to be equal to the free-stream velocity in
the far field. In this work, to model the case of a periodic flow, a transient perturbation was deliberately introduced
at the inlet at an initial stage to trigger the onset of vortex shedding. It is inevitable that an asymmetric flow field
corresponding to vortex shedding will develop in a computation with a symmetric configuration, providing that Re
is sufficiently large and the computational time is sufficiently long. It is known that the asymmetry in simulations
stems from truncation errors of computational models. Thus, improving the spatial and temporal resolution, which
increases the accuracy, delays the start of vortex shedding. An asymmetrical longitudinal disturbance of the inlet
velocity introduced at the initial stage was reported to significantly reduce the computational time for generating the
periodic flow field [13]. The velocity at the inlet, x = −lin, y ∈ [−lw, lw], is defined as follows

u(−lin, y, t) =

{
(1 + ae−ζt sin(ky), 0) for t ≤ 10,

(1, 0) for t > 10.
(12)

Here a and k are the amplitude and wave number of the disturbance, and ζ is the damping parameter. Their values
are chosen as

a = 0.2, k =
π

10
, ζ = 1. (13)

As demonstrated in [13], these values have an effect on the length of the computational time taken to start generating
the periodic flow, but not the flow pattern itself.
For the carrier phase, the pimpleFoam solver was configured as outlined in [14]. The computational mesh was
constructed in such a way that its quality within the boundary layer around the cylinder could be defined explicitly.
The results of the FLA/gFLA simulations in the case of one-way coupling have been reported in [9]. In this paper, we
focus on the implementation of two-way coupling, when accounting for the effect of droplets on the carrier phase in
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both stationary and transient cases. Selected results are presented in Figures 2 – 5. In the first case, we consider a
stationary flow around the cylinder, Re = 20. For calculation of the combined FLA and kernel regression procedure,
100 seed particles injected every 0.1 seconds were used. In the reference case, the particle parameters were
calculated using the Cloud-In-Cell (CIC) method, which required 1000 seed particles injected every 0.01 seconds.
Comparison of the results for the momentum exchange values is presented in Figures 2 and 3. The results obtained
using the two methods are in good agreement. The calculations using the CIC method took 3040 CPU hours vs. 22
hours required for the FLA and kernel regression procedure.

Figure 2. Distribution of the y−component of the momentum source term SMom, calculated using FLA + kernel regression (top)
and CIC (bottom), Re = 20, St = 0.1.

Figure 3. x− and y− momentum source term SMom profiles at selected cross-sections, FLA+kernel regression (symbols) vs CIC
(curves), Re = 20, St = 0.1.

In the next step, the same approach was applied to a periodic flow with asymmetric vortex shedding, Re = 100.
The results at t = 50, are shown in Figures 4 and 5. As can be seen, in the transient case the combined FLA
and kernel regression approach returns results that are not smooth, and are sensitive to the mesh. The occurrence
of spurious data increases as the flow develops at later simulation times, as it affects the carrier phase flow. Such
behaviour may be attributed to the kernel regression procedure, where droplet parameter values are interpolated
over a relatively large area, leading to significant values recorded in locations with no droplets.
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Figure 4. Distribution of the y−component of the momentum source term SMom, calculated using FLA + kernel regression (top)
and CIC (bottom), Re = 100, St = 0.1, t = 50.

The final group of results is for droplet vapour transport. Again, we focus on the mass exchange term, which is
presented in Figure 5. Both in steady-state and transient cases, the mass source term distribution is smooth.

Figure 5. Distribution of the mass source term SMass, calculated using FLA + kernel regression, Re = 20 (top) and Re = 100
(bottom).

Conclusions
A two-way coupling approach, where the effect of droplets on the carrier phase flow is taken into account, has
been implemented. In this approach the momentum and mass exchange source terms are calculated by combining
the fully Lagrangian approach with kernel regression. This procedure has been implemented in OpenFOAM as an
additional library.
Using kernel regression with the gFLA offers an efficient means of reconstructing the droplet probability density field
for a smooth representation of interphase coupling source terms. The implementation of the approach has been
examined versus the Cloud-in-Cell approach. It has been demonstrated that the results obtained using the new
approach are in good agreement with the reference values in the case of steady state flow. However, for the case
of transient flow, the momentum exchange source terms calculated using the combined FLA and kernel regression
procedure exhibit some spurious behaviour, which needs to be investigated further. For the steady-state case, the
results are obtained much faster, with a computational speedup factor of around 100 times being observed whilst
obtaining the same level of fidelity and smoothness as the reference case.
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Nomenclature
a amplitude of the disturbance in equation (12)
c droplet vapour concentration
D diffusion coefficient [m2·s−1]
f force per unit mass [N·kg−1]
H bandwidth matrix [m2]
h smoothing length [m]
I identity matrix
J Jacobian tensor
k wave number of the disturbance in equation (12)
K kernel
lin, lout, lw computational domain dimensions
L characteristic length scale [m]
m mass of a particle/droplet [kg]
N number of droplets that contribute at the point x
n spatial dimensionality of the problem (1D, 2D or 3D)
n(x, t) droplet number density
p static pressure [Pa]
p(x, r, t) droplet probability density
r droplet radius [m]
Re Reynolds number
SMass source term for mass exchange [kg·s−1]
SMom source term for momentum exchange [kg·m·s−1]
St0 Reference Stokes number corresponding to the initial modal droplet size
t time [s]
u gas velocity [m·s−1]
U characteristic velocity scale [m·s−1]
vd = (vx, vy, vz) droplet velocity [m·s−1]
xd = (x, y, z) droplet position [m]

Greek letters
δ rate of change of the droplet surface area [m2·s−1]
µ dynamic viscosity [Pa·s]
ρ density [kg·m−3]
ϕ rate of droplet radius change [m·s−1]
ζ damping parameter in equation (12)

Subscripts
d dispersed phase parameter along Lagrangian trajectories
i, j component indices
0 initial value

Superscripts
i droplet index
x index corresponding to the spatial variables
r index corresponding to the droplet radius

Abbreviations
CIC Cloud-In-Cell
FLA fully Lagrangian approach
gFLA generalised fully Lagrangian approach
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