
1

Permission-based Android Malware Detection

using Machine Learning

Saeed Seraj

A thesis submitted in partial fulfilment of the requirement of the University of

Brighton for the degree of Doctor of Philosophy

November 2023

2

Abstract

Mobile devices, particularly Android-based devices, have become essential to our daily lives.

However, this trend has also increased the number and sophistication of mobile malware,

which can compromise user privacy, steal sensitive information, and cause other malicious

activities. In this thesis, the focus is on detecting different types of Android malware using

machine learning techniques. To achieve this goal, first, specialized datasets based on

application permissions that are tailored to each type of malware was developed. Then

optimized neural network architectures to detect each malware type was proposed.

Specifically, this research focused on detecting malicious Antimalware and VPNs, Android

Trojans, mobile Botnets, and malicious Adwares, some of the most prevalent and dangerous

types of mobile malware. My approach has several advantages over traditional mobile

security solutions. First, it provides a more fine-grained view of the behaviour of an

application, enabling the detection of malicious apps that may appear benign based on their

code alone. Second, it is scalable, enabling automated detection and classification of malware

in the face of the rapidly growing number of Android devices and applications. Third, it is

adaptable to new and emerging threats, making it more resilient to novel attacks. My results

showed that my models achieved high accuracy rates in detecting these types of malware,

outperforming existing methods. This work is the first to specifically target the detection of

these types of Android malware based on permissions. This research’s findings have

important implications for the field of mobile security, as they provide a new way to defend

against malware threats that are becoming increasingly sophisticated and prevalent. The

developed models can be integrated into existing security solutions to provide more robust

protection for users' devices and personal information. Overall, this thesis presents a novel

approach to detecting targeted Android threats using machine learning techniques. By

leveraging application permissions, specialised datasets and models for identifying various

types of Android malware were developed. The results demonstrate that the developed

models achieve high accuracy rates in detecting these types of malware and are effective at

detecting targeted threats that may be missed by traditional signature-based approaches.

3

Acknowledgements

Dear Dr Nikolaos Polatidis and Dr Michalis Pavlidis,

I am writing to express my heartfelt gratitude for all the support and guidance you provided

me during my journey to complete my doctoral dissertation. First and foremost, I thank God

Almighty for granting me the strength and ability to complete this work.

You have been a constant source of inspiration and motivation throughout my time at the

University of Brighton. Your unwavering commitment to my success, both professionally

and personally, has been instrumental in helping me reach this milestone. I am deeply

grateful for your endless patience, encouragement, and the valuable insights you provided,

which have shaped my thinking and enriched my research.

I could not have asked for better mentors and advisors, and I consider myself fortunate to

have had the opportunity to work under your guidance. Your dedication and passion for your

work have inspired me to strive for excellence, and your unwavering support has helped me

overcome any obstacles I encountered.

Lastly, I would like to express my appreciation to my family and friends for their support and

encouragement throughout my academic journey. Without their love and encouragement, I

would not have been able to achieve this milestone.

Once again, please accept my heartfelt thanks for your invaluable support and guidance. I am

deeply grateful for everything you have done for me, and I look forward to staying in touch.

Sincerely,

Saeed Seraj

4

Declaration

I certify that this work has not been accepted in substance for any degree and is not

concurrently being submitted for any degree other than that of Doctor of Philosophy (Ph.D.)

being studied at the University of Brighton. I also declare that this work is the result of my

own investigations except where otherwise identified by references and that I have not

plagiarised the work of others.

Supervisors

Dr. Nikolaos Polatidis

Dr. Michalis Pavlidis

5

Contents
Abstract .. 2

Acknowledgements ... 3

Declaration... 4

List of Publications ... 10

List of Figures .. 11

List of Tables ... 12

1. Introduction ... 13

1.1 Android Malware .. 17

1.2 Evolution of Malware ... 19

1.3 Android Mobile Malware and Types .. 22

1.3.1 Trojan and Viruses ... 22

1.3.2 Botnets ... 22

1.3.3 Adware and Spyware ... 23

1.4 Malware Propagation ... 23

1.5 Machine Learning and Data Mining ... 24

1.6 Data Mining for Information Security .. 25

1.7 Data Mining for Cyber Security .. 26

1.8 Machine Learning and Data Mining for Malware Detection ... 27

1.9 Defending Against Advanced Threats ... 27

1.9.1 Attacker Model and Malware Types Considered ... 28

1.10 Research Questions ... 28

1.11 Aims .. 29

1.12 Objectives... 30

1.13 Contribution to Knowledge .. 30

1.14 The Organisation of the Thesis .. 31

2. Literature Review ... 34

2.1 Background ... 34

2.2 Android Operating System (OS) ... 36

2.3 Android Platform Components ... 36

2.3.1 Android Architecture ... 36

2.3.2 Android Applications ... 37

2.3.3 Java API Framework .. 37

2.3.4 Native C/C++ Libraries .. 38

2.3.5 Android Runtime.. 39

2.3.6 Hardware Abstraction Layer .. 39

6

2.3.7 Linux Kernel .. 39

2.4 Dalvik Virtual Machine .. 39

2.5 Components of an Android Application ... 40

2.5.1 Activities .. 40

2.5.2 Services .. 40

2.5.3 Content Providers ... 40

2.5.4 Broadcast Receivers ... 41

2.5.5 Intents ... 41

2.5.6 The Manifest File ... 42

2.6 Permissions .. 43

2.6.1 Application Permission Structure .. 43

2.6.1.1 Normal Permissions .. 44

2.6.1.2 Dangerous Permissions ... 44

2.6.1.3 Signature Permissions ... 44

2.6.1.4 SignatureOrSystem Permissions ... 44

2.7 Android Application Programming Interface (API) ... 45

2.8 Application Configuration ... 45

2.9 Android Security Model ... 46

2.9.1 System and Kernel Level Security ... 47

2.9.2 The Application Sandbox... 47

2.9.3 File System Permissions .. 48

2.9.4 Security-Enhanced Linux ... 48

2.9.5 Android Permission Model .. 48

2.9.6 Inter-Component Communication ... 49

2.9.7 Protected APIs ... 50

2.9.8 Cost Sensitive APIs .. 50

2.9.9 Application Signing ... 50

2.9.10 Sensitive User Data .. 51

2.9.11 Publishing and Distribution of Apps .. 51

2.10 Related Work .. 52

2.10.1 Static Methods ... 52

2.10.1.1 Methods Based on Code Analysis... 52

2.10.1.2 Methods Based on API Calls and Permissions ... 54

2.10.1.3 Other Static Methods .. 55

2.10.2 Dynamic Methods .. 57

2.10.2.1 System Call Monitoring .. 58

7

2.10.2.2 Monitoring of System-level Behaviour ... 58

2.10.2.3 Monitoring of User-Space Level Behaviour ... 59

2.10.2.4 Observation of an App’s Behaviour Using Other Measurements 59

2.10.3 Hybrid Method ... 61

2.11 Related Datasets .. 63

2.11.1 Drawbacks .. 65

2.12 Drawbacks of the Current Methods and Proposing Solution ... 68

2.13 Difference Between This Research and Other Malware Detection Works 68

3. Research Methodology ... 71

3.1 Applied Deep Learning Algorithms .. 71

3.2 Standard Machine Learning Algorithms Used to Compare ... 72

3.3 VirusTotal .. 73

3.3.1 How VirusTotal Works .. 73

3.3.2 Increasing Global IT Security Through Collaboration .. 74

3.3.3 Real-time Updates .. 74

3.3.4 Results .. 75

3.4 Overview of Methodology for Novel Dataset Development .. 75

3.4.1 Dataset Creation ... 76

3.4.2 Proposed Datasets .. 79

3.4.3 Preprocessing ... 80

3.4.4 Classification and Detection .. 81

3.4.5 Evaluation Metrics ... 81

3.5 Static Analysis ... 83

3.6 Android Malicious Antimalware Detection Methodology ... 83

3.6.1 Proposed Dataset .. 83

3.6.2 Proposed Classifier .. 85

3.7 Android Fake VPN Detection Methodology ... 89

3.7.1 Proposed Dataset .. 89

3.7.2 Proposed Classifier .. 92

3.8 Android Trojan Malware Detection Methodology .. 94

3.8.1 Proposed Dataset .. 94

3.8.2 Proposed Classifier .. 95

3.9 Android Botnet Malware Detection Methodology ... 96

3.9.1 Proposed Dataset .. 96

3.9.2 Proposed Classifier .. 98

3.10 Android Malicious Adware Detection Methodology ... 100

8

3.10.1 Proposed Dataset .. 100

3.10.2 Proposed Classifier .. 103

4. Android Malicious Antimalware Detection .. 105

4.1 Introduction ... 105

4.2 Background ... 107

4.3 Experimental Evaluation .. 110

4.4 Evaluation Metrics .. 111

4.5 Experimental Results .. 111

4.6 Comparisons with Other Classifiers ... 114

4.7 Comparisons with Other Related Works .. 115

4.8 Conclusions .. 116

5. Android Malicious VPN Detection .. 118

5.1 Introduction ... 118

5.2 Background ... 119

5.3 Experimental Evaluation .. 121

5.4 Evaluation Metrics .. 122

5.5 Experimental Results .. 122

5.6 Comparisons with Other Classifiers ... 125

5.7 Comparisons with Other Related Works .. 126

5.8 Conclusions .. 127

6. Android Trojan Malware Detection .. 128

6.1 Introduction ... 128

6.2 Background ... 128

6.3 Experimental Evaluation .. 133

6.4 Evaluation Metrics .. 133

6.5 Experimental Results .. 134

6.6 Comparisons with Other Classifiers ... 136

6.7 Comparisons with Other Related Works .. 137

6.8 Conclusions .. 137

7. Android Botnet Malware Detection .. 138

7.1 Introduction ... 138

7.2 Background ... 140

7.3 Experimental Evaluation .. 142

7.4 Evaluation Metrics .. 143

7.5 Experimental Results .. 143

7.6 Comparisons with Other Classifiers ... 144

9

7.7 Comparisons with Other Related Works .. 144

7.8 Conclusions .. 145

8. Android Malicious Adware Detection ... 147

8.1 Introduction ... 147

8.2 Background ... 149

8.3 Experimental Evaluation .. 155

8.4 Evaluation Metrics .. 156

8.5 Experimental Results .. 157

8.6 Comparisons with Other Classifiers ... 157

8.7 Comparisons with Other Related Works .. 160

8.8 Conclusions .. 161

9. Research Conclusions and Proposed Future Works.. 163

9.1 Discussion... 163

9.2 Novelty ... 164

9.3 Limitations ... 164

9.4 Conclusion ... 165

9.5 Future Work .. 166

References .. 167

10

List of Publications

• Journal Papers

1. Seraj, S., Pavlidis, M., Trovati, M., & Polatidis, N. (2023). MadDroid: malicious

adware detection in Android using deep learning. Journal of Cyber Security

Technology, 1-28.

2. Seraj, S., Khodambashi, S., Pavlidis, M. and Polatidis, N., 2023. MVDroid: An

Android malicious VPN detector using neural networks. Neural Computing and

Applications, pp.1-11.

3. Seraj, S., Khodambashi, S., Pavlidis, M. and Polatidis, N., 2022. HamDroid:

permission-based harmful android anti-malware detection using neural

networks. Neural Computing and Applications, 34(18), pp.15165-15174.

• Conference Papers

1. Seraj, S., Pimenidis, E., Pavlidis, M., Kapetanakis, S., Trovati, M. and Polatidis, N.,

2023, June. BotDroid: Permission-based Android Botnet Detection Using Neural

Networks. Proceedings of the 24th International Conference on Engineering

Applications of Neural Networks (EANN 2023) Leon, Spain 2023.

2. Seraj, S., Pavlidis, M. and Polatidis, N., 2022, June. TrojanDroid: Android Malware

Detection for Trojan Discovery Using Convolutional Neural Networks. In

Engineering Applications of Neural Networks: 23rd International Conference,

EAAAI/EANN 2022, Chersonissos, Crete, Greece, June 17–20, 2022,

Proceedings (pp. 203-212). Cham: Springer International Publishing.

11

List of Figures

Figure 1. Global market share (Statista, 2023) ... 21

Figure 2. Android application execution progress .. 35

Figure 3. Android software stack .. 37

Figure 4. VirusTotal indication of the benign applications and identification of the malware 74

Figure 5. Overview of methodology process analysis .. 76

Figure 6. The process of extracting and selecting features ... 80

Figure 7. An illustration of a small part of the proposed dataset .. 84

Figure 8. Proposed multilayer perceptron neural network .. 85

Figure 9. Standard logistic sigmoid function .. 86

Figure 10. Data-path of the proposed neural network ... 87

Figure 11. Propagating error back to correct weights ... 89

Figure 12. Proposed dataset sample .. 92

Figure 13. Proposed CNN model .. 93

Figure 14. An illustration of a small part of the proposed dataset .. 95

Figure 15. Proposed CNN model .. 96

Figure 16. A representation of a small portion of the proposed dataset.. 97

Figure 17. Proposed MLP neural network .. 98

Figure 18. Standard logistic sigmoid function .. 100

Figure 19. A small portion of the malicious adware dataset ... 101

Figure 20. Proposed CNN model .. 103

Figure 21. AUC evaluation results .. 115

Figure 22. Demonstration of simulation stages... 122

Figure 23. Train/Test accuracy over epochs ... 123

Figure 24. Loss over epochs ... 124

Figure 25. Accuracy for each of the 5 folds .. 135

Figure 26. Loss for each of the 5 folds ... 136

Figure 27. Overview of a Botnet structure .. 140

Figure 28. Life cycle of a Botnet .. 141

Figure 29. Demonstration of how malicious adware works ... 150

Figure 30. Demonstration of simulation stages... 156

Figure 31. Training and test accuracy over epochs ... 158

Figure 32. Model loss over epochs ... 159

12

List of Tables

Table 1. List of tools to decompile APK file .. 35

Table 2. Currently available Android malware datasets specification .. 67

Table 3. Comparison of publicly available Android malware datasets ... 67

Table 4. Android permission protection level ... 78

Table 5. List of Android malware datasets and the number of samples ... 80

Table 6. List of Android mobile Botnet families .. 98

Table 7. List of malicious Android adware families ... 101

Table 8. Simulation results with training size of 1/8 of the dataset .. 113

Table 9. Accuracy percentage obtained with different epochs and sizes of training sets 113

Table 10. Evaluation of the proposed MLP neural network ... 114

Table 11. Comparison of our approach to other well-known classifiers .. 114

Table 12. Comparison of my approach with other permission-based works 116

Table 13. My proposed method of evaluation results ... 125

Table 14. Comparison with other classifiers ... 125

Table 15. Comparison of my approach with other permission-based works 126

Table 16. Comparison with other classifiers ... 137

Table 17. Comparisons of my approach with other related works ... 137

Table 18. Comparisons with other classifiers ... 144

Table 19. Comparisons of my approach with other related works ... 145

Table 20. Attacks/Threats and their impact on user’s privacy .. 153

Table 21. Evaluation results .. 160

Table 22. Comparisons with other classifiers ... 160

Table 23. Comparisons with the other works ... 161

13

1. Introduction

In the past few years, smartphones have evolved from simple mobile phones into

sophisticated computers. They are much more portable and consume less energy in

comparison to personal computers. This fact extends their usage in business and home related

activities such as surfing the Internet, Emails, SMS and MMS messages, online transactions

and Internet banking, etc. All of these features make the smartphone a useful tool in our daily

lives, but at the same time they render it more vulnerable to attacks by malicious applications

(Wei et al., 2012). Given that most users store sensitive information on their mobile phones,

such as phone numbers, SMS messages, emails, pictures and videos, smart phones are a very

appealing target for attackers and malware developers.

With almost 2.6 million applications on Android Google Play alone, Android has emerged as

the leading mobile platform (AppBrain, 2023). Mobile application markets, such as Android

Google Play, have fundamentally changed how consumers receive software, with daily

updates and the inclusion of numerous applications. The rapid growth of the applications

market, combined with the pervasive nature of applications provided on such platforms, has

resulted in an increase in the sophistication and number of security threats targeting mobile

platforms. According to recent studies, mobile markets have vulnerable or malicious

applications, putting millions of devices at risk. For many years, malware has posed a threat

to computer systems. It was only a matter of time before malware developers created

malware for the Android platform, given the invention of Android systems and their

significant market share. The market share of Android has increased significantly in recent

years, attracting a slew of malware attacks that vary in complexity and scope (Demontis et al.,

2019).

The growing sophistication of mobile malware poses a severe threat to Android users

worldwide. Existing signature-based security solutions are becoming less effective at

detecting these advanced threats. Therefore, innovative techniques are needed to identify

malicious Android apps with high accuracy. The intended beneficiaries of this technique are

app store moderators, security companies performing vetting, and analysts evaluating new

apps. By automating parts of the malware screening process, this technique can enhance

14

efficiency and malware detection rates compared to purely manual review. Custom datasets

improve detection over generic malware datasets by focusing on high-risk categories.

Since its initial release in 2008, the Android platform has seen tremendous growth, gaining a

sizable market share over the years. The platform's popularity and widespread use are

associated with increased interest from malware developers with a variety of malicious goals.

With continued improvement and enhancement of security features, multiple aspects and

vulnerabilities of the platform have been exploited. Various frameworks with varying

capabilities and limitations have been developed over time. According to recent statistics, the

popularity of the Android platform has resulted in a global market share of more than 86%.

According to estimates, there are more than 1.2 billion monthly Android users. Android is the

market leader, with 71.8% market share versus 27.6% for Apple iOS (Statista, 2023).

Google's policies have enabled the Android platform to experience this level of growth and

acceptance. Because of its open policy, millions of applications are now available on the

platform, with a high level of tolerance for verification and release. Many factors are to

blame for the rise of Android malware, some of which are not technical in nature, such as the

lack of a regulatory body in open markets and the lack of consequences for those who

provide applications with malicious potential or vulnerabilities. Because mobile applications

are becoming more prevalent and complex, this scenario is likely to worsen.

Some of Google's policies are also dangerous to users' security. Due to open policies, third

parties can operate an unofficial application store from which users can download

applications without verifying security and authenticity. Because digital certificate usage on

the Android platform is not strictly regulated, some application developers cannot be traced

back to their original developers using digital signatures (Zhou & Jiang, 2012). Because digital

certificates are not used, malware developers can easily release cracked versions of legitimate

applications as well as Trojan horses disguised as legitimate applications. As a result, the

Android ecosystem has become one of the most popular platforms for malware developers

with a variety of malicious intentions. Despite the obvious malware threat, Google

policymakers maintain that the company's open policy has done better than harm, benefiting

millions of developers and security architects seeking to protect the platform. In the first half

of 2019, approximately 1.9 million instances of Android malware were discovered, implying

15

that an infected application was published every eight seconds. With more utilities being

developed for the Android platform, it is almost certain that it will remain a target for

malware (Gdata, 2019).

Attackers are primarily interested in gaining access to private information for individuals and

entities, which is then used to orchestrate identity theft and hacking incidents. Private

information from users' private profiles, such as online wallet access details, call logs, and

contact information, can be obtained by attackers and used for malicious purposes. Because

of the negative consequences of Android malware and the millions of potential victims,

malware detection has been an ongoing security issue that has piqued the interest of a wide

range of stakeholders. A variety of detection and security measures have been proposed and

developed, with varying degrees of success and dependability. A common detection

technique, for example, is the signature-based warning mechanism, which compares

individual applications to known malware signatures (Burguera et al., 2011). However, the

method is limited in detecting mobile malware, which is constantly emerging, because a

database may not contain their signature. This traditional technique has necessitated the

development of more efficient malware detection methods such as static, dynamic, hybrid,

and machine learning. Even with robust detection techniques, malware designers find ways to

avoid detection, further complicating the process (Atkinson & Cavallaro, 2017).

Security can be thought of as a moving target. A significant portion of society has recognised

the tedious form of computer protection as a nearly unavoidable effect in modern times.

However, when compared to the world of personal computers, mobile represents a

developing field. Mobile devices are now an important part of people's daily lives because

they allow them to access a variety of ubiquitous services. The availability of such mobile

and universal services has grown significantly as a result of various types of connectivity

provided by mobile devices, such as Wi-Fi, Bluetooth, General Packet Radio Service, and

Global System for Mobile Communications. Android also includes fully developed features

for making use of cloud computing resources (la Polla et al., 2013). Android security has

emerged as an exciting research topic. Such research endeavours have examined Android

security threats from various perspectives. They are dispersed across various research

communities, resulting in a body of literature that spans multiple publication venues and

16

domains. A substantial portion of the reviewed literature is published in the domains of

software security and engineering. However, research on Android security runs concurrently

with research on programming languages, mobile computing, and HCI, which considers

topics such as the usability of security approaches.

Android is a Linux kernel-based operating system whose applications are written in Java and

made available through built-in APIs. Its security framework includes app sandboxing, app

signing, cryptographic APIs, and secure inter-process communication via the intents and

permission model (Seo et al., 2014). The permission model is a key security mechanism for

preventing the unauthorised use of critical hardware and software resources (A. Felt et al.,

2011; Sarma et al., 2012). To protect both the system and its users, Android requires apps to

request permission before accessing certain system data and features. If the permissions are

required to access the sensitive areas, the system grants the permission automatically, or it

may ask the user to approve the request. Its effectiveness, however, is dependent on the user's

response and other built-in features, most notably the intent. The intent is a messaging object

that is used to ask another app component to perform a task. It allows components of the

same or different applications to communicate with one another.

Because Android is the market leader, it is the primary target of Smartphone malware attacks

(Do et al., 2015). Android-based mobile devices have been constantly targeted due to their

growing popularity and ease of developing, improving, re-packaging, and publishing apps

(Wu et al., 2013; Krutz et al., 2015; Sufatrio et al., 2015). Malware targeting the Android platform

has skyrocketed in the last two years (Avdiienko et al., 2015). The provision of installing third-

party applications, as well as the increasing number of seemingly benign apps with malicious

activities, aggravates the situation. The Android security framework has not been shown to be

effective in preventing malware proliferation (Maiorca et al., 2015). End-point security

measures such as Antivirus software are unable to eliminate malware threats (Vidas & Christin,

2013; Maggi et al., 2013; Penning et al., 2014). This is due to the fact that the majority of

solutions are signature-based and require regular updates to protect against an increasing

number of malware variants, as well as a lack of obfuscation resilience (Feizollah et al., 2015;

Sheen et al., 2015; Maier et al., 2014; Faruki, Bharmal, et al., 2015). To overcome the challenges

17

of limited mobile device resources, outdated AV signatures, and malware code obfuscation

techniques, innovative and resource-rich detection solutions are required.

The key innovation is the creation of custom datasets for each malware type extracted

through manual static analysis of Android application package (APK) files. The datasets

contain both benign apps and known malicious apps. Training machine learning models on

these specialised datasets can enhance the detection of that particular malware type. These

datasets are different from existing generic malware datasets because they focus on a single

specific type of Android malware, allowing the machine learning models to specialise in

identifying patterns unique to that malware type. The static analysis focuses on the app file

itself, rather than dynamic runtime behaviour. This means any apps that become infected

after installation would not be detected. The scope of this technique covers determining if a

given Android app exhibits malicious behaviour or not before it is published. It does not

consider collaborative attacks from multiple apps working together. The static analysis

focuses on the app file itself, rather than dynamic runtime behaviour. This means any apps

that become infected after installation would not be detected. This research aims to develop

an efficient Android malware detection approach that can help app store moderators, security

companies, and analysts quickly identify malicious apps before they are published and

downloaded by users.

1.1 Android Malware

Malware (short for "malicious software") is a type of software that is annoying or harmful

and is designed to secretly access a device without the user's knowledge (Enck et al., 2011).

Android has become the most popular smartphone operating system, making it a growing

target for cybercriminals (Suarez-Tangil, Tapiador, Peris-Lopez & Ribagorda, 2014). Hackers are

exploiting operating system and application vulnerabilities to gain access to systems, steal

user data, and profit (Benats et al., 2011; Fedler et al., 2013; Liu & Liu, 2014). Android malware is

rapidly evolving. As Android malware has grown exponentially over the years, McAfee

Security Company's database now contains more than 100 million samples (Sanz, Santos,

Ugarte-Pedrero, et al., 2013). Because of new stealth techniques and encapsulation methods

used by malware, detecting new malware apps has become quite difficult. Existing Android

antivirus solutions are less effective at detecting and combating advanced malware (Li et al.,

2015).

18

As our mobile phones become more integrated into our personal and professional lives, they

are more frequently targeted by cyber criminals than ever before. Because these devices

contain valuable private information as well as access to financial services such as internet

banking or e-commerce purchases, ensuring adequate security on the mobile phone is critical

for all users. Android applications (apps) can be obtained from the official app store (Google

Play Store) or from unofficial third-party stores such as GetJar or Slide ME. The Google Play

Store was designed to be a store that meets all of the app requirements of the average user

while also providing adequate security for app downloaders. To that end, Android phones

include a security feature that prevents app installs from third-party stores, which users can

disable. However, it is not recommended that it be disabled for most users.

The reason for such precautions is the possibility that adversaries may have injected

malicious code into seemingly harmless Android apps (malcode). To compute and assess the

level of threat that users face when downloading apps from third-party stores, we must

compare the percentage of malware infections from Google Play to malware infections from

third-party app stores. According to a Cheetah Mobile analysis (CheetahMobile,

2014)malware from third-party markets accounts for 99.86% of all malware infections, while

Google Play accounts for only 0.14%.

Malicious Android apps pose a serious threat to users' privacy and security. However,

detecting malicious apps is challenging given the sheer volume of apps submitted to app

stores every day. Manual analysis of each app is time-consuming and not scalable. This

research aims to develop an efficient Android malware detection approach that can help app

store moderators, security companies, and analysts quickly identify malicious apps before

they are published and downloaded by users.

The proposed technique focuses on detecting malicious antimalware apps, malicious VPNs,

Trojans, Botnets, and malicious Adwares. These types of malware are commonly used to

steal user data or gain unauthorized access to devices. By tailoring the approach to focus on

19

these high-risk categories, the detection accuracy can be improved compared to general

malware detection.

The key innovation is the creation of custom datasets for each malware type extracted

through static analysis of Android application package (APK) files. The datasets contain both

benign apps and known malicious apps. Training machine learning models on these

specialized datasets can enhance the detection of that particular malware type. The manually

extracted features to build these custom datasets set this work apart from existing generic

malware datasets.

The scope of this technique covers determining if a given Android app exhibits malicious

behaviour or not before it is published. It does not consider collaborative attacks from

multiple apps working together. The static analysis focuses on the app file itself, rather than

dynamic runtime behaviour. This means any apps that become infected after installation

would not be detected. However, by detecting high-risk apps before publication, the approach

can prevent a significant amount of malware.

The intended beneficiaries are app store such as Google Play moderators, security companies

performing vetting, and analysts evaluating new apps. By automating parts of the malware

screening process, this technique can enhance efficiency and malware detection rates

compared to purely manual review. The custom datasets improve detection over generic

malware datasets by focusing on specific malware types posing a high risk.

1.2 Evolution of Malware

Since the development of the first mobile worm, ‘Cabir’ designed to infect Nokia 60 series

phones, mobile malware has come a long way. The infection appears to be innocuous because

the worm displays the word 'Caribe' on the screen. The infection would spread via Bluetooth

to other nearby Bluetooth-enabled devices such as printers, mobile phones, and so on

(Apvrille, 2014). At the time, Symbian was a popular operating system that would provide a

large market for mobile malware developers. In addition, Symbian's market share fell

significantly in 2005, which could be attributed to Cabir's spread in Symbian mobile phones

20

(Tam et al., 2017). ‘Cabir’ was succeeded in 2005 by CommWarrior, which spread through

MMS as well as Bluetooth. The virus was created for the Symbian 60 platform and infected

over 100,000 mobile devices by sending over 450,000 MMS. This spread added monetary

value to malware development because each MMS sent would incur a carrier charge. The

financial incentive was further exploited by RedBrowser, a Trojan discovered in 2006. The

Trojan was designed to take advantage of premium SMS service, as each SMS would

typically cost the device's owner $5. RedBrowser was a watershed moment in the evolution

of mobile malware because it was the first malware to contaminate mobile phones running

different operating systems by exploiting a flaw in the widely supported Java 2 Micro Edition

(J2ME) (Apvrille, 2014). The following two years, 2007 and 2008, were relatively quiet in

terms of the evolution of new mobile malware threats, and the development of non-

commercial malware nearly died out (Maslennikov et al., 2010). ‘Cabir’ is the first mobile

worm, is an example of non-commercial malware because it was not created for monetary

gain, as discussed at the beginning of the chapter. However, there has been a significant

increase in the use of premium rate services by mobile malware (Apvrille, 2014). As

cybercriminals began targeting online gamers to obtain their passwords, in-game assets, and

virtual characters, the primary goal of malware development became data theft (Maslennikov

et al., 2010).

The mobile Botnet malware Yxes was discovered in 2009 and became one of the first

malware for Symbian OS 9 (Apvrille, 2012). Because it was the first malware to send an

SMS and access the Internet, this discovery was another watershed moment in the evolution

of mobile malware as well as technological innovation (Apvrille, 2014). Since 2009, mobile

malware has grown exponentially as a result of technological advancements that provide new

avenues for profit, an increase in black market accessibility for selling and buying stolen

information, and malware developers collaborating on exchanging malware code and system

vulnerabilities (Tam et al., 2017). (Apvrille, 2014) refer to 2010 as an industrial age for mobile

malware, describing it as a transition from individuals to organised cybercriminals as

monetary incentives increased significantly. The popularity of Android increased in the first

quarter of the same year. Its global market share increased to 88% from 1.6% in the first

quarter of 2009. Figure 1 depicts this popularity trend (Statista, 2023).

21

Figure 1. Global market share (Statista, 2023)

Because of the increased use of Android platforms, the platform has become vulnerable to

new and sophisticated malware. The malware is designed to avoid detection while wreaking

havoc on victims. Malware authors cause annual losses in the billions of dollars (Arshad et al.,

2016). As a result, as the number of Android system users grows, it becomes a profitable

venture. (Amro, 2017) estimates that a new strain of malware is discovered every 10 seconds.

This rate is not only alarming, but it also necessitates massive resources to identify and

neutralise. In 2017, the percentage increase in evasive malware increased by more than

2000%, and this trend is expected to continue (Wei et al., 2017). Massive attacks are being

carried out, with thousands of users becoming victims and suffering losses. Malware authors

have employed devious techniques to circumvent authentication requirements imposed as

security measures. Because some malware attacks all authentication devices, authentication

vulnerabilities are exposed (Azmoodeh et al., 2018).

Alarms have been raised primarily as a result of an increase in ransomware cases in which

malware authors hold Android systems hostage until they are paid. To hide their tracks,

malware authors would primarily use untraceable cryptocurrencies (Azmoodeh et al., 2018).

Apart from the common malware target of locking device screens, ransomware has also

22

targeted other malicious intentions such as data wiping, resetting security settings, GPS

tracking, and personal information theft. Despite increased malware threats, antimalware

companies and Google have been gradually investing resources in developing detection

techniques. Critical databases have been developed over time and have played a significant

role in improving Android security for millions of users; however, malware authors appear to

be one step ahead all the time (Hicks & Dietrich, 2016).

1.3 Android Mobile Malware and Types

Mobile Malware is a malicious and unwanted piece of software that targets mobile phones

and causes device damage as well as the loss or leakage of confidential data. The first mobile

malware was discovered in 2004 and targeted the Symbian operating system. The first

malware targeting Android was reported in 2010, and by 2011, Android had become the most

popular OS for malware, with new malware families attacking every few weeks (Sufatrio et

al., 2015). Mobile malware targeting Android smartphones is widespread and rapidly

expanding. This section provides a brief overview of the three most common types of

malicious programmes that target mobile phones.

1.3.1 Trojan and Viruses

Trojans are pieces of malware that appear to be legitimate applications but contain harmful

malicious code that, when executed, causes serious damage to the device (Enck, Gilbert, Chun,

et al., 2014). The most dangerous threat to Android devices is Trojanized apps, which can

control the browser and steal account details, including bank login information. Trojans are

viruses that can be installed in a variety of ways and cause damage ranging from simply

annoying to highly destructive and irreversible. Mobile viruses can gain unauthorised access

to sensitive files and memory by rooting the device.

1.3.2 Botnets

A bot is a type of malware that allows an attacker to take control of a mobile device that has

been compromised. Bots are typically part of a network of infected mobile phones known as

a "Botnet," which is made up of victim mobile phones that span the globe. They enable

hackers to take control of a large number of mobile phones at once and turn them into

"zombie" phones that work as part of a powerful "Botnet" to spread viruses, generate spam,

and commit other types of online crime and fraud. Botnets infect devices by gaining access to

their resources and data, allowing Botnet masters to control the device. They take advantage

23

of system flaws and unpatched devices. They continue to spread by sending text messages or

emails to the contacts of the infected device. Without the user's knowledge, hidden processes

can secretly run executables or contact bot masters for new instructions. Future Botnets are

expected to cause greater harm and to completely hijack and control infected devices.

1.3.3 Adware and Spyware

Spyware is malware that steals data from users and shares it with third parties for a variety of

purposes, including future attacks. In some cases, these may be advertisers or marketing firms

(Yang et al., 2014), which is why spyware is sometimes referred to as "Adware". Adware refers

to applications that use ad libraries. They collect user data in order to show relevant ads to

users for marketing purposes. Ad libraries cause privacy leaks and can frustrate users by

repeatedly displaying unwanted images or notifications on the screen (Suarez-Tangil, Tapiador,

Peris-Lopez & Blasco, 2014). Spyware and Adware are typically installed without user consent

by masquerading as legitimate apps or infecting legitimate apps with their payload.

1.4 Malware Propagation

Malware spreads via various sophisticated methods on mobile devices (Feng et al., 2014). The

following are some of the most common malware propagation methods:

• Infected websites: Cybercriminals create malicious websites that take advantage of

system flaws to easily spread malware (Zhang et al., 2013). When users access such

websites from their mobile devices, they become infected.

• Third-party app markets: Third-party app stores have lax security controls over

applications developed and uploaded by unknown parties (Rosen et al., 2013). Malicious

developers can upload Trojanized apps that users can download if the app has some

appealing functionality. Third-party stores also distribute repackaged apps, which are

popular apps that have been installed with malicious code, repackaged, and distributed.

• Spam emails and Botnets: Malware propagation via spam email is a simple and effective

method. Attackers may send victims emails that appear to come from trusted sources such

as the user's bank, Amazon, PayPal, or contacts. They may contain links to a malicious

website, compelling them to change their password and then send the login information to

a cybercriminal, or they may contain infected attachments that begin collecting data on

their own the moment they are opened. Bots also spread malware by sending malicious

links in text messages or e-mails to the contacts of infected users.

24

• Worms: Mobile worms are similar to viruses in that they can replicate and cause damage.

Worms, unlike viruses, are standalone programmes that do not require an infected file or

human intervention to spread. They spread to other devices via various exploits and

system vulnerabilities.

• Onscreen Adware: Some appealing advertisements are displayed on the user's screen as a

sidebar alongside a game or other app, and when the user clicks on them, he is directed to

a malicious website.

• Dynamic payload: Hiding malicious code in the APK resources file and executing it with

the Dex ClassLoader API after the main application has been installed.

• App updates: Malicious code is hidden in updates, and if the user installs them, the

device will be infected.

1.5 Machine Learning and Data Mining

Machine learning is a subset of artificial intelligence in which an algorithm or method

extracts patterns from data. The goal is to infer and generalise patterns from data

automatically. Face recognition, handwriting digit recognition, spam filtering in email, and

product recommendations from e-commerce sites are just a few examples of how machine

learning can be used in our digital lives. To elaborate on one of the examples, the goal of

handwriting digit recognition is to infer associations between drawn shapes and specific

letters while accounting for variations of the same letter. Machine learning is a field that

combines computer science, engineering, and statistics. Machine learning techniques can be

useful in any field that requires data interpretation and action. Data mining is a field that is

similar to machine learning in that we use many machine learning techniques. However,

databases play a larger role in data mining. Data mining, also known as "knowledge

discovery in databases," is an extension of exploratory data analysis with the same goal: to

discover unknown and unexpected structures in data. The main difference is the size and

dimensionality of the datasets involved. In general, data mining deals with much larger

datasets for which highly interactive analysis is not possible (Wegman, 2003).

Consider the difference between learning from a fully labelled set of examples and learning

from an unlabelled set of examples. When learning is performed from a fully labelled set of

examples, as in this thesis, it is referred to as supervised learning. Unsupervised learning, on

the other hand, is performed on a completely unlabelled set rather than a labelled set. The

25

process of learning from labelled or unlabelled data sets is known as discovery or mining.

Semi-supervised learning, which uses a partially set of examples for the learning activity, is a

middle ground between supervised and unsupervised learning. In data mining applications,

there are four distinct learning styles. The first is classification learning, which requires

learning from a set of classified examples. The second is association learning, which seeks

any association between features, the third is clustering, which seeks groups of examples that

belong together, and the last is numeric prediction, which seeks to predict a numeric quantity

rather than a discrete class (Witten et al., 2005).

1.6 Data Mining for Information Security

Data mining is regarded as a promising solution to the ever-increasing issue of information

security. Data mining-related solutions for information security are emerging as an alternative

method of problem solving. Data mining or machine learning techniques such as

classification, clustering, or association rule mining are used in a variety of information

security applications. Induction algorithms are used in data exploration solutions to discover

hidden patterns and build predictive models. Such techniques and algorithms have proven to

be effective in addressing the majority of information security challenges. Attack pattern

generalisation and discovery present a great opportunity for the data mining and information

security communities to prevent and mitigate risks to information security. Classification,

association rules, and clustering mechanisms can be implemented in the data before and after

an information security compromise that maps the attack patterns of each individual attack.

To deal with the most recent threats and risks, such as Distributed Denial of Service (DDoS)

attacks, host-based intrusions, access control violations, and malicious code detection,

powerful software solutions that incorporate the aforementioned techniques can be

implemented.

Among the data mining use cases applied to information security issues are (Bhatnagar &

Sharma, 2012).

• Detection of various anomalies and malware in the system by categorising benign and

anomalous activities and categorising incoming data accordingly.

• Extraction of various security requirements, use of fuzzing techniques to identify

vulnerabilities, definition and discovery of audit trails, and establishment of security policies.

26

• Detection of various cybercrimes, such as credit card fraud, money laundering fraud, and

other financial crimes, as well as classification of criminals based on behaviour.

1.7 Data Mining for Cyber Security

Intrusion detection and malware detection are two areas of data mining for cybersecurity that

have received a lot of attention. Despite the fact that both areas are relatively new in

comparison to many classical theoretical computer science topics, there has been active

research in these areas for 17 years, since the first research paper on data mining for malware

detection was published in 2001 (Schultz et al., 2001) .In the Joint Publication 1-02,

Department of Defense (DoD) Dictionary of Military and Associated Terms, cyberspace is

defined as "a global domain within the information environment consisting of the

interdependent network of information technology infrastructures, including the Internet,

telecommunication networks, computer systems, and embedded processors and controllers"

(Department of Defense, 2015).

Sensors installed in cyber systems such as firewalls, intrusion detection systems (IDS), and

Antivirus collect massive amounts of data. This data, whether network traffic or log data, is

ripe for data mining to uncover valuable patterns and relationships for use in security

research. Data mining may provide us with previously unimaginable capabilities. In addition

to all of the tactical operations required to defend a cyber system, it has become critical to

continuously sift through vast amounts of sensor data that could be made more efficient with

advances in data mining techniques to accurately map the attack surface, collect and integrate

data, extract knowledge, and produce useful visualisations (Blowers et al., 2014). Strategic

coordination of all data sources is becoming a critical component of effective cyber defence.

This collection of data from various sources has the potential to become what we call big

data. Dealing with large and rapidly growing data sources required us to develop new

techniques, models, and a new type of computing infrastructure to process, analyse, and store

data. Having a computing infrastructure that can ingest, validate, and analyse large volumes

(size and/or rate) of data is one of many considerations when dealing with massive amounts

of data. Another difficulty is evaluating mixed data (structured and unstructured) from

various sources. It is frequently difficult to deal with unpredictable content that lacks obvious

schema or structure, and it is frequently difficult to enable real-time or near-real-time

collection, analysis, and results (Villars et al., 2011).

27

1.8 Machine Learning and Data Mining for Malware Detection

The security industry is locked inside the endless loop of generating a specific signature to

one kind of malware only for this specific kind of malware to be later modified to evade the

present detection mechanisms (David & Netanyahu, 2015). This never-ending loop forces the

security industry to attempt to defend against all attack vectors across the entire cyberattack

spectrum, while attackers constantly improve their tools and attack methods. Instead of ap-

plying a single unique signature to each malware sample, data mining and machine learning

propose a fundamentally different approach to detecting malware. Once malcode injection

occurs, the traffic or app is no longer the same; there are clear indications of that mal code

injection somewhere in the traffic or source code. Such changes that occur as a result of mal-

code injection provide us with the ability to learn about such changes in order to measure the

degree of maliciousness of an executable in order to determine whether the file in question is

benign or malicious. Data mining is a type of prediction in which we look for meaningful pat-

terns in data and make classifications, form clusters, or predict numerical values based on

these patterns. When there are no malicious code injections within the network traffic or

source code of an app, it is in a clean state.

1.9 Defending Against Advanced Threats

Every day, cyber adversaries become more sophisticated and target organisations,

corporations, and governments. I am dealing with advanced threats, which go beyond the

attack sophistication threshold that we are accustomed to, and they include advanced

malware and targeted attacks. Such adversaries' primary goal is to conduct industrial

espionage, disrupt business and financial operations, and/or sabotage critical infrastructure.

Many organisations today lack the workforce necessary to combat such threats. Traditional

approaches to security, which use a rule, pattern, signature, or algorithm-based approach to

detect malware or cyberattacks, are no longer effective against advanced threats. Traditional

approaches to security have a major flaw in that they require constant updates and an influx

of rules, signatures, or patterns to identify and mitigate each malware or threat.

Software and hardware solutions with data analytics at their core are quickly becoming the

foundation of cyber and information security protection. Machine learning advancements are

promising approaches to dealing with ever-changing and evolving advanced threats. Many

machine learning techniques, algorithms, and tools are being used by security experts and

28

researchers to combat some of the most advanced threats we face today, with many machine

learning techniques, algorithms, and tools finding widespread applications and

implementations in dealing with a wide range of security issues. When used correctly,

machine learning can help us identify previously unknown vulnerabilities in software or

hardware, detect complex cyber-attacks and malware, and mitigate insider threats through the

detection of anomalous user behaviour.

1.9.1 Attacker Model and Malware Types Considered

This research aims to detect the following types of advanced malware threats targeting the

Android platform:

• Malicious antimalware apps that pretend to provide security services but actually steal

personal data or gain unauthorized access. These demonstrate sophisticated

techniques like evading detection through obfuscation.

• Malicious VPN apps that claim to provide secure connections but monitor network

traffic and steal sensitive information. These exhibit stealth behaviours by hiding their

true intent.

• Android Trojans that masquerade as legitimate apps and are delivered through social

engineering. They employ deception and transmit private data from devices.

• Botnets that take control of devices remotely and use them for malicious purposes like

DDoS attacks. They utilize lateral movement and remote coordination.

• Malicious Adware that spies on user activity and exfiltrates data. These continuously

extract information without the user's knowledge.

By focusing detection capabilities on these specific advanced threats, the approach aims to

identify malicious behaviours such as deception, stealth, data exfiltration, and unauthorized

access attempts. The datasets and machine learning models are tailored to these Android

malware types which evade traditional signature-based defences.

1.10 Research Questions

1) What are the most effective feature extraction techniques and experimental methodol-

ogies for detecting and analysing Android malware? (Chapter 3 will address this ques-

tion.)

29

2) How can Android permissions be leveraged to enhance the detection and prevention

of malware, specifically focusing on antimalware, VPN, Trojans, Botnets, and mali-

cious Adware? (Chapter 3 will address this question.)

3) What are the key performance metrics (e.g., detection accuracy, false positive rate) of

existing antimalware solutions compared to proposed approaches, specifically for

Trojan, Botnet, and malicious Adware detection? (Chapters 4, 5, 6, 7, and 8 will ad-

dress this question.)

4) Does the proposed approach, specifically targeting antimalware, VPN, Trojans, Bot-

nets, and malicious Adware, outperform existing comparative methods in terms of de-

tection accuracy and efficiency? (Chapters 4, 5, 6, 7, and 8 will address this question.)

1.11 Aims

This research aims to gather information on existing claimed antimalware, VPN, Trojan,

Botnet, and malicious Adware and examine their security issues. For this purpose, I collected

Android antimalware, VPN, and APK file infected with Trojan, Botnet, and malicious

Adware from Google Play and a few other websites and then classified them as benign or

malware applications using “www.virustotal.com” which incorporates more than 70 reputed

antimalware detection engines. To analyse the existing data including Android executable

files, reverse engineering will be performed on these files by uploading each APK file in

VirusTotal scanner and extract the required features. Then, the required features are extracted

and converted to the desired format suitable for analysis. After that, I developed novel

datasets with specialised datatypes which includes: Android antimalwares, VPNs and

infected APKs with Trojans, Botnets, and malicious Adwares and indicated their required

permissions in addition to their security issues as recognised by “www.virustotal.com”.

Therefore, I proposed novel classifiers using deep learning algorithms such as multilayer

perceptron neural networks (MLP) and convolutional neural networks (CNN) to detect and

classify APK files as normal applications or any kind of malware. Also, my classifiers were

tested and evaluated by evaluation metrics (e.g., Accuracy, Precision, Recall, F-1 Measure

and AUC). The purpose is to analyse different batches of data and identify different subsets

of malware in the Android operating system, which can help prevent intrusions into Android

phones and prevent the hacking of the operating system and also classify detected malwares.

The overall aims of this research are:

30

• To develop an effective approach for detecting malicious Android apps, specifically

malicious antimalware, malicious VPNs, Trojans, Botnets and malicious Adwares.

• To create custom datasets for training machine learning models tailored to these

malware types.

• To evaluate the performance of different machine learning techniques on the custom

datasets.

• To demonstrate that tailored detection outperforms generic malware detection.

1.12 Objectives

A lot of harmful exploiters have been engaging in profitable and abusive operations by

getting information from mobile phones in a variety of ways, such as infecting antimalware

and VPNs or utilising Trojans, Botnets, and Malicious Adwares to conduct their malicious

activities on Android platforms. Therefore, this research:

1) Collect samples of the specific Android malware types to include in custom datasets.

2) Perform static analysis of Android APK files to extract features for the datasets.

3) Develop optimised machine learning models tailored to each malware dataset.

4) Evaluate detection performance using metrics like accuracy, precision and recall.

5) Compare performance to generic malware detection and other machine learning

methods.

6) Analyse results to determine most effective techniques for each malware type.

This research is unique in focusing specifically on the detection of malicious antimalware

apps and malicious VPNs for Android. Related works have focused on detecting generic

Android malware, but do not specifically target fake security apps or VPNs. This is the first

work to create custom datasets and machine learning models tailored to identifying these

specific threats. Furthermore, these datasets are the first aiming at this specific area of

android malware detection which means there are no similar works and datasets. Moreover, I

proposed and tuned classifiers according to the characteristics of the novel datasets in order to

achieve maximum efficiency of malware detection and classification and therefore results.

1.13 Contribution to Knowledge

The thesis makes the following contributions:

• A review of current approaches for analysis of Android malware, Android malware

analysis, and custom-built malware detection technologies.

31

• A comparison was conducted among several well-known machine learning classifiers

to understand which classifier performs best to detect malware.

• Developed five manually made novel datasets (antimalware, VPN, Trojan, Botnet,

and Malicious Adware) focused on single type of Android malware.

• Developed optimised neural network algorithms in order to achieve optimum results

in terms of well-known evaluation metrics and detection rate practically.

1.14 The Organisation of the Thesis

The rest of the thesis is organised as follows:

Chapter 1: Introduction

This chapter serves as the thesis's introduction. It gives a high-level overview of the research

topic and its significance. The chapter begins by discussing Android malware and its

prevalence in the digital landscape. It discusses malware evolution and focuses specifically

on Android mobile malware and its various types, such as Trojans, viruses, Botnets, Adware,

and Spyware.

Chapter 2: Literature Review

This chapter provides a thorough examination of the pertinent literature in the field of

Android malware detection. It discusses the Android operating system's history, architecture,

components, and security model. The chapter also goes over various methods and techniques

for detecting Android malware, such as static and dynamic analysis approaches. Furthermore,

it examines related datasets and identifies the shortcomings of current methods, leading to the

development of a novel solution.

Chapter 3: Research Methodology

The research methodology used in the thesis is described in this chapter. It describes the

machine learning and deep learning algorithms used in the study. The chapter also introduces

and describes VirusTotal, a platform for collaborative IT security, and its role in the research.

It also gives an overview of the methodology used to create a novel dataset, such as dataset

32

creation, pre-processing, and classification and detection techniques. The research evaluation

metrics are also discussed.

Chapter 4: Android Malicious Antimalware Detection

This chapter focuses on detecting malicious antimalware applications on Android. It starts

with an introduction and background information on the subject. The chapter then presents

the experimental evaluation that was performed for the detection of these applications, as

well as the evaluation metrics that were used. The chapter concludes with the results of the

experiments, comparisons with other classifiers, and general conclusions.

Chapter 5: Android Malicious VPN Detection

Chapter 5 delves into the detection of malicious VPN apps for Android. It serves as an

introduction and background on the subject. The chapter describes the experimental

evaluation used to detect these applications, as well as the evaluation metrics used. The

experimental results, as well as comparisons with other classifiers and related works, are

discussed. The overall conclusions are presented at the end of the chapter.

Chapter 6: Android Trojan Malware Detection

The detection of Android Trojan malware is the focus of this chapter. It provides background

information and introduces the topic. The chapter describes the experimental evaluation for

detecting these types of malware, as well as the evaluation metrics used. The results of the

experiments are presented and compared to other classifiers and related works. The main

findings and conclusions are presented at the end of the chapter.

Chapter 7: Android Botnet Malware Detection

The detection of Android Botnet malware is covered in this chapter. It begins with an

introduction and background information on the subject. The chapter describes the

experimental evaluation performed for Botnet malware detection, as well as the evaluation

33

metrics used. The experimental results are discussed, along with comparisons to other

classifiers and related works. The chapter concludes with the research's overall conclusions.

Chapter 8: Android Malicious Adware Detection

This chapter focuses on detecting malicious Adware on Android. It serves as an introduction

and background on the subject. The chapter describes the experimental evaluation for

detecting Adware, as well as the evaluation metrics used. The experimental results, as well as

comparisons with other classifiers and related works, are discussed. The main findings and

conclusions are presented at the end of the chapter.

Chapter 9: Discussion

The research results and findings are discussed in depth in this chapter. The research's

implications, limitations, and future directions are discussed. The chapter provides a thorough

examination and interpretation of the research findings.

Chapter 10: Conclusion and Future Work

The final chapter summarises the thesis's main contributions and findings. It restates the

objectives of the study and addresses the research questions. The chapter concludes with

suggestions for future work and areas for further investigation.

34

2. Literature Review

2.1 Background

Android is a Linux-based open-source operating system. Android is made up of six major

components: the Linux kernel, the Hardware Abstraction Layer (HAL), Native C/C++

libraries, the Android runtime, the Application framework, and the System applications. For

drivers and core services such as security and memory management, Android relies on the

Linux kernel, whereas HAL provides standard interfaces that expose device hardware

capabilities to the higher-level Java Application Programming Interface (API) framework.

The Android runtime, on the other hand, includes a set of core libraries that implement the

majority of the Java programming language. The application framework includes APIs for

controlling how the application looks and behaves. Finally, system applications include a set

of essential applications such as Contacts, phones, calendars, and a browser. A typical

Android application is divided into three sections: layouts, activities, and extra resources.

Layouts define how the application should look and are typically implemented in XML,

whereas activities define what the application should do and are typically implemented in

Java. Extra resources, such as images, sound files, and data, are required.

• The Java source code of Android applications is compiled into.class files using the

Java compiler, then converted into Android format (DEX) files, which are combined

with the other application files in a package known as the Android application

package (APK). Android then executes the compiled code using the Dalvik Virtual

Machine (DVM) or the Android Runtime (ART). Figure 2 depicts the progress of the

Android application execution. Every Android application includes a file called

AndroidManifest.xml that contains application-specific information such as:

• Permissions requested to access specific components, features, or other applications

(for example, ACCESS_WIFI_STATE, ANSWE_PHONE_CALLS, BATTERY_STATS,

DELETE_CACHE_FILES, and CAMERA). These permissions have seven levels of

protection: normal, dangerous, signature, signature-OrSystem, deprecated, not for use

by third-party applications, and others.

• The application makes use of features (single hardware or software). For example, if

the application wishes to use the device's camera and Bluetooth, the

android.hardware.Bluetooth and android.hardware.camera elements will be declared

in the AndroidManifest.XML file.

35

• Broadcast receivers monitor for system or application events, allowing the application

to respond to these registered events. For example, if the application wants to display

a message if the battery is low, it can use a broadcast receiver for Intent.The_ACTION

_BATTERY_LOW event should be declared in the AndroidManifest.XML file.

(Android Developers, 2020)

Figure 2. Android application execution progress

APK files are simply zip files that contain compiled source code in the form of DEX files,

XML files, and additional resources. APK file disassembly into a near-original form of the

source code for Android applications necessitates the use of specialised tools. Table 1 lists

four of these specialised tools as well as their disadvantages.

Tool Name Advantages Disadvantages

Android Asset Packaging Tool

(aapt)

Viewing AndroidManifest.xml

content by using the command

line.

Specific for AndroidMan-

ifest.xml file only.

Smali/Baksmali Tool

Assembling and disassembling

for DEX files format using a

useful Graphical User Interface

(GUI).

It needs multiple steps to be-

called from command line.

APK Tool

– Decoding resources to nearly

original form (as smali files A

language that provides readable

and understandable format for

the DEX files.

– Rebuild resources after making

some modifications.

– Enabling the calling from the

command line with parameters.

Without GUI

Dex2jar with JD-GUI

– Dex2jar to convert the DEX

files into a compressed jar file

containing the .class files.

– JD-GUI decompiles the jar file

content to the original source.

– Effective GUI

– It cannot be called from the

command line and from a cus-

tomized tool.

– Enabling viewing only fea-

ture.

Table 1. List of tools to decompile APK file

36

2.2 Android Operating System (OS)

This section provides a brief overview of the Android operating system and its security

features. This provides background on the Android platform which is the focus of this

research. Understanding the architecture and security features of Android systems is crucial

for developing effective malware detection techniques. Google's Android is an open-source

mobile operating system that it developed and maintains. Android is built on a Linux kernel,

and its source code is available under an Apache licence. Google bought Android Inc., the

company that created the Android operating system, in August 2005 as a strategic move to

enter the mobile market (Robinson & Weir, 2015). Google launched Android in 2007

(Wikipedia, 2023a), paving the way for HTC to launch the first commercially produced

Android device, the 'HTC Dream,' in September 2008 (Wikipedia, 2023b). With over two

billion activated Android-powered devices and over two billion monthly active Android

users, Android has since become a ubiquitous operating system (Lee, 2017).

2.3 Android Platform Components

The Android operating system is made up of several components, which I will go over in

detail in the following subsections. The components discussed, like permissions and

application packaging, directly relate to the static analysis techniques used in this work for

extracting features from Android apps

2.3.1 Android Architecture

Android is an open source, Linux-based software stack created for a wide array of devices

and form factors. Android is a platform designed for mobile devices; its architecture is

divided into six layers, as shown in Figure 3 In the following subsections, I will examine all

six layers briefly.

37

Figure 3. Android software stack

2.3.2 Android Applications

System applications, developed by the Android team, and all third-party applications are

installed in the topmost layer of the Android software stack. Android includes a set of core

applications that allow users to perform basic tasks such as SMS messaging, calendars,

contacts, making or answering phone calls, and more. If a user prefers to use a different

application for a specific purpose rather than the default system one, system applications have

no precedence over third-party applications. Android allows you to use individual

applications to perform a basic function provided by a system application, for example, any

third-party application can become the default application for sending and receiving SMS

messages.

2.3.3 Java API Framework

The Java programming language is primarily used to create Android applications using a

variety of application programming interfaces (API) provided by the Android software

development kit (SDK). This layer is made up of modular and reusable core components and

38

services that are used to build Android apps. These reusable components include the View

System, which is responsible for building the application's user interface using UI

components such as list boxes, grids, and buttons, the Resource Manager, which is

responsible for providing access to static non-code assets such as graphics, localised date-

time, or string variables, the Notification Manager, which is responsible for allowing

applications to present alerts to users, the Activity Manager, which is responsible for

controlling the life cycle of applications and providing navigation, and the Content Provider.

Android applications are created by utilising some basic tools that manage the device's

primary functions, such as call reception, text messaging, and battery usage monitoring,

among other things. The following are some of the key components of the Application

framework:

• Activity manager: The Activity Manager monitors all active applications on the

device and disables background processes when memory is low. It also identifies

applications that go more than five seconds without responding to an input event.

• Content providers: Content Providers are in charge of data sharing between

applications (Enck et al., 2011). Photos and contact lists, for example, can be accessed

by multiple applications and are thus stored in the content provider.

• Telephony manager: Telephony manager manages phone calls and provides access to

parameters such as set's (IMEI).

• Location manager: The location Manager is in charge of providing location services

that are used by various applications to determine geographical location through

embedded GPS or cell tower communication.

• Resource manager: The Resource Manager manages the resources that are used by

various applications.

2.3.4 Native C/C++ Libraries

Many core Android features, such as ART and HAL, are supported by the native C/C++

layer. These fundamental features are written in native code and require native C/C++

libraries to function properly. This access is provided by the Android platform via Java

framework APIs. For example, the Java OpenGL API can be used to access OpenGL ES in

order to add drawing and graphics manipulation support to a programme. Third-party app

39

developers who need C/C++ code can use the Android Native Development Kit (NDK) to

access native libraries.

2.3.5 Android Runtime

The managed runtime environment used by some Android system services and third-party

applications is known as Android Runtime (ART). The Dalvik virtual machine (Dalvik VM)

was the runtime environment for Android prior to Android version 5.0, API level 21. Because

each application runs in its own process, which in turn has its own instance of the Android

Runtime, applications running on Android version 5.0, API level 21 or later use ART for

faster startup and ongoing execution. At installation time, ART pre-compiles the bytecode

into native code using a method known as Ahead of time (AOT). This eliminates the need to

execute applications in interpreted code, resulting in faster execution. ART also has a better

garbage collector (GC) and better debugging support.

2.3.6 Hardware Abstraction Layer

The hardware abstraction layer (HAL) allows application developers to access the hardware

capabilities of the device. Applications can make use of the Java API framework to access

multiple library modules that implement an interface for various hardware components

exposed by HAL. This layer also allows developers to create their own drivers.

2.3.7 Linux Kernel

The Linux Kernel is the foundation of the Android platform architecture and is the lowest

level layer in the Android software stack. Memory management, multi-threading, network

stack, process isolation, storage management, security management, and other low-level

operating system tasks are handled by the Kernel.

2.4 Dalvik Virtual Machine

The virtual machine is integral to how Android apps are executed, which influences the

malware detection approach. A runtime is a set of software instructions that are executed

when a programme is launched. These instructions are in charge of translating the application

code into machine code that the device can execute. To run the Android Package (APK) files

that comprise an Android application, Android uses a virtual machine as its runtime

environment. Since Android's inception in 2007, Dalvik has served as the default virtual

machine for running applications on top of device hardware. To interpret bytecode, the

Dalvik runtime employs the Just-in-Time (JIT) compilation method, which was first

40

introduced in Android 2.2 Froyo. JIT means that applications are partially compiled and built,

which means that each time an application is launched, it must first be compiled. The

downside of this approach, which was introduced as an improvement over the previous

conventional interpreter approach that compiled and ran code line by line, is the massive

overhead when launching applications. The following are two significant advantages of this

approach: For starters, because the code is isolated from the core, any intentional or

unintentional security threat is contained within the virtual machine and does not affect the

primary OS. Second, the code can be compiled on another platform and then run on the

mobile platform via the virtual machine.

2.5 Components of an Android Application

These components like Activities and Intents are leveraged by malware and also provide

signals for detecting malicious apps based on capability. Components are the fundamental

building blocks of an Android application. Each Android application is made up of four

standard components that manage various aspects of the application's functionality. The

following are the four types of application components:

2.5.1 Activities

Activities offer a single screen as well as an interface. Each application may contain activities

that perform various tasks, such as reading e-mail in an e-mail application or displaying

available routes in a navigation application. Each activity works independently to create a

unified user experience for a specific app. A different app can initiate activities belonging to

another app (as long as permission is granted); for example, a camera app may initiate an e-

mail activity in the e-mail app.

2.5.2 Services

Background functionality is provided by services for long-term operations that do not require

an interface. Services are similar to activities; however, the only major difference is that no

interface is required for each activity. A service could be music playing in the background

while the user is using another app or downloading data over the network without interfering

with user interaction through the use of an activity. Services can be launched by other app

components such as an activity or a broadcast receiver.

2.5.3 Content Providers

41

Content providers manage shared app data. The data may be stored in the file system, a

SQLite database, or any other persistent storage location accessible to the app. Other apps can

query or even modify the data as long as the content provider allows it. The Android

operating system includes a content provider that manages the user's contacts information,

and an app with the necessary permissions can send queries to the content provider to read

and write information about a specific contact.

2.5.4 Broadcast Receivers

A broadcast receiver listens for specific system-wide broadcast announcements in order to

determine whether or not they are the intended recipient. While many broadcasts are initiated

by the system, such as a low battery, apps can also initiate broadcasts, for example, to notify

other apps that data has been downloaded to the device and is ready for use. Broadcast

receivers typically serve as a gateway to other components and lack a user interface. They are

tasked with launching a background service to carry out a task in response to a specific event.

Non-ordered and ordered broadcasts are the two types of broadcasts. Non-ordered broadcasts

are sent to all interested receivers at the same time; ordered broadcasts, on the other hand, are

sent to the receiver with the highest priority first, before being forwarded to the receiver with

the second highest priority. The battery-low announcement is an example of a nonordered

broadcast, whereas an incoming SMS text message announcement is an example of an

ordered broadcast. When a receiver receives an ordered broadcast, he or she may choose to

abort it so that it is not forwarded to other receivers. This enables vendors to create

alternatives to the official Android apps, such as a text message manager that can disable the

official Android messaging app by using a higher priority receiver and aborting the broadcast

after handling the incoming message.

2.5.5 Intents

The message routing system based on Uniform Resource Indicators is used by Android to

establish communication among application components (URIs). In order to activate

components such as activities, services, and broadcast receivers, asynchronous messages

known as "intents" are sent. Intents are nearly equivalent to parameters passed to API calls,

with the following key differences in how API calls and intents invoke components:

• API calls are synchronous while intent-based invocations are asynchronous.

• API calls are compile-time bindings while intent-based calls are run-time

bindings.

42

In order to listen for intent, intent filters that specify the types of intent that an activity,

service, or broadcast receiver can respond to must be implemented. An intent filter declares a

component's capabilities. It defines the tasks that an activity or service can perform and the

types of broadcasts that a receiver can handle. It allows Intents of the declared type to be

received by the corresponding component. In most cases, intent filters are defined in the

AndroidManifest.xml file. The category, action, and data filters of an Intent Filter define it. It

may also include additional metadata. When an intent is broadcast and received by the

appropriate listener, the Android platform invokes the intent filter to complete the task. This

means that both components are unaware of each other's existence and can still collaborate to

provide the desired outcome for the end user. When an intent is broadcast and received by the

appropriate listener, the Android platform invokes the intent filter to complete the task. This

means that both components are unaware of each other's existence and can still collaborate to

provide the desired outcome for the end user. Some intents may need to be sent with specific

permissions, whereas system intents can be sent by processes with the system's UID. The

latter, regardless of permissions, cannot be sent by an application and can only be sent by

system processes.

2.5.6 The Manifest File

An "AndroidManifest.xml" file is required for every Android application. It is some kind of

configuration file that contains references to the implemented components. This file describes

each component of the application and how they interact with one another. All application

components must be declared in this file, which is located at the root of the app project

directory. Activities and services that are not declared in the manifest are not permitted to be

carried out. Broadcast receivers, on the other hand, can be declared in the manifest or

dynamically registered using the registerReceiver() method. Additionally, the manifest

specifies application requirements such as special hardware requirements (e.g., camera,

temperature sensor) or the minimum API version required to run the app. An application

must be granted the appropriate permission to access the protected components (e.g., external

storage, accessing the contact list). The app's permissions must be defined in the app's

AndroidManifest.xml file. This way, the Android OS can prompt the user during runtime to

grant the specific required permission(s) to enable the app to access these components via

specific APIs. The protected components have a unique Linux group ID within the OS, and

43

granting the corresponding permission makes the app's VM a member of the corresponding

unique group, allowing access to the restricted components.

2.6 Permissions

The permission model is a key part of Android security and serves as the primary feature

used in this research's machine learning techniques. For a long time, Android relied on

presenting users with a list of all the permissions requested by the app for acceptance prior to

app installation. This method of asking a user to accept a list of all the permissions the app

requires was revamped with Android's version 6.0 (API level 23) update, into asking for

permission acceptance when the app required it during runtime. The AndroidManifest.xml

file declares all of the permissions that an application requires. Each Android application

contains several strings for permission usage, such as "android.permission.CAMERA" or

"android.permission.READ_LOGS". As the examples show, a permission name typically

includes the package name as a prefix. The Manifest file's default format is binary XML,

which means it must be parsed programmatically to extract the permission strings. Several

factors make permission names suitable for use in machine learning for malware detection.

First, an app must be granted specific permissions in order to use specific phone features via

API calls. For example, an app that does not have CAMERA permission will be unable to use

the phone's camera to take photos or record videos. Second, certain permission combinations

may be associated with malicious behaviour. For example, malware that uses SMS to spread

to the list of contacts in your phone's address book while also carrying out cyber espionage

operations must have a specific combination of permissions including READ_CONTACTS,

SEND_SMS, INTERNET, CAMERA, and RECORD_AUDIO.

2.6.1 Application Permission Structure

Permissions are enforced in the Android OS through permission validation mechanisms that

must be invoked by some key components. The system process is specifically tasked with

implementing the permission validation mechanism via several invocations scattered

throughout the API. The key components that comprise the Android permission enforcement

model will be discussed further below. Third-party applications on the Android platform have

access to phone hardware, settings, and user data via an extensive API. The permissions

security feature governs access to security or privacy-sensitive parts of the API. Before

installing each application, the user is presented with a list of permissions that must be

granted in order for the application to function properly. Each application developer must

44

determine the required list of permissions ahead of time, and if a user notices anything

suspicious, they can cancel the installation entirely. This allows a user to assess an

application as potentially dangerous or benign on some level. The fact that most people are

negligent about reading such information, on the other hand, is the Android OS's weakest

point. There are 134 officially defined application permissions in total (Felt et al., 2012b),

divided into four protection levels, with each level enforcing a different security policy.

There are three levels of risk, ranging from low to high:

2.6.1.1 Normal Permissions

Included are permissions that pose the least risk to the user due to the use of API calls that

cannot be used to harm the user. They allow only isolated application-level features to be

accessed, posing little risk to other applications, the system, or the user. These types of

permissions are granted automatically without the user's explicit consent.

2.6.1.2 Dangerous Permissions

Permissions in this category allow access to API calls that could be malicious and allow

access to private user data. They provide a broader range of access to device resources and

give requesting applications control over the device, which can have a negative impact on the

user. Applications that require these types of permissions will require the user's explicit

approval before being installed.

2.6.1.3 Signature Permissions

A permission granted by the system only if the requesting application is signed with the same

certificate as the application that declared the permission. If the certificates match, the system

grants the permission without requiring the user's explicit approval.

2.6.1.4 SignatureOrSystem Permissions

This permission type is only granted to applications that are either part of the system image or

are signed with the same certificate as the application that declared the permission. This

permission type should be avoided in most cases because the signature permission should

provide adequate protection regardless of where an application is stored. This permission is

reserved for special cases, such as when multiple vendors want to embed applications inside

the system image and need to explicitly share specific application features. This Android

security model is static because an application only needs to obtain a permission once, and

45

the list of permissions the application has cannot be changed during the application's lifetime

on the device.

2.7 Android Application Programming Interface (API)

The API calls apps make can indicate malicious behaviour and are commonly used features

in Android malware detection. The Android public API consists of 8,648 distinct methods,

some of which are protected by permissions (Chin et al., 2011). However, there are no

centralised policies in place to perform permission checks when an API is called. The

Android API framework is divided into two parts: a library that lives in each application's

virtual machine and an API implementation that runs as a system process. The library

includes the tools needed to interact with the API implementation. The API implementation

in the system process is not constrained by the restrictions imposed by permissions systems,

whereas the API library is constrained by the set of permissions accepted during application

installation. In the Android operating system, API calls are handled in three steps: First, the

application invokes the library's public API, then the library invokes a private interface (an

RPC stub), and finally, the RPC stub initiates an RPC request, instructing the system process

to instruct a system service to perform the desired operation. Each application's permission

checks are stored in the API implementation in the system process. To determine whether the

invoking application has the necessary permissions, the permission validation mechanism is

invoked.

2.8 Application Configuration

The manifest file structure provides key insights into requested permissions and app

capabilities. The manifest refers to a required configuration file (AndroidManifest.xml) that

is included with all Android applications. It specifies many things, including the main

components of the application, including their abilities and types, as well as enforced and

required permissions. The values of the manifest file are attached to the Android application

during compilation, and they cannot be changed during run-time. Aside from sandboxing,

permission enforcement is another mechanism provided by the Android framework for

application protection. Indeed, permissions are a strength of the Android security model. The

application manifest permissions define secure access to sensitive resources and cross-app

interactions. When users install applications, the Android system requests permissions from

the user before installation. If the user refuses to provide the application with the necessary

consent, the application's installation is cancelled. Furthermore, any Android application may

46

describe its permissions for self-protection using the built-in permissions that the Android

system provides to protect various system resources.

Because Android's access control model is at the application level, there is no mechanism for

determining the security state of seemingly benign applications colluding with one another.

This type of access control model introduces numerous security challenges, such as

application collisions (Bugiel et al., 2012) and re-delegation attacks (A. P. Felt, Finifter, et al.,

2011), which have been discovered to exist in market applications (A. P. Felt, Wang, et al., 2011;

Davi et al., 2011). Application collusion attacks occur when malware developers distribute

malicious code across two or more applications and launch an attack when a user installs all

of the malicious code-containing applications. The Android intra-application communication

feature is used to communicate among the affected applications. A re-delegation attack is a

type of application collusion in which a lower-privilege application collaborates with a

higher-privilege application to perform unauthorised operations (A. P. Felt, Finifter, et al., 2011).

2.9 Android Security Model

Understanding the Android security mechanisms provides context for where malware can

bypass or exploit weaknesses. The Android security model is intended to address the

platform's unique security requirements. The Android security model is divided into five

domains, each of which defines different security rules for the platform. The first domain

necessitates multiparty agreement. The Android platform can be divided into three categories

in this regard: user, developer, and platform. Users have control over the data in shared

storage, whereas developers have control over the information in application folders. The

platform manages data in locations that are only accessible to the operating system. Each

party must agree to provide the data whenever it is requested by a specific programme and

has the right to revoke the privilege at any time. The rule ensures that all stakeholders are

aware of the use of their data elsewhere. The Android platform, which is an open ecosystem

platform, is the second domain. It gives developers control over the data they are willing to

share with other programmes, thereby increasing security. Furthermore, mobile devices must

be security compatible. To be compatible with the Android operating system, mobile phones

must pass Google's Compatibility Test Suite. Manufacturers must follow a number of

recommendations to ensure the security of devices running the Android operating system

(Mayrhofer et al., 2021).

47

The third domain consists of application programmes that act as security controllers. Running

a programme with administrative user privileges on the traditional desktop ensures that it has

complete access to the system's resources. The same is not true for the Android platform, and

applications are not considered capable of fully authorising user actions. Such a design

creates a sandpit environment in which applications can run without affecting other

applications or system settings. A multiparty consent is used by an application that requires

data from other areas by requiring permission from the data owner, such as the platform,

application programme, or the user. The fourth domain is the recommended platform for

downloading applications, Google Play. Google's platform is a service that ensures the

company has control over the programmes installed on user devices. The control's primary

goal is to ensure user data security by ensuring that mobile applications meet various

security-related requirements. Furthermore, because Google Play is installed on Android

users' devices, it acts as an Antivirus by scanning applications for malicious code during

downloads just before they are installed on the device. Furthermore, Google Play scans an

Android phone on a regular basis to ensure that application updates are not malware. When

malware is detected during the download of an application, the user is usually warned about

the problem. The application will also remain available on the Google Play store until it is

removed following an extensive review of the issues detected by Play Protect (Hutchinson et

al., 2019). The final dimension is the fail-safe, which returns a device to its factory settings,

which are typically safe. When a mobile phone is infected with persistent malware, the user

can restore it to a safe state by formatting the writable parts and returning it to a state that

uses only verified system code. As a result, the Android security model has several distinct

dimensions that contribute to the overall security of a device running the operating system

(Mayrhofer et al., 2021). Following subparagraphs discuss some of the key security features of

the Android security framework.

2.9.1 System and Kernel Level Security

Android provides traditional Linux kernel security guarantees with the addition of secure IPC

for application isolation.

2.9.2 The Application Sandbox

48

Android employs Linux user-based protection for application identification and isolation.

Android creates a kernel-level sandpit for each application, which has its own user id and

runs in its own process. Permissions govern how applications interact with system resources

and other applications. As it is located at the kernel level, application sandpit is equally

effective in exercising the same controls on system applications and native code. The

application sandpit contains the operating system libraries, application framework, runtime,

and applications (Wu et al., 2013; Vidas & Christin, 2014).

2.9.3 File System Permissions

These permissions protect the privacy of the user's information (files). In the case of Android,

unless the developer specifies otherwise, files from one application are not shared with other

applications (Zhang et al., 2013).

2.9.4 Security-Enhanced Linux

For access control, Android employs Security-Enhanced Linux (SELinux). SELinux is a

Linux kernel security module that supports access control security policies such as

Mandatory Access Control (MAC) systems. It provides a mechanism for enforcing

information separation based on confidentiality and integrity requirements, allowing threats

of tampering and bypassing application security mechanisms to be addressed and limiting the

damage that malicious or flawed applications can cause. It includes a collection of sample

security policy configuration files designed to meet common, all-purpose security objectives.

2.9.5 Android Permission Model

Android apps have restricted access to system resources. The permission model manages and

restricts access to system resources by linking access to permissions (Felt et al., 2012a).

Permissions are requested to access the resources as a whole during the application

installation phase, thus linking the application installation with the grant of permissions (A.

Felt et al., 2011). As a result, denial is out of the question for the intended user. Until recently,

permissions were granted for the duration of the installed application. However, in the most

recent versions of Android, the user can scroll through the permissions and select/de-select

them. Some app features will not function in such cases due to a lack of required permissions.

Application permissions can also be set for other applications (Sarma et al., 2012; Wijesekera et

al., 2015). Permissions (how and who) are defined in a protection level attribute, which

communicates with the system for this purpose (Benton et al., 2013; Armando et al., 2015).

49

2.9.6 Inter-Component Communication

Android uses a sandboxing mechanism to protect applications from one another and system

resources from applications as one of its security mechanisms. Interactions between

applications, on which Android relies for application protection, must take place via a

message-passing tool known as inter-component communication (ICC). In Android, intent

filters are used to represent the types of requests to which a specific component may respond.

An intent message is an event that should be available for actions to be taken, as well as the

data that supports those actions. Component invocations come in several flavours, including

inter-app, intra-app, implicit, and explicit. Android's ICC allows for late runtime binding

involving components from different or similar applications, where calls are not explicit

within the code but are enabled via event messaging, which is a significant feature for event-

oriented systems. The ICC interaction mechanism for Android has been found to introduce a

number of security issues (Chin et al., 2011). Because there is no standard authentication or

encryption applied to intent-event messages that interact in components, they can be

tampered with or intercepted (Davi et al., 2011). Furthermore, there is no mechanism in place

to prevent an ICC callee from misrepresenting its caller's intentions to third parties (DIetz et

al., 2011).

Communication of components an Android application is made up of components. Activities,

services, broadcasts, and providers are the four types of components (Shekhar et al., 2012). The

Android platform offers a secure ICC, similar to IPC in a Unix system. The binder

mechanism, which is located in Android's middleware layer, provides ICC. The binder is a

custom Linux driver's remote procedure call (Android Developers). Intention leads to ICC.

The intent is a message that optionally displays the target along with some data (Gibler et al.,

2012). It can be used in explicit communication to identify the receiver's name, or it can be

used in implicit communication to determine whether the receiver can access this intent or

not. Inter-process communication occurs using a traditional UNIX-style mechanism that is

restricted by Linux permissions. The following are the components of Android IPC:

• Binder: It is a mechanism for handling in-process and cross-process calls via Remote

Procedure Call (RPC).

• Services: Services can provide interfaces directly accessible using binder.

50

• Intents: Intent is a communication mechanism that informs the system of the

intention to perform a specific action (Yang et al., 2013; Feizollah et al., 2017). For

example, if a website is to be opened, the 'intent' to open the corresponding URL is

sent to the system. The system would pass the intent to the browser, who would then

perform the action specified by the intent.

• Content providers: A Content Provider makes it easier to use the device's data, such

as the contact list or music preferences (Ye et al., 2013). Through Content Provider, an

application can access the data provided by other applications, and it can define its

Content Providers to share its data as well (Sasnauskas & Regehr, 2014; Yang et al.,

2013).

2.9.7 Protected APIs

Protected APIs are resources that are only accessible by the operating system (Peiravian & Zhu,

2013). Cameras, GPS, telephony, Bluetooth, SMS/MMS, and network/data are some

examples. The application must define these resources in its manifest in order to use them.

2.9.8 Cost Sensitive APIs

APIs that may incur a fee for use are classified as cost-sensitive APIs, which include

telephony, SMS/MMS, data/network, and NFC (Wu et al., 2012). These APIs are on the OS-

controlled list of protected APIs that require exclusive approval from the device's user (Sarma

et al., 2012).

2.9.9 Application Signing

Before installing apps from the app store, Android requires developers to sign them with a

digital certificate. If the app is not digitally signed, the Google Play store and installer

package prevent it from being installed. Application signing is used to identify the app's

developer and to update the app without requiring complicated procedures or additional

permissions (Rastogi et al., 2013). It also enables inter-app communication via well-defined

IPC (Vidas et al., 2011). The Package Manager verifies the developer's signature in APK files

(Loorak et al., 2014). CA verification of application certificates is not performed by Android.

The app signing key generates a digital certificate that includes the public key of a

public/private key pair as well as some additional metadata identifying the key's owner. The

corresponding private key is held by the certificate's owner. When a developer signs an APK,

the signing tool associates the APK with the developer and its corresponding private key by

51

attaching the public-key certificate. This helps Android ensure that future apps are legitimate

and come from the app's creator. For users to be able to install new versions as app updates,

every app must use the same certificate throughout its lifespan. Applications that are signed

with the same certificate can share user IDs (Zonouz et al., 2013).

2.9.10 Sensitive User Data

Some APIs on Android may provide access to user data of protected APIs. Personal

information, sensitive input devices, and device metadata are the three types of sensitive user

data.

• Personal information: Users can get an idea of the type of data that can be accessed

by the application by controlling the content providers that contain personal

information such as contacts and calendars (Do et al., 2015). Any application can

access these resources if the user grants the requesting app-controlled permissions.

Any application that collects personal information will, by default, restrict the data to

that application; however, it can share the data with other applications via IPC and

permissions mechanisms (Sato et al., 2013).

• Sensitive Data Input Devices: Android devices have sensitive data input sensors that

enable many applications to interact with external media such as GPS, microphones,

and cameras. If a third-party application requires access to these resources, it must

request permission from the user (Rastogi et al., 2013; Sarma et al., 2012).

• Device Metadata: Android limits access to sensitive data, but it may share important

information such as user preferences or how a user uses his device. Only applications

with appropriate permissions can access the key resources. If permission is not grant-

ed, the installation will be halted (Sarma et al., 2012; Do et al., 2015).

2.9.11 Publishing and Distribution of Apps

The Android apps are prepared for distribution to users after publishing. Two key tasks are

involved in publishing:

• Preparation of the application for release: On Android devices, a release version of

the app is available for download and installation.

• Release of application to users: Application release refers to the promotion,

marketing, and distribution of the application's released version to users (Seo et al.,

2014). App stores like Google Play are used to release new apps. Apps can, however,

52

also be downloaded from specific websites or via email. By configuring its options,

uploading the necessary assets, and then publishing the application, an Android

application is made available on Google Play (Sarma et al., 2012).

2.10 Related Work

In recent years, a large volume of research work related to automatic Android malware

analysis is proposed by introducing data mining and machine learning approaches, achieving

relevantly decent detection performance. These approaches utilise a series of machine

learning algorithms to build a prediction model based on extracted features from the Android

application package (APK). The features extracted from the description or other information

of an application are viewed as metadata-based features. The information is usually shown in

app markets directly, like category, description, permission, rating, developer information,

etc. On the other hand, the features extracted by dynamic analysis are likewise diverse. When

running Android samples, used API calls, using permissions, system calls, or dynamic

behaviours like internet access and resource consumption can be utilised to analyse Android

applications.

Various machine learning based Android malware analysis techniques which have been

proposed in the literature and are described in this section. Particularly, five types of

approaches have been proposed to detect Android antimalware, VPN, Trojan, Botnet and

Malicious Adware: static, dynamic and hybrid. In the Android platform, there are several

works available in the literature due to its popularity and numerous malwares, that exist. I

have identified recent relevant works and discussed them here but the related works that are

about Trojan detection and Malicious Adware detection are non-existent in the literature. To

the best of my knowledge, there is only one related work about Trojan detection that is based

on dynamic analysis and not on permissions. In addition, there is no related work on

detecting Malicious Adware based on permissions which means I am the only researcher that

used permissions to identify Malicious Adware on Android platform.

2.10.1 Static Methods

2.10.1.1 Methods Based on Code Analysis

The first category of work focuses on the analysis of an application’s code, whether at the

bytecode level or at the source level. In the following, the most representative works by this

53

approach will be discussed. TinyDroid (Chen et al., 2018) is a static Android malware

detection mechanism that relies on a two-step process which are first abstracting machine

instructions, followed by a machine learning phase. First, the APK file of each app is

decompiled into Smali code using a system called Apktool.3 Smali can be seen as a higher-

level description of Dalvik bytecode, which will be further abstracted to symbolic

instructions by TinyDroid. Then, this malware detection system computes the n-grams of

abstract instructions occurring in the code and applies that information as the basis for its

classification. Thus, a set of n-grams is computed for each application compared to the set of

n-grams extracted from applications that are known to be either malicious or benign. If an

application is stated as malicious, the set of n-grams that characterizes its behaviour will be

summoned to TinyDroid’s malicious applications n-grams database. The security tool is not

publicly available. Moreover, the benign applications have been collected from the Google

Play Store randomly, however, the real contents of the sample are not disclosed. (Chen et al.,

2015) studied the use of a code clone detector, designed for malicious Android software

identification. They used a static analysis approach to examine and test the source code of the

applications. First, the authors applied dex2jar to convert the Dalvik virtual machine bytecode

to JVM bytecode. Then, the Java bytecode was decompiled using the Java decompiler JD-

CORE subsequently which is performed on higher-level code. The authors successfully

trained NiCad to perform malware detection effectively using a training set consisting of

known malicious and benign applications. This method allows malicious applications

belonging to certain malware families to be located efficiently and reliably. ‘NiCad’ is an

open-source program that detects similar segments of codes. The described approach was

tested using a dataset that contained only malware. (Potharaju et al., 2012) intends to detect

repackaged applications which they refer to as ‘plagiarized applications’ under different

levels of obfuscation, containing malware. The favourable precision and recall of such

methods are highly linked to the precise value given to these parameters. (W. Zhou et al., 2012)

sought to analyse and detect repackaged applications automatically. They implemented an

application similarity measurement framework called DroidMOSS that uses a fuzzy hash

system to detect and also locate changes in an application’s behaviour effectively. Unlike

several of the approaches seen in this section, it operates on the Dalvik bytecode directly

without needing access to the source code. DroidMOSS relies on the existence of the

corresponding original applications in the dataset and may miss some repackaged

applications.

54

2.10.1.2 Methods Based on API Calls and Permissions

The second category of static approaches is concerned with the analysis of the permissions

requested by the application, and the various API calls that occur in its source code. The

DroidSieve (Suarez-Tangil et al., 2017) examines several syntactical characteristics of applica-

tions to classify and detect Android malware. These features are purely static and include the

list of API calls occurring in the code, the permissions it requests, and the set of all applica-

tion components. DroidSieve may not be robust against attacks, application cloning, or Ad-

ware since it performs malware detection by looking for patterns in the application’s code.

(Qiao et al., 2016) introduced a malware detection approach based on automated learning of

the permissions and API function calls present in Android Applications. The permissions of

the API used in the code, are organized in feature vectors and the classification proceeds by

applying three different machine learning (ML) algorithms as Support Vector Machines

(SVMs), (Tong & Chang, 2001), Random Forest, and Artificial Neural Networks (ANN). (Wu

et al., 2012) proposed DroidMat, a system that draws upon multiple elements of static infor-

mation, including permissions, intents which are messaging objects that contain information

about other components, and API calls to characterize the behaviour of Android applications.

With regards to API calls, their model includes the API calls as well as the type of component

in terms of service and activity in which the API is called. Also, DroidMat uses a combina-

tion of K-Means (Wagstaff et al., 2001) and k-nearest neighbours (KNN) (Altman, 1992). Au-

thors declare that DroidMat is not able to detect a specific type of malware. Malware that ex-

tracts the malicious payload from external sources at runtime, instead of preserving it in the

application’s code itself, this process is called dynamic loading. (Sarma et al., 2012), devel-

oped and introduced an alarming type of system that considers both the permissions request-

ed by the application. The category and subcategory of the application as well as the permis-

sions requested by other applications belonging to the same category.

(Peng et al., 2012) use a probabilistic model to assign a risk score to Android applications

based on the requested permissions during installation and their category. Each user can then

make an informed decision about the risk-return of installing the application. The risk score is

calculated in the way that the more permissions an application requests, the higher its score

will be. The scheme will encourage developers to reduce the number of permissions their

applications request, thus reducing the attack surface of the end user’s device. (Enck et al.,

2009) proposed a platform called Kirin, which examines the permissions requested by an

55

application to determine if it meets a higher-level security policy. First, this platform extracts

the permissions from the manifest file and then compares these permissions to nine rules. The

rules are defined by the authors that conservatively overestimate templates of undesirable

security properties required by various types of common malware. (Aafer et al., 2013)

introduced an approach called DroidAPIMiner to extract Android malware features at the

API level concentrating on critical API calls. This approach extracts from the application

under consideration the API calls and their package-level information, as well as the

requested permissions of the applications.

2.10.1.3 Other Static Methods

Finally, I list in a third category static methods that do not fall into API or source code analy-

sis. Static methods are fast and secure with low resource consumption. Nonetheless, they are

not able to analyse encrypted and obfuscated malware. Most of the static methods are usually

incapable of dealing with unknown malware and result in false positives. Hence, static analy-

sis may need to be coupled with other security models for efficient malware detection. Static

analysis may be based on signature (Sihag et al., 2021), permission (Mathur et al., 2021) or

Dalvik bytecode (Sihag et al., 2021b). For better accuracy, a combination of these methods is

possible (Arshad et al., 2016). A static approach examines malicious behaviour in an applica-

tion without executing it. The application is disassembled to its source code and analysed by

reverse engineering tools such as Apktool, dex2jar, dexdump, baksmali, dedexer. Specific

patterns or signatures are generated through feature extraction of the source code and get

compared with the signatures which previously recognized as harmful. The signature-based

analysis exploits either cryptographic or similarity measurement algorithms. However, cryp-

tographic hashes are exact and suffer from code obfuscation. Fuzzy hashing (Kornblum,

2006) and SDHash (Roussev, 2010) attempt to measure the similarity level between two files.

SDHash is mostly used for image and video files, while fuzzy hashing performs well for text

files (Faruki, Laxmi, et al., 2015). Unlike permission-based approaches, a Dalvik bytecode-

based analysis consumes power and storage space and fails on native code execution.

DroidMOSS (Zhou & Jiang, 2012) implements fuzzy hashing to defeat application repackaging

changes. (Faruki, Laxmi, et al., 2015) used fuzzy hash to create variable-length signatures, com-

paring them with malware signatures in the database. However, this method is unreliable to

detect zero-day malware especially when the database is limited. To overcome this problem,

the YARA project provides a public repository fed with malware signatures by a community

of people. Further, YARA rules help researchers to classify an application. (Wang et al., 2014)

56

extracted high-risk permissions from the manifest file to identify malware. (Li et al., 2018) in-

troduced the permissions related to both malicious and benign characters. (Talha et al., 2015)

and (Sanz, Santos, Laorden, et al., 2013) classified the apps as malware or benign based on the

permissions. (Verma & Muttoo, 2016) presented a malware detection framework based on ma-

chine learning which used Android permissions of an application. (Milosevic et al., 2017) pro-

posed a machine-learning Android malware detector based on permissions and source code

analysis. (Kang et al., 2016) introduced a machine learning antimalware based on n-gram op-

code feature extraction. (Kim et al., 2012) and (Rastogi et al., 2015) analysed the Dalvik

bytecode and monitored privacy leakage to any remote server. It is sometimes hard to find the

source of leakage and its target, plus the manipulation of sensitive information by malware is

also possible. MLDroid (Mahindru & Sangal, 2021) is a recent framework for Android malware

detection using machine learning techniques, API calls and app ratings. A work that presents

a web-based framework that helped to detect malware from Android devices. The proposed

framework detects Android malware applications by performing its dynamic analysis

measures can be found in MLDroid. A machine learning-based malware detection platform is

proposed to distinguish Android malware from benign applications. It is aimed to remove un-

necessary features by using a linear regression-based feature selection approach at the feature

selection stage of the proposed malware detection framework It is a very efficient way to de-

tect malware of unknown family types with very accurate results. The algorithm relatively

accurately detects malware in general but considers only precision and recall results (Şahin et

al., 2021). GDroid (Gao et al., 2021) is an Android malware detection methodology which is

the first one that is based on graph neural networks and is able to detect malware in general

with high accuracy. The study introduces a new scheme for Android malware detection and

familial classification based on the Graph Convolutional Network (GCN). The general idea is

to map Android applications and APIs into a large heterogeneous graph and convert the orig-

inal problems into a node classification task. Unfortunately, most static methods are unable to

analyse encrypted, obfuscated, or unknown malware which results in false positives. Howev-

er, they are fast and secure with low resource consumption. It is a good idea to use static

analysis along with other security models for better efficiency.

The study in KronoDroid (Guerra-Manzanares et al., 2021) was a novel hybrid-featured

Android dataset that provides timestamps for each data sample which covers all years of

Android history from the years 2008 to 2020 and considers the distinct dynamic data sources.

57

Researchers presented a new malware detection framework for Android applications that are

evolutionary ’HAWK’(Hei et al., 2021). Their model can pinpoint rapidly the proximity

between a new application and existing applications and assemble their numerical

embeddings under different semantics as described. MAPAS (Kim et al., 2022) is a malware

detection platform that achieved high accuracy and adaptable usage of computing resources.

Moreover, MAPAS analysed malicious app behaviours based on API call graphs of them by

using convolutional neural networks (CNN). NSDroid (Liu et al., 2021) is ‘a time-efficient

malware multi-classification approach based on neighbourhood signatures in local function

call graphs (FCGs). This method uses a scheme based on neighbourhood signature to

calculate the similarity of the different applications which is significantly faster than

traditional approaches according to subgraph isomorphism. In their work ‘NATICUSdroid’

(Mathur et al., 2021) a new Android malware detection system that investigates and classifies

benign and malware using statistically selected native and custom Android application

permissions as features for various machine learning classifiers. One more work is an

innovative Android malware detection framework that uses a deep convolutional neural

network (CNN). In this system, Malware classification is performed based on static analysis

of the raw opcode sequence from a disassembled program (McLaughlin et al., 2017). Another

research proposes a novel approach based on behaviour for Android malware classification.

In ProDroid (Sasidharan & Thomas, 2021) proposed method, the Android malware dataset is

decompiled to identify the suspicious API classes and generate an encoded list. In addition,

this framework classifies unknown applications as benign or malicious applications based on

the log-likelihood score generated. The DroidRanger is a tool (Y. Zhou et al., 2012) which

detects behaviours characteristics in malware from several malicious families. It also relies

on a crawler to collect Android apps from existing Android markets and then stores them in a

local repository. And then, extracts the fundamental properties associated with each

application and organizes them into a central database. Finally, it will verify to check if they

display malicious behaviour at runtime. (Arp et al., 2014) created DREBIN, a tool that

performs malware detection on the results of a static analysis of the applications. they create

8 feature sets for each app, using data from the Android manifest file. Detection is then

performed using SVMs. including permissions, components and requested hardware, API

calls and network addresses.

2.10.2 Dynamic Methods

58

2.10.2.1 System Call Monitoring

The first category of work is related to the observation of system calls. Three main lines of

work in this category were identified. (Xiao et al., 2019) proposed a malware detection method

on Android applications based on processing system calls. Drawing upon the Long Short-

Term Memory model (LSTM) (Hochreiter & Schmidhuber, 1997), a type of neural network

model is applied in the processing of natural languages. As opposed to the commonly used n-

grams that only consider subsequences of length n, the LSTM model allows the classifiers to

draw upon the complete history of the sequence up to a given call. Sanya et al. introduced an

approach to detect Android malicious behaviour at runtime using Naive Bayes, the Random

Forest, and the stochastic descent gradient algorithms. Therefore, malware could potentially

evade this detection scheme if the malicious behaviour does not occur during the training pe-

riod. (Canfora et al., 2015) also relied upon system calls to perform malware detection. The

static methods of (Potharaju et al., 2012) who searched for similar code segments in various

applications were based on a similar concept.

2.10.2.2 Monitoring of System-level Behaviour

The second category of dynamic methods concentrates on system-level information other

than system calls to detect malicious applications. Some of these approaches also include sys-

tem calls in their analysis. (Feng et al., 2018) proposed a malware detection system called

EnDroid which is based on several types of dynamic behaviour at the system level. EnDroid

proceeds in two phases: the learning phase and the detection phase. The system then takes as

input the feature vectors generated by malicious and benign applications and trains many

basic classifiers. Then, it forms a final classification model by adopting a meta-classifier

based on the forecast probabilities of these basic classifiers for each application. Andromaly

(Shabtai et al., 2012), is an application that consistently monitors various system measures to

detect suspicious activity by applying supervised anomaly detection techniques. Other factors

include battery life, CPU usage, the number of packets sent over the network, and the number

of active processes. However, as a result, the suggested method would only be useful for

identifying persistent, protracted attacks, like DDoS attacks, and less useful for identifying

sudden, instantaneous attacks. A fact that could be used for malware detection is that various

categories of applications exhibit different runtime behaviours. For example, it would be

simple to mandate those application developers include a label identifying the goal and gen-

eral operation of an application in the AndroidManifest.xml file. The label would then speci-

59

fy a more limited set of acceptable app behaviour the detection mechanisms would refer to

this label when performing malware detection. For instance, a clustering algorithm will com-

pare an application labelled as a game with other benign game applications to decide if the

former behaves in an abnormal manner. Indeed, (Sarma et al., 2012) relied upon the applica-

tion’s category in the application store to create risk signals. The one-out-of-k access policy

(Edjlali et al., 1998), an early access control policy for Java, was also based on a similar princi-

ple.

2.10.2.3 Monitoring of User-Space Level Behaviour

A third category of works uses information gathered at the user-space level to detect mali-

cious applications. This typically includes call information at the API (rather than system)

level. Semantic and syntactic analysis are combined by the tool RepassDroid (Xie et al., 2018)

to automatically identify malicious Android apps. combining the syntactic and semantic func-

tions of the application's API with the semantic function of the critical permissions. Then, it

uses learning. generates a call graph of each application. The features of the application (APIs

and permissions) are then extracted from this graph to create feature vectors. (Wen & Yu, 2017)

introduced an Android malware detection scheme based on the support vector machine

(SVM) automatic learning classifier. Their scheme operates on the smartphone of the user

and is optimized for this purpose directly. MD5 signature hash, the application will be sub-

mitted to the server for further processing, and then features are extracted in the feature ex-

traction module using a combination of static and dynamic analysis. (Bugiel et al., 2011) pro-

posed a security tool called XManDroid (eXtended Monitoring on Android), which dynami-

cally analyses application permission usage to detect and prevent privilege escalation attacks

at runtime. This kind of attack happens when a program indirectly calls the code of another

program, abusing the privileges of that program. This mechanism specifically targets mal-

ware that engages in privilege escalation attacks.

2.10.2.4 Observation of an App’s Behaviour Using Other Measurements

In this last category, I classify approaches that perform a dynamic observation of an applica-

tion’s behaviour using other measurements than system calls or user-level information. Un-

like static analysis, it is late in that it only detects a violation right at the moment when it is

about to occur. It also suffers from coverage limitations, since it only considers a single exe-

cution, rather than all possible program executions. And also, unlike static methods which

60

analyse the apps before installation on Android platforms, dynamic approaches demand mon-

itoring of all system calls and resources during the execution of the apps in a test platform

i.e., CPU usage, network traffic, battery usage, number of active processes etc. Dynamic

methods can deal with obfuscated and encrypted malware due to their runtime behaviour and

interactions with the system. Although dynamic methods usually detect both known and un-

known malware more accurately, they are slow, resource consuming and vulnerable due to

the limitation of code reachability. Hence, they may be unsafe sometimes and require certain

expertise and a considerable amount of time yet suffer from runtime detection methods (Vidas

& Christin, 2014).

‘MCDM’ (Mohamad Arif, Ab Razak, Tuan Mat, et al., 2021) which is ‘a multi-criteria decision-

making based’ mobile malware detection system that uses a risk-based fuzzy analytical

hierarchy process (AHP) approach to evaluate the Android mobile applications. This research

concentrated by using permission-based features to assess the Android mobile malware

detection system approach. In another research dynamic analysis was used to detect their

features. Therefore, a parameter such as a system call was investigated in this study. The

purpose of this research is to detect Android malware based on dynamic analysis [2]. Another

research paper proposes a novel detection technique called PermPair (Arora et al., 2020) that

builds and compares the graphs for malware and normal samples by extracting the permission

pairs from the manifest file inside the application. Yet another research presents a platform

named DroidCat (Cai et al., 2019) which is a novel dynamic application classification model to

complement those methods that are existing. DroidCat uses various sets of dynamic features

based on method calls and inter-component communication (ICC) Intents without involving

any permission, application resources, or system calls. One other study proposes an

innovative Android malware detection framework based on feature weighting with the joint

optimization of weight-mapping and the parameters of the classifier named JOWMDroid (Cai

et al., 2021).

Programs are executed in a sandbox environment and their malicious behaviours are

observed. Dynamic analysis can be based on Andromaly (Shabtai et al., 2012), TaintDroid

(Enck et al., 2014), emulation (Zhang et al., 2015) or memory (Sylve et al., 2012). Yet, dynamic

approaches suffer from runtime detection methods (Vidas & Christin, 2014) while they require

61

certain expertise and a considerable amount of time. (Shabtai et al., 2012) used machine

learning methods to recognize malware by monitoring system resources including CPU

usage, network traffic, battery usage, number of active processes etc. Crowdroid (Burguera et

al., 2011) fed learning algorithms with system calls data collected by people in the cloud.

Monitoring system calls require a lot of resources and may lead to false alarms particularly

when a legitimate application invokes too many system calls. Taintdroid (Enck, Gilbert, Han, et

al., 2014) tracked data leakage by monitoring real-time data accesses and labelling sensitive

data, although it is hard to determine a malicious outgoing flow. Particularly, when a

legitimate application invokes too many system calls, monitoring the system calls may lead to

a false alarm while requiring a lot of resources. DroidScope (Yan & Yin, 2012) is a virtual

machine introspection framework which detected attacks by monitoring OS and Dalvik

semantics. (Portokalidis et al., 2010) developed a tool called ‘Paranoid Android’ that performs

multiple attack detection strategies on remote servers hosting an exact replica of the user’s

device at the same time. On the user’s device, a tracer records all necessary information to

produce again its execution accurately. This info includes user input as well as events

originating in the Kernel, such as system calls. Several of examined mechanisms are similarly

targeted to a specific class of malware, which allows such mechanisms to achieve higher

detection rates. More research is needed to comprehend how multiple targeted mechanisms

can be combined to achieve complete protection against all types of malware. For this reason,

it is important that the benchmarks used in testing security tools include a variety of malware

(Zhou & Jiang, 2012).

2.10.3 Hybrid Method

Hybrid techniques benefit from both static and dynamic approaches together for better

accuracy. They first analyse an application by a static method. In general, hybrid methods

obtain the best results most of the time. Nevertheless, they are very resource and time-

consuming due to their complexity. In a hybrid approach, first, the application is analysed

through a static method followed by dynamic analysis to enhance the accuracy and overcome

both of static and dynamic limitations (Arshad et al., 2016). In general, the highest accuracy is

usually obtained by hybrid methods. However, they are very time and resource-consuming

due to their complexity. Andrubis (Lindorfer et al., 2016) was a hybrid method that used both

Dalvik and system monitoring to detect malware. EspyDroid (Gajrani et al., 2020) was a hybrid

method which precisely reflected the analysis of Android apps and prevailed drawbacks of

static approaches as well as runtime-dependent parameters.

62

In their article, researchers introduced a novel TAN (Tree Augmented naive Bayes)-based—

hybrid Android malware detection mechanism that involves the conditional dependencies

which are required for the functionality of an application among relevant static and dynamic

features (Surendran et al., 2020). The next work is a survey aimed to provide an overview of

the way machine learning (ML) has been employed in the context of malware analyses. They

also conducted survey papers based on their objectives, what kind of information about

malware they used specifically, and what type of machine learning techniques they employed

(Ucci et al., 2019). DAE is a hybrid model based on a deep autoencoder and a CNN. This

mechanism is proposed to improve Android malware detection accuracy. To achieve this,

they reconstructed the high-dimensional features of Android applications and employed

multiple CNN to detect Android malware (Wang et al., 2019). In the next research article, a

new detection approach is introduced based on deep learning techniques to detect Android

malware from trusted applications. To achieve that, they treat one system called sequence as

a sentence in the language and build a classifier according to the Long Short-Term Memory

(LSTM) language model (Xiao et al., 2019).

An EfficientNet-B4 CNN-based model is presented for Android malware detection by

employing image-based malware representations of the Android DEX file. This model

extracts relevant features from the Android malware images (Yadav et al., 2022). In the

following paper, a new classifier fusion scheme based on a multilevel architecture is

introduced that enables an effective combination of machine learning algorithms for

improved accuracy which is called DroidFusion. The induced multilevel model can be

utilised as an improved accuracy predictor for Android malware detection (Yerima & Sezer,

2019). A Machine Learning-based method that utilizes more than 200 features extracted from

both static analysis and dynamic analysis of Android applications for malware detection was

proposed (Yuan et al., 2015). A platform that is capable to detect Android malware applications

is introduced to support the organized Android Market. The proposed framework intended to

develop a machine learning-based malware detection framework on Android to detect

malware applications and to increase the security and privacy of smartphone users (Aung &

Zaw, 2013). CoDroid (Zhang et al., 2021) is a hybrid Android malware detection approach

based on the sequence which utilizes the sequences of static opcode and dynamic system call.

63

Finally, researchers have combined the high accuracy of the traditional graph-based method

with the high scalability of the social network analysis-based approach for Android malware

detection (Zou et al., 2021).

2.11 Related Datasets

This section explains the need for a comprehensive and reliable dataset to test and validate

the malware detection system on Android devices by evaluating several publicly available

Android malware datasets spanning from 2012 to 2020.

One of the first attempts in 2012 that is publicly accessible is the genome project (Zhou &

Jiang, 2012). The authors of this project gathered 1260 malware samples from Android mal-

ware vendors between 2010 and 2011. By analysing the installation, activation, and payload

of samples, they use static analysis techniques to define malware behaviour. These techniques

only concentrate on a static test and statically scan malicious source code fragments, track

API calls, and analyse permission lists. They also tested the effectiveness of the current Anti-

virus software using their proposed dataset on actual smartphones.

After that, the Drebin dataset (2014) (Arp et al., 2014), provided 123,453 benign samples from

2010 to 2012 and 5560 malware samples from 20 families. They used static features such as

network addresses (extracted from disassembled code) and hardware components (extracted

from manifest files and suspicious/restricted API calls and used permissions) to train their

classification system and assess their dataset.

They gathered a sizable collection of Android Botnet samples representing 14 different Bot-

net families in order to provide an in-depth analysis of Android Botnets. Their collective da-

taset includes some Botnet samples from the Android Genome Malware project, malware se-

curity blogs, VirusTotal, and samples provided by well-known antimalware vendors. Overall,

their dataset consists of 1,929 samples that span the years 2010 (the year the first Android

Botnet appeared) through 2014 (Abdul Kadir et al., 2015).

The following four Android malware datasets were created by (HCRL, 2018), AndroTracker,

SAPIMMDS, Andro-Dumpsys, and Andro-Profiler. Each malware family in the Andro-

Tracker dataset (Kang et al., 2015) was written by the same creator, who used his or her certifi-

64

cation (certificate serial number) to create the malware apps. To categorise malware samples,

they used similarity scoring connected to creator data and other static features like intent,

crucial permissions, and suspicious API calls.

Thirteen malware families are represented by 906 samples each in the dataset SAPIMMDS

(Jang & Kim, 2016) from the Korea Internet Security Agency (KISA), along with 1776 benign

samples. From March to December 2014, this dataset was generated. They used memory

dump techniques to analyse suspicious API call patterns from bytecode to extract call pat-

terns for specific malicious functionality from their dataset.

To detect and categorise malware, the Andro-Dumpsys dataset (J. W. Jang et al., 2016) com-

bines malware-centric attributes with intent-based features. There are 1776 benign samples

and 906 malware samples in it. The authors used system commands to execute forged files as

well as the serial numbers of certificates, suspicious API call patterns, permission distribu-

tions, and intents as feature vectors. Based on these feature vectors, they carried out profiling

patterns for each malware family based on the connections between opcode and bytecode

(captured by memory dumping techniques). Each APK request from the client side and their

profiling patterns were used to calculate a similarity score in the detection and classification

engines on the server side.

The concept of behaviour profiling was used by the authors of the Andro-Profiler dataset (J.

wook Jang et al., 2016) to extract system calls and system logs from malicious application exe-

cutions on an emulator. They created a client- and server-based hybrid antimalware system.

The Kharon dataset (Kiss et al., 2016), which used the AndroBlare tool to track information

flow between system objects like files, processes, or sockets at the system level and provide a

human-readable directed graph for each malware sample, was created by running 7 malware

samples on a real mobile device. The analysis behaviour of each graph was thoroughly de-

scribed by the authors.

(Lashkari, Akadir, et al., 2018) contributed 1500 benign samples and 400 malware samples in 12

families of three categories to the AAGM dataset (benign, general and Adware). On real

smartphones that had these samples installed, user interaction scenarios were run to record

network traffic. Based on algorithms for machine learning, they conducted their analysis.

65

Additionally, they made use of the Droidkin project (Gonzalez et al., 2015) for finding relation-

ships between various apps and clustering them based on the source code component’s simi-

larity. They made their validation dataset public, which included information about app rela-

tionships.

Since 2017, another publicly accessible dataset containing Android malware profile infor-

mation is the AMD dataset (Wei et al., 2017). They collected 405 Android malware samples

from 71 families and 4 categories. Their methodical approach entails analysing malicious

components and evaluating malware behaviour according to their priorities.

According to Malton (’Xue et al., 2017), we can get around many anti-emulator strategies, by

running samples on real devices. The majority of malware applications require user-

interaction scenarios to be tricked, such as BOOT-COMPLETED, as they are sensitive to a

trigger point of maliciously intended activation. Additionally, an inclusive dataset may col-

lect as many features as it can, including both static and dynamic features, for more desirable

use.

This study (Keyes et al., 2021; Rahali et al., 2020) proposes a new large and comprehensive An-

droid malware dataset called CCCS-CIC-AndMal-2020. The dataset contains 200K benign

and 200K malware samples, for a total of 400K Android apps, with 14 prominent malware

categories and 191 prominent malware families.

2.11.1 Drawbacks

The aforementioned datasets improved researchers' methodologies in the field of Android

malware detection, but they are still plagued by significant weaknesses in their contents. The

stated datasets lacked the variety of categories and families as well as the vast amount of

malware samples that make up a complete dataset of Android malware. Malware generally

hides its true malicious behaviour until it is installed on actual devices. Even though some

datasets recorded dynamic features of their samples, they avoided running the apps on actual

smartphones and instead only ran the malware on emulators and Android Virtual Devices

(AVD).

However, none of the mentioned datasets has completely captured the range of malware be-

haviour, including discrete features such as memory dumps, permissions, memory usage, bat-

66

tery usage and network usage as well as continuous features like API calls, system calls, logs,

and network traffic. The dataset that was used for the research's evaluation had to strike a

balance between the number of malware samples and the number of benign samples for the

results to be reliable. If not, achieving a high accuracy might not be valid proof of their work.

According to Symantec's Internet Security Threat Report (SISTR), (Symantec, 2017) the

normal distribution of benign and malicious applications in the real world is 80% to 20% as

mentioned before in (Lashkari, Akadir, et al., 2018).

In addition to the reasons mentioned earlier, there are some specific factors that influenced

my decision not to use the Android Botnet dataset (Abdul Kadir et al., 2015) and the CCCS-

CIC-AndMal2020 dataset (Keyes et al., 2021; Rahali et al., 2020) for my research.

One of the main concerns with these datasets is the lack of comprehensive explanations for

the features used. It is crucial to have a clear understanding of the features in a dataset, as

they play a vital role in shaping the outcomes and conclusions of any research study. Without

proper documentation and explanations, it becomes challenging to interpret the results accu-

rately and draw meaningful insights.

Recognising the importance of transparency and clarity in feature selection, I decided to cre-

ate my own datasets. By doing so, I could ensure that every feature included in the dataset

was well-documented, thoroughly explained, and understood. This approach not only in-

creases the reliability and validity of my research but also facilitates better comprehension

and reproducibility by other researchers in the field.

By carefully developing datasets with transparent feature descriptions, I aim to contribute to

the scientific community and foster a more robust and rigorous research environment.

Year of

Publication

Name of Dataset Type of Data

Capturing

Number of

Benign Apps

Number of

Malware

2012 Genome (Zhou & Jiang, 2012) Static - 1260

2014 Drebin (Arp et al., 2014) Static 123453 5560

2015 AndroTracker (Kang et al., 2015) Static 51179 4554

2015 Android Botnet dataset (Abdul Ka-
dir et al., 2015)

Hybrid - 1929

2016 SAPIMMDS (Jang & Kim, 2016) Hybrid 1776 906

67

2016 Andro-Dumpsys (J. W. Jang et al.,
2016)

Hybrid 1776 906

2016 Andro-Profiler (J. wook Jang et al.,
2016)

Hybrid 8840 643

2016 Kharon (Kiss et al., 2016) Hybrid - 7

2017 AAGM (Lashkari, Akadir, et al.,
2018)

Dynamic 1500 400

2017 AMD (Wei et al., 2017) Static - 405

2018 CICAndMal2017 (Lashkari, Kadir,
et al., 2018)

Hybrid 1700 426

2019 InvesCICAndMal2019 (Taheri et
al., 2019)

Hybrid 5065 426

2020 CCCS-CIC-AndMal2020 (Keyes et
al., 2021; Rahali et al., 2020)

Hybrid 200K 200K

Table 2. Currently available Android malware datasets specification

Dataset A B C D E F G H I J K L M N Installed

On

Genome (Zhou & Jiang,
2012)

- - Y - - Y Y - Y Y N Y Y N -

Drebin (Arp et al., 2014) - - Y - - Y Y N Y Y Y Y N N -

AndroTracker (Kang et al.,
2015)

- - Y - - N Y N Y Y Y Y N N -

SAPIMMDS (Jang & Kim,
2016)

N Y Y N N Y Y Y Y N N Y N N Emulator

Andro-Dumpsys (J. W. Jang
et al., 2016)

N Y Y N N Y Y Y Y N Y Y N N Emulator

Andro-Profiler (J. wook Jang
et al., 2016)

N Y Y N N Y N Y Y Y N Y N N Emulator

Android Botnet dataset (Abdul
Kadir et al., 2015)

Y N Y - N Y Y N - - N - Y N RealPhone

Kharon (Kiss et al., 2016) Y N Y Y N Y N - Y N N Y N Y RealPhone

AAGM (Lashkari, Akadir, et
al., 2018)

Y Y Y Y N Y N Y Y Y N Y N Y RealPhone

AMD (Wei et al., 2017) - - Y - - Y Y - Y Y Y Y Y Y -

CICAndMal2017 (Lashkari,
Kadir, et al., 2018)

Y Y Y Y Y Y Y N Y Y Y Y Y N RealPhone

InvesCICAndMal2019

(Taheri et al., 2019)
Y Y Y Y Y Y Y N Y Y Y Y Y N RealPhone

CCCS-CIC-AndMal2020

(Keyes et al., 2021; Rahali
et al., 2020)

Y Y Y Y Y Y Y Y Y Y Y Y Y N RealPhone

Table 3. Comparison of publicly available Android malware datasets

A: Utilizing Real-Phone devices instead of emulators. Y: Yes

B: Having network architecture for the experiment set up. N: No

C: Examining real-world malware samples. (-): None

D: Having malware activation scenario.

E: Defining multiple states of data capturing.

F: Having trustable fully labelled malware samples.

G: Including diverse malware categories and families.

H: Keeping a balance between malicious and benign samples.

I: Avoiding anonymity and preserving all captured data.

68

J: Containing a heterogeneous set of resources.

K: Providing a variety of feature sets for other researchers.

L: For meta-data, includes proper documentation.

M: Including malware taxonomy.

N: Being up to date.

The proposed datasets unlike the above-mentioned datasets are not composed of various cat-

egories or families of malware. The proposed datasets are focused which means datasets con-

sist of only one type of software (antimalware and VPN datasets) or Malware (Trojan, Botnet

and Malicious Adware). According to my tests and results, those datasets containing one type

of app regardless of whether malicious or benign can provide better results than those with

entries from various categories.

2.12 Drawbacks of the Current Methods and Proposing Solution

Various methods have been proposed for Android malware detection so far. However, they

deal with all types of applications the same way, including Android antimalware and VPN.

As far as I know, no efficient methodology has been proposed yet, particularly for identifying

Android antimalwares and VPNs with malware presence that may threaten Android users by

gaining their trust. This research aims to present quick and robust techniques to detect

malicious Android antimalware, and VPNs containing malware such as Trojan, Botnet and

Malicious Adware before installation on users’ devices. With regards to the high risk that

users may face after installation, those platforms utilise machine learning techniques as well

as an updating dataset to combat malware. Those platforms with a permission-based analysis

can provide a robust, secure, and reliable method able to identify malicious antimalware and

VPNs, Trojans, Botnets and Malicious Adwares in Android. The datasets contain 1200

antimalwares, 1300 VPNs and 2593(1058 Trojans and 1535 Benign), 2713(1229 Botnets and

1483 Benign) and 2000 (500 Malicious Adwares and 1500 Benign) records including

permissions and the risk of being infected by malware for each record. The risk of each entry

in the dataset has been evaluated by VirusTotal scan of that record. I applied an optimised

MLP neural network for antimalware and Botnet datasets and used a tune CNN for VPN,

Trojan and Malicious Adware datasets for better classification results.

2.13 Difference Between This Research and Other Malware Detection Works

The difference between my research and other Android malware detection works that detect

different types of malware can be attributed to several factors such as the machine learning

algorithms used, the datasets used for training, the feature extraction techniques employed,

and the evaluation metrics used.

69

My research focuses on developing machine learning-based techniques for detecting specific

types of Android malware, such as harmful apps, malicious VPNs, Trojans, Botnets, and

Malicious Adwares. Each of my chapters proposes a different method for detecting a specific

type of Android malware, using different neural network architectures and training datasets.

On the other hand, other Android malware detection works may focus on detecting different

types of malware, such as ransomware, spyware, or phishing attacks. These works may use

different machine learning algorithms, such as decision trees or support vector machines, and

may employ different feature extraction and selection techniques. Additionally, other works

may use different evaluation metrics to measure the performance of their detection systems.

The effectiveness of any Android malware detection system will depend on the specific

techniques used, the quality of the data used for training and testing, and the ability of the

system to accurately detect malware while minimizing false positives.

The other works detect Android malware with a high detection rate while I am detecting a

single type of malware with a high detection rate using my created dataset based on

permissions asked by users as well as using a trained and optimised neural network.

• Permission-based analysis: my approach focuses on analysing the permissions

requested by an app to detect potentially malicious behaviour. This approach is based

on the assumption that apps that request many sensitive permissions are more likely to

be malicious.

• Use of neural networks: my approach uses a deep neural network to learn the patterns

of malicious behaviour from a large dataset of known malware samples. The neural

network is trained to classify apps as either malicious or benign based on their

permission requests.

• Efficient feature selection: my approach uses a feature selection method that reduces

the number of features (i.e., permissions) needed to accurately classify an app as

70

malicious or benign. This helps to reduce the computational overhead of the malware

detection process.

To the best of my knowledge, I am the first researcher creating such large datasets based on

permissions to detect a specific type of Android malware while other Android malware

detection works either using other available datasets or creating datasets that contain all types

of malware. There are many different approaches to Android malware detection, and the

specific differences between my research and other Android malware detection works will

depend on the specific works being compared. However, in general, the differences between

my research and other Android malware detection approaches may include:

• The specific machine learning techniques used: My approach make use of neural

networks and deep learning techniques for Android malware detection, while other

works may rely on different machine learning techniques.

• The specific features used: Different Android malware detection works may use

different sets of features to train their models. For example, some works may rely on

static analysis features such as API calls or Intents, while others may use dynamic

analysis features such as system call traces or network traffic.

• The specific types of malware targeted: My work focuses on a specific type of

Android malware, while other works may target a broader range of malware types.

• The specific datasets used: The datasets used to train and evaluate Android malware

detection models can vary widely in terms of size, composition, and quality. My

research uses its own specific datasets, while other works may use different datasets

or variations of existing datasets.

• The evaluation metrics used: Different Android malware detection works may use

different evaluation metrics to measure the performance of their models, while I used

well-known evaluation metrics for each chapter such as accuracy, precision, recall, or

F1 score.

In summary, the specific differences between my approach and other Android malware

detection works will depend on the specific works being compared but may include

differences in the machine learning techniques used, the features and datasets used, the types

of malware targeted, and the evaluation metrics used.

71

3. Research Methodology

Data mining is the process of analysing data in order to discover hidden patterns and

unexpected relationships (Sadiq et al., 2018). In general, the dataset that will be used for data

mining contains examples (referred to as instances) and several attributes (called features).

Data mining employs supervised machine-learning techniques to predict an attribute value

that has not yet been observed (referred to as a class label) by establishing the relationship

and correlation between features in training instances and their labels, and then applying the

train models to testing data (referred to as a classification task).

Machine learning is an artificial intelligence (AI) application that allows systems to learn and

improve their experience without being explicitly programmed. The study of machines

focuses on software that can access and use data for its own purposes. The process begins

with observations or information such as examples, direct experience, or training to find

patterns in data and make future decisions based on the examples I provide (Cai et al., 2019).

The main goal is to enable computers to learn and change their behaviour automatically,

without the need for human intervention or assistance. Controlled learning machines can use

labelled examples to predict future events and apply previous knowledge to new data. Based

on an analysis of a specified training dataset, the learning algorithm generates an inferred

function to predict the output values. After adequate training, the programme can provide

objectives for any new input. The study algorithm can also compare its output to the desired,

correct output and detect errors to adjust the model accordingly. Massive data analysis is

possible with machine learning. This typically yields faster and more accurate results in

identifying cost-effective opportunities or risky threats, but it may also necessitate additional

time and resources to properly train. Machine learning, in conjunction with AI and cognitive

technology, can improve the efficiency with which large amounts of information are

processed (Arul & Punidha, 2021).

3.1 Applied Deep Learning Algorithms

• Convolutional Neural network (CNN): A Convolutional Neural Network (CNN) is a

type of feedforward neural network that allows information to flow only forward from

input nodes, through hidden nodes, and to output nodes, with no loops or cycles.

CNNs are primarily used for pattern recognition tasks. They are effective at detecting

72

simple patterns in data and using those patterns to create more complex ones in deeper

layers. Typically, CNNs are composed of convolutional and pooling layers. The

convolutional layer detects local features from the previous layer, while the pooling

layer combines similar features into a single one. CNNs use shared weights, local

receptive fields, and spatial subsampling to solve high-dimensional non-convex

problems with parallel and cascaded convolutional filters. These filters allow CNNs to

be used for tasks such as regression, image classification, semantic segmentation, and

object detection. Compared to traditional neural networks, CNNs require fewer

parameters and are easier to train due to weight sharing and processing limited

dimensions.

A one-dimensional convolutional neural network (1D CNN) is useful for datasets

with a one-dimensional structure, where shorter segments of the feature set can be

analysed and the feature's location in the segment is irrelevant. It is particularly useful

when vectorized data is used to represent the properties of the items whose state or

category is being predicted, such as Android applications. 1D CNN can be used to

extract more meaningful feature representations that describe patterns or relationships

within vector segments. These features are then processed by a classifier, eliminating

the need for separate feature ranking and selection outside of the deep learning model.

In summary, 1D CNNs can be used as feature extraction layers for a given classifier,

providing a more efficient and integrated deep-learning model.

(Yerima et al., 2021).

• Multilayer Perceptron: A multilayer Perceptron (MLP) is another name for a

Multilayer Neural Network. It is made up of three layers: an input layer, an output

layer, and a hidden layer. It has several output units. The hidden layer's units are used

as input for the next layer (Joo et al., 2014).

3.2 Standard Machine Learning Algorithms Used to Compare

• Decision Tree: The structure of DT is similar to that of a tree, with the topmost node

representing the root node, the terminal or leaf node holding a class label, and the tree

branch displaying the test result of the tree displaying the results of the test. (Ross

Quinlan, 1993).

• Random Forest: RF is an ensemble learning technique that employs a large number

of individual decision trees that work together as an ensemble. Every decision tree

73

generates a classification for the input data, which is then collected and illustrated by

RF using majority voting (Liaw & Wiener, 2018).

• K-Nearest Neighbour: K-NN is one of the most straightforward supervised learning

methods. A lazy learner is another term for it. This method does not rely on the data

structure; whenever a new instance appears, it finds the training samples that are

closest to the new instance using distance measures such as Euclidean distance and

Manhattan distance. Finally, it determines the class of the new instance using majority

voting concepts (Shakhnarovich et al., 2006).

• Support Vector Machine: SVM is a method for dividing data that uses a hyperplane.

It functions as a decision point. It draws the hyperplane at random and then computes

the distance between the hyperplane and the nearest data points (also called a support

vector). It tries to find the best hyperplane to maximise the margin (Keerthi & Gilbert,

2002).

• Naïve Bayes: The Bayes theorem underpins the NB concept. It forecasts class

membership probabilities or the likelihood that a given tuple belongs to a specific

class. It applies to both binary and multiclass classification problems (Domingos &

Pazzani, 1997).

3.3 VirusTotal

VirusTotal examines items using over 70 antivirus scanners, URL/domain block listing

services, and various tools to extract the signals from the studied content. Any user can use

their browser to select a file from their computer and send it to VirusTotal. The primary

public web interface, desktop uploaders, browser extensions, and a programmatic API are all

available file submission methods from VirusTotal. Among the publicly available submission

methods, the web interface has the highest scanning priority. The HTTP-based public API

allows submissions to be scripted in any programming language.

3.3.1 How VirusTotal Works

URLs, like files, can be submitted through a variety of channels, including the VirusTotal

website, browser extensions, and the API. When a file or URL is submitted, the basic results

are shared with the submitter as well as the examining partners, who use the results to

improve their systems. As a result, by submitting files, URLs, domains, and so on to

VirusTotal, you are helping to improve global IT security. This core analysis also serves as

74

the foundation for several other features, such as the VirusTotal Community, which allows

users to comment on files and URLs and share notes with one another. VirusTotal can help

detect malicious content as well as identify false positives, which are normal and harmless

items that have been flagged as malicious by one or more scanners. The aggregated data on

VirusTotal is the result of numerous antivirus engines, website scanners, file and URL

analysis tools, and user contributions. The file and URL characterization tools they aggregate

serve a variety of purposes, including heuristic engines, known-bad signatures, metadata

extraction, malicious signal detection, and so on. Figure 4 declares the files of the benign

applications to be virus-free and identifies the malicious applications by the number of

detection of antimalware companies in VirusTotal scanner.

Figure 4. VirusTotal indication of the benign applications and identification of the malware

3.3.2 Increasing Global IT Security Through Collaboration

VirusTotal scanning reports are made available to the public VirusTotal community. Users

can leave comments and vote on whether certain content is harmful. Users can thus

contribute to the community's collective understanding of potentially harmful content and

identify false positives (i.e. harmless items detected as malicious by one or more scanners).

The contents of submitted files or pages may be shared with VirusTotal's premium

customers. The VirusTotal file corpus provides valuable insights into emerging cyber threats

and malware behaviours to cybersecurity professionals and security product developers.

VirusTotal's premium services commercial offering provides qualified customers and

Antivirus partners with tools to perform complex criteria-based searches in order to identify

and access harmful file samples for further investigation. This assists organisations in

discovering and analysing new threats, as well as developing new mitigations and defences.

3.3.3 Real-time Updates

75

Malware signatures are frequently updated by VirusTotal as they are distributed by Antivirus

companies, ensuring that our service uses the most up-to-date signature sets. In some cases,

website scanning is performed by querying vendor databases shared with VirusTotal and

stored on our premises, while in others, API queries to an antivirus company's solution are

used. As a result, whenever a particular contributor blocklists a URL, it is immediately

reflected in user-facing verdicts.

3.3.4 Results

VirusTotal not only tells you whether a particular Antivirus solution identified a submitted

file as malicious, but it also displays the detection label for each engine (e.g., I

Worm.Allaple.gen). The same is true for URL scanners, which can distinguish between

malware sites, phishing sites, suspicious sites, and so on. Some engines will provide

additional information, such as whether a given URL is associated with a specific Botnet,

which brand is targeted by a given phishing site, and so on.

3.4 Overview of Methodology for Novel Dataset Development

This section illustrates the overview of methodology process stages from start to end. There

are total of three main stages in the process which are Dataset creation, Pre-processing and

Classification/Detection. Figure 5 demonstrates the overview of methodology Process

analysis.

Reverse Engineering

Data Collection

Dataset Creation

Feature Extraction

Feature Selection

START

76

Figure 5. Overview of methodology process analysis

3.4.1 Dataset Creation

The Dataset creation stage consists of five phases: Phase A: Data Collection, Phase B:

Reverse-Engineering, Phase C: Feature Extraction, Phase D: Feature Selection, Phase E:

Data Labelling.

• In this section, I have added more specifics on the sources for benign apps (Google

Play, different categories) and malware apps (multiple external sources).

• I have added a note explaining that the app collection process is manual and the

challenges involved in identifying VPN apps specifically by examining the

AndroidManifest files.

• For feature extraction (Phase C), I have clarified that this is an automated process

using static analysis tools on the APK files and manifests.

• For feature selection (Phase D), I have explained that this is a manual process where I

selected permissions based on their relevance in detecting malware, referring to

existing literature for guidance.

• I have also added a new diagram (Figure 6) to illustrate the overall processes of

extracting features from the APK files and then manually selecting the permissions.

Phase A (Data Collection): The initial phase of creating a dataset is data collection. Android

apps are usually collected from multiple sources. These apps are stored in Android

Application Packages (APK) file format. The benign apps from various categories are

collected from Google Play and malicious apps are collected from multiple sources.

Phase B (Reverse-Engineering):

Classification/Detection

END

Data Labelling

Pre-processing

77

(VirusTotal, n.d.) was used to decompress my datasets and benign applications’ APK files.

By uploading the APK file to VirusTotal scanner, it decompiles the files to source code

folders that provide detailed information about each dataset file, allowing the features to be

extracted. Basic properties, permissions, activities, receivers, intent filters by action, intent

filters by category, interesting strings, warnings, contents metadata, contained files by type,

and contained files by extension are among the useful information.

Phase C (Feature Extraction): The static analysis consists of collecting features that do not

require the execution of the code. The advantage of static collection is that it is generally

more efficient than dynamic analysis. The traditional way to extract features is that the APK

file is saved as a compressed zip file. After that, we must first unzip or unpack APK file in

order to view its contents. Then, the APK file is made up of classes, a DEX file, an

AndroidManifest.xml file, res, lib, and assets folders. Finally, using VirusTotal scanner, I

extracted different types of static features. The "AndroidManifest.xml" file contains

permissions information and other types of features. Specifically, the AndroidManifest.xml is

parsed to extract requested permissions.

Phase D (Feature Selection): The selected features play a critical role in determining a

machine learning model’s accuracy. It is also referred to as attribute selection. It is used to

reduce dimensionality, which aids in the selection of relevant features. Irrelevant and

redundant features can degrade the classification model's quality and accuracy. Higher-

dimensional datasets necessitated more storage space and computation time. Selecting

relevant features will help to reduce space and time complexity while also increasing

accuracy. The primary goal of permissions is to protect users' privacy. Apps must ask for

permission to access user-sensitive data and system features. The system may grant

permission itself at times or may prompt users to accept the request. Permissions are

primarily declared in the “AndroidManifest.xml” file. Permissions play an important role in

detecting malicious Android apps. I consider activities in addition to permissions because

they are the starting point for user interaction. An app can have multiple activities, and an

activity from one app can be used by another if permission is granted (Suresh et al., 2019)

(Dhalaria & Gandotra, 2021). Table 4 elaborates on the protection level of Android permissions,

descriptions, and examples of the permissions (Mohamad Arif, Ab Razak, Awang, et al., 2021).

78

While declared permissions in the app manifest provide a good baseline feature set, there are

some limitations to only using the AndroidManifest.xml file. Malware authors could

intentionally omit certain dangerous permissions to avoid suspicion, and then access

protected data or resources directly via Java reflection or native code without checking for

permissions. This unauthorized API usage would not be detected by just examining the

manifest. Similarly, advanced static analysis tools that decompile and deeply analyse the full

bytecode can reveal illegal usage of APIs even without the corresponding permission

declared. So, a feature extraction approach that relies solely on manifest permissions could

potentially miss some behaviours that indicate malicious intent, reducing detection accuracy.

However, manifest permissions still provide a strong signal, as most benign apps properly

declare the permissions they need. To augment the approach, deeper static analysis of the

code and bytecode can be performed to catch improper API usage not backed by a

permission. But manifest permissions themselves serve as excellent baseline features for

malware detection, as they clearly indicate the intentions of the app developer.

Protection Level Description Permission Examples

Normal Users and apps are not at

risk. The permission was

automatically granted, and

the user did not revoke it.

ACCESS_LOCATION_EXTRA_COMMANDS,

ACCESS_NETWORK_STATE,

ACCESS_NOTIFICATION_POLICY,

ACCESS_WIFI_STATE

Dangerous The user is at high risk.

Apps must prompt the user

and wait for approval.

ACCESS_MEDIA_LOCATION,

ACCESS_FINE_LOCATION,

ACCESS_BACKGROUND_LOCATION,

ACCEPT_HANDOVER

Signature Apps signed with the same

certificate are granted.

BIND_ACCESSIBILITY_SERVICE,

BIND_AUTOFILL_SERVICE

Signature Or

System

Apps in a dedicated folder

and signed with the same

certificate are granted.

BATTERY_STATS

BIND_CALL_REDIRECTION_SERVICE

Table 4. Android permission protection level

Phase E (Data Labelling): The Android apps (APK files) obtained from the previous phase

are scanned using the VirusTotal tool for labelling purpose. It means that once we upload the

79

APK file into the VirusTotal Scanner, the antimalware companies that incorporate VirusTotal

need to flag the APK file as malware so that we ensure the APK file is malicious and then we

can label it as ‘1’ which is malware. The benign apps are labelled as '0' and the malicious

apps are labelled as '1' in the dataset.

While declared permissions in the app manifest provide a good baseline feature set, there are

some limitations to only using the AndroidManifest.xml file. Malware authors could

intentionally omit certain dangerous permissions to avoid suspicion, and then access

protected data or resources directly via Java reflection or native code without checking for

permissions. This unauthorized API usage would not be detected by just examining the

manifest. Similarly, advanced static analysis tools that decompile and deeply analyse the full

bytecode can reveal illegal usage of APIs even without the corresponding permission

declared. So a feature extraction approach that relies solely on manifest permissions could

potentially miss some behaviours that indicate malicious intent, reducing detection accuracy.

However, manifest permissions still provide a strong signal, as most benign apps properly

declare the permissions they need. To augment the approach, deeper static analysis of the

code and bytecode can be performed to catch improper API usage not backed by a

permission. But manifest permissions themselves serve as excellent baseline features for

malware detection, as they clearly indicate the intentions of the app developer.

3.4.2 Proposed Datasets

I present novel datasets (antimalware, VPN, Trojan, Botnet, malicious Adware) that are

created manually based on Android app permissions for the purpose of detecting malware in

Android platform. In order to do this, I downloaded a large number of Android malware from

various families as well as a large number of benign apps from different categories from

Google Play and other resources. To examine all APK files and extract app permissions, I

used VirusTotal scanner. I classified APK files using over 70 trusted antimalware detection

engines. The process of extracting and selecting features is shown in Figure 6.

80

Figure 6. The process of extracting and selecting features

The list of Android malware types and the number of samples are listed in Table 5. I put all

the information in a file to make the dataset usable CSV file format, which is simple to open

and process. Each dataset contains hundreds of columns which are specific permissions and

the label, which is the last column. The first row of datasets describes column titles, and the

remaining rows contain features from Android malware and benign applications. All values

are in binary format, which means they are either ‘0’ or ‘1’. When an app requires

permission, the value in the corresponding dataset entry is ‘1’, and when an app does not

require permission, the value is ‘0’. Based on the VirusTotal report, an Android app that is

recognised as malware by most antimalware companies is considered risky, and the value in

the label column is set to ‘1’, indicating a malware.

Dataset Number of Samples Number of Features

Antimalware(Seraj, 2021) 1200 Benign: 869 328

Malicious: 331

VPN(Seraj, 2022b) 1300 Benign: 1179 184

Malicious: 121

Trojan(Seraj, 2022a) 2593 Benign: 1535 449

Malicious: 1058

Botnet(Seraj, 2023a) 2713 Benign: 1483 453

Malicious: 1229

Malicious Adware(Seraj,

2023b)

2000 Benign: 1500 400

Malicious: 500

Table 5. List of Android malware datasets and the number of samples

3.4.3 Preprocessing

Preprocessing also known as ‘Data Cleaning’. The dataset containing permissions extracted

from Android applications and expressed as static properties in comma-separated values

(CSV) format is reserved for testing and training. Dataset pre-processing removes NAN and

APK File
Uploading to

VirusTotal

Features

Extracted

Features

Selected

81

duplicate values. Family and category features were removed from the study that used binary

classification. Malware samples are assigned a value of ‘1’, while benign samples are

assigned a value of ‘0’. In this section, initially, I performed a ‘missing value check’. For this

purpose, I performed a lost data operation and managed empty data. In most cases, the data is

missing or contains null values known as NANs. There are numerous solutions to this

problem: Cleaning the dataset with the NumPy library of the Python language to find all the

NAN data and specifying that there are multiple NAN data in each column, and then deciding

whether the data is to be deleted or replaced from the dataset. The average data column is

replaced by NAN data. NAN values are also removed from rows with labelled columns.

The data should not contain any missing values. If it does, either the missing data should be

removed, or some type of missing value imputation needs to be performed. Then I performed

‘Data Type Conversion’. For doing this, when using data, we must ensure that we use the

correct data and ignore items that will result in errors and unrealistic results. I used the

Pandas library for this, which returns the dataset's correct data types.

3.4.4 Classification and Detection

I used 5-fold cross-validation on the datasets to test the model's generalisability. The dataset

is randomly divided into 5 subsets for 5-fold cross-validation. The data is then subjected to 5

cycles of training and testing. One of the 5 subsets is excluded from the training process and

used for testing in each cycle. This is repeated 5 times until each of the 5 subsets has been

tested once. Each cycle yields a classifier along with its performance metrics. If the variance

between these metrics is high, the classifier is over-fitted and does not generalise the dataset

properly. The mean values of the performance metrics are reliable if the variance is low. All

experiments were performed on 64-bit Microsoft Windows 11 pro–operating system and

using hardware with intel(R) Core (TM) i5-8365U @ 1.60GHz 1.90 GHz CPU, 16.00GB

RAM, and an Intel UHD Graphics 620 GPU.

3.4.5 Evaluation Metrics

For the experimental analysis, I used the Python programming language and the Scikit Learn,

Keras and TensorFlow libraries. As evaluation metrics, I used Accuracy, Precision, Recall,

and F1; these metrics are described in equations 1, 2, 3, and 4, respectively. The

abbreviations for true positive, true negative, false positive, and false negative are TP, TN,

FP, and FN. Accuracy in Equation 1 demonstrates overall performance. Precision, which is

82

calculated using equation 2 and describes the percentage of predicted malware, is another

important metric. Equation 3 defines the Recall metric or the percentage of malware that is

correctly classified. The F1-score is a ‘0’ to ‘1’ number that represents the harmonic mean of

precision and recall as calculated by equation 4. The basic four performance measures of a

binary ML-based classifier are:

• True Positives (TP) — The number of positive samples correctly classified as such.

The number of test instances whose true and predicted values are ‘1’, is divided by the

number of test in- stances whose true value is ‘1’.

• False Positives (FP)—The number of negative samples misclassified as positive. The

number of test instances whose true value is ‘0’ and the predicted value is ‘1’, is

divided by the number of test instances whose true value is ‘0’.

• True Negatives (TN)—The number of negative samples correctly classified as such.

The number of test instances whose true and predicted values are ‘0’, is divided by the

number of test in- stances whose true value is ‘0’.

• False Negatives (FN)—The number of positive samples misclassified as negative.

The number of test instances whose true value is ‘1’ and the predicted value is ‘0’, is

divided by the number of test instances whose true value is ‘1’.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3)

𝐹1 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4)

83

I consider receiver operating characteristic (ROC) analysis in addition to well-known

evaluation metrics. A scatterplot yields a ROC curve by graphing the true positive rate (TPR)

by equation 1 versus the false positive rate (FPR) which uses equation 2 as the threshold

varies across the range of values.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 (1)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

(2)

The area under the ROC curve (AUC) ranges from ‘0’ to ‘1’, with ‘1’ indicating ideal

separation, in which case no misclassifications occur. An AUC of ‘0.5’ indicates a binary

classifier that is no better than flipping a coin, whereas an AUC of x ‘0.5’ can be converted to

an AUC of 1 x > 0.5 by simply reversing the classifier's sense. Finally, the AUC can be

interpreted as the probability that a randomly chosen positive instance will outperform a

randomly chosen negative instance (Bradley, 1997).

3.5 Static Analysis

Static analysis is an approach that does not require an application to be run and is considered

passive. As the detection is done before the execution of the application, there is no impact on

the system from any malicious behaviour. The manifest file, which is a component of the

APK file, provides information for static analysis, including the hardware properties,

permissions, themes, and activity properties for the application. The tags in the manifest file

are used to define the application's permissions, such as internet access, camera access, and

file reading and writing (Bayazit et al., 2022).

3.6 Android Malicious Antimalware Detection Methodology

3.6.1 Proposed Dataset

I started my research based on the hypothesis that fake Android antimalware are recognisable

through the special privileges that they require to be installed on the device. Hence, I

downloaded over 1200 APK files of Android antimalware mostly from Google Play and

84

other websites such as “androidapksfree.com”. I analysed all APK files using VirusTotal

scanner to extract all their features including internet access and other required app

permissions. Moreover, I have used over 70 reputed antimalware detection engines to classify

the APK files into two groups, i.e., the regular antimalware apps or the malicious ones

pretending to be regular but harmful for the device. Assessments showed that there are 869

regular apps out of the downloaded antimalware while 331 of them are harmful. Besides,

there are 328 specific permissions an antimalware may ask for during installation on a device.

To create the dataset, I have put all the information in a file in CSV format which can be

opened by many software applications. There are 329 columns in the dataset including 328

specific permissions plus the risk score column determining the harmfulness of the entries.

The first row is column titles, and the rest are 1200 APK features extracted from Android

antimalware apps. All values are in binary format i.e., ‘0’ or ‘1’. When an app requires

specific permission, the value in the related entry of the dataset is ‘1’, accordingly

unnecessary permissions of an app are ‘0’. The last column i.e., risk score has also binary

values. A downloaded app which is recognised as malware by most Antivirus companies

based on VirusTotal.com report is risky and obtains ‘1’ as its risk score. However, another

safe Android antimalware has a zero-risk score. The complete dataset is accessible on Kaggle

(Seraj, 2021) for further research. Figure 7 shows a small part of the dataset as a sample. The

dataset is reliable since the classifications have been made through VirusTotal scanner, a

popular web-based antimalware scanning tool which relies on several Antivirus engines and

website scanners to identify malicious patterns.

Figure 7. An illustration of a small part of the proposed dataset

In the next section, I have proposed a multilayer perceptron neural network as a classifier for

detecting fake Android antimalware. My proposed dataset has been applied for training and

85

verification of the MLP neural network. Other classification algorithms can be used as well

for distinguishing original antimalware, with the results presented in chapter 4.

3.6.2 Proposed Classifier

I have used an MLP neural network as the proposed classifier. An MLP includes an

additional layer of nodes i.e., more than just the input and output layer. Regardless of the

input dimensionality, it turns out that a single-layer perceptron can solve a problem only if

the data are linearly separable. The math performed by a multilayer perceptron allows for

immense flexibility in the overall function and making it a good estimator in my case. It is a

purely mathematical system approximating complex input-output relationships gradually.

Hence, large amounts of data help the network to continue refining its weights and thereby

achieve greater overall efficacy.

According to my Android antimalware dataset, I have proposed an MLP neural network for

malicious antimalware detection illustrated in Figure 8. The dimensionality of the

permissions must match the dimensionality of the input layer. Each sample in my dataset

includes 328 different privileges which decisions made based on them. Hence, there are 328

input nodes in the neural network structure. Furthermore, the classification here is a yes or no

decision making. Accordingly, only one output node is needed even for so many input nodes

and one hidden layer is enough for extremely powerful classification. The number of nodes

within the hidden layer can be variable and I extensively search to find the optimal number

through trial and error. According to my experimental results in section chapter 4, for 328

input nodes and an output node, the optimal number of hidden nodes was obtained 16.

Figure 8. Proposed multilayer perceptron neural network

O

I1

I2

Im

H1

Hn

Input
Layer

Hidden
Layer

Output
Layer

Permission1

Permission2

Permissionm

.

.

.

.

.

.

Decision

wmn

w11
w1

wn

86

Data that move from one node to another are multiplied by weights. Numerical data are

summed as they arrive at computational nodes, then they are subjected to an activation

function. I intended to train the neural network using gradient descent and I needed a

differentiable activation function. I applied the standard logistic sigmoid as the activation

function for both hidden and output nodes in the MLP structure (K=1, L=1) as shown in

equation 1. Figure 9 shows the output value of the activation function versus the input.

𝑓(𝑥) =
𝐿

1 + 𝑒−𝑘𝑥
𝐿 = 1,𝐾 = 1

→
𝑓(𝑥) =

1

1 + 𝑒−𝑥
 (1)

Figure 9. Standard logistic sigmoid function

The logistic activation function is an excellent improvement upon the unit-step function

because the general behaviour is equivalent, but the smoothness in the transition region

ensures that the function is continuous and therefore differentiable. The shape of the logistic

curve as shown in Figure 9 with high derivative near the middle and low variations near the

maximum and minimum, promotes successful training with contribution to the stability of the

learning of the system. Equation 2 shows that the derivative of the logistic function is related

to the original function. Hence, there is no need to use the derivative expression when I have

already calculated the output of the logistic function for a given input value.

𝑓′(𝑥) =
𝑒𝑥

(1 + 𝑒𝑥)2
= 𝑓(𝑥)(1 − 𝑓(𝑥)) (2)

87

Two pre-node and post-node signals are assumed for each computational node. A pre-node

signal is computed by performing a dot product i.e., the corresponding elements of two arrays

are multiplied and then all the individual products are summed. The first array holds the post-

node values of the preceding layer to the current layer, and the second array includes the

weights. The pre-node signal calculation is performed according to equation 3 where N

denotes the post-node array of the preceding layer, n is number of nodes in the preceding

layer, w denotes the weight vector and preNi denotes the computed value of pre-node signal

for node Ni.

𝑝𝑟𝑒𝑁𝑖 = 𝑤.𝑁 = 𝑤1𝑁1 +𝑤2𝑁2 + …+ 𝑤𝑛𝑁𝑛 (3)

Since there is no direct path to the output node from input-to-hidden weights, the relationship

between these weights and the network’s output is very complex as shown in Figure 10. For

the sake of simplicity, I have shown the pre-node signal by the word pre plus the node’s name

and the post-node signal by the node’s name. The pre-node signal is input to activation

function of the node and the result would be assigned to the post-node signal according to

Equation 1.

Figure 10. Data-path of the proposed neural network

A gradient gives us information about how to modify weights. I need partial derivatives to

make each weight modification proportional to the slope of the error function with respect to

the weight being modified as shown in equation 4 in which a is the learning rate, target is the

expected output, f’ is derivative of the logistic activation function, input and output are pre-

node and post-node signals respectively.

𝑤𝑒𝑖𝑔ℎ𝑡𝑛𝑒𝑤 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑜𝑙𝑑 + 𝑎 𝑥 (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡) 𝑥 𝑓′(𝑖𝑛𝑝𝑢𝑡) (4)

H1 O I1
Input1 I1w11 H1w1 preO preH1

Imwm1 Hnwn

.

.

.

.

.

.

Output

88

I also need to update input-to-hidden weights based on the difference between the network’s

generated output and the target output values, but these weights influence the generated

output indirectly. I send an error signal back toward the hidden layer and scale that error

signal using both output weights of a hidden node as well as the derivative of that hidden

node’s activation function. This process is called backpropagation whereby weights are

updated based on the weight’s contribution to the output error. The steps are shown in

equations 5, 6, 7 and 8.

𝐹𝐸 = 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡 (5)

𝑆𝑒𝑟𝑟𝑜𝑟 = 𝐹𝐸 = 𝑓
′(𝑝𝑟𝑒𝑂𝑢𝑡𝑝𝑢𝑡) (6)

𝛿𝐻𝑂 = 𝑆𝑒𝑟𝑟𝑜𝑟 𝑥 𝐻 (7)

𝑤𝑒𝑖𝑔ℎ𝑡𝐻𝑂 = 𝑤𝑒𝑖𝑔ℎ𝑡𝐻𝑂 − 𝛼 𝑥 𝛿𝐻𝑂 (8)

FE is the final error value which is the difference between the post-node signal of the Output

node and the correct output value, f’ is the derivative of the activation function applied to the

pre-node signal delivered to the Output node, error signal (Serror) is the final error propagated

back toward the hidden layer through the activation function of the Output node, dHO

represents the contribution of a given weight (hidden layer to output) to the error signal

which is finally subtracted from the current weight in order to calculate the new value of that

weight, a is the learning rate for changing the step size. For the input-to-hidden weights, the

error must be propagated back through an additional layer as shown in Equations 9, 10 and

11.

𝛿𝐼𝐻 = 𝐹𝐸 𝑥 𝑓
′(𝑝𝑟𝑒𝑂𝑢𝑡𝑝𝑢𝑡) 𝑥 𝑤𝑒𝑖𝑔ℎ𝑡𝐻𝑂 𝑥 𝑓

′(𝑝𝑟𝑒𝐻) 𝑥 𝑖𝑝𝑛𝑢𝑡 (9)

→ 𝛿𝐼𝐻 = 𝑆𝑒𝑟𝑟𝑜𝑟 𝑥 𝑤𝑒𝑖𝑔ℎ𝑡𝐻𝑂𝑥 𝑓
′(𝑝𝑟𝑒𝐻) 𝑥 𝑖𝑛𝑝𝑢𝑡 (10)

𝑤𝑒𝑖𝑔ℎ𝑡𝐼𝐻 = 𝑤𝑒𝑖𝑔ℎ𝑡𝐼𝐻 − 𝛼 𝑥 𝛿𝐼𝐻 (11)

According to equation 9, the error signal is multiplied by hidden-to-output weight connected

to the hidden node of interest as well as the derivative of activation function on that hidden

node’s pre-node signal multiplied by the input value. The input value can be thought of as the

post-node signal from the input node.

89

Figure 11. Propagating error back to correct weights

At the next step, training takes place which is a process that allows a neural network to create

a mathematical pathway from input to output. A neural network can perform classification

because it automatically finds and implements a mathematical relationship between input

data and output values via the training. The goal of the training is to provide data that allow

the neural network to converge upon a reliable mathematical relationship between input and

output. In this chapter, I selected a portion of the dataset as training samples and gave the

neural network input values and the corresponding output values. Training process applies a

fixed mathematical procedure to gradually modify the network’s weights such that the

network will be able to calculate correct output values even with input data that it has never

seen before. The MLP can approximate the true, generalized relationship between input and

output only if I incorporate variety of antimalware into my training samples, unless a

deficient and oversimplified relationship would be found by the network. To avoid the neural

network of being negatively affected by the order of training samples, I shuffled them after

each epoch.

3.7 Android Fake VPN Detection Methodology

3.7.1 Proposed Dataset

This section demonstrates my proposed method for identifying, detecting, and characterising

Android VPN apps on Google Play and any other unofficial websites that distribute Android

apps. In the literature, it has been shown that it is particularly important to be able to identify

the family that malware belongs to. Recent research has shown that to be able to act against a

malicious app it is necessary to identify it, and this happens with very high accuracy (D’Angelo

O

I1

I2

Im

H1

Hn

preH1

HO

IH

input1

input2

inputm

.

.

.

.

.

.

Output

wmn

w11

H1w1

Hnwn

FE

target

90

et al., 2022; Mahdavifar et al., 2022). Considering that it is an active area of research but there

are cases in that malware cannot be classified into a family correctly there is recent research

that builds on top of that, and datasets have been developed for individual malware families.

For example, there are recent works in the literature that have collected data and developed

methodologies to detect individual types of malware such as antimalware, malware that

pretends to remove malware but(’Seraj et al., 2022; Ullah et al., 2022a; Moodi et al., 2021; Yerima

et al., 2021) al., 2021; Yerima et al., 2021). Regular works can identify if an app is malicious or

not with very high accuracy as well but are limited in allowing family detection and further

research to be easily built on top of that (Wang et al., 2022; Amer, 2021).

Furthermore, in the industry there has been recently active research on malicious VPNs by

Kaspersky, NordVPN and researchers in the ESET research group (’Bahar, 2022; ’Glover,

2022; ’Bratisilva, 2022). This shows that there is an increasing interest in detecting such apps

since these are popular among users who want to change their IP address and since there are

many such apps available regular users are more susceptible in installing one. In view of the

above facts, a novel dataset for malicious VPN detection will help the research community to

identify the properties of such malicious apps and will allow further research to be developed,

thus improving malware detection approaches.

Moreover, Searching and downloading VPN apps on Google Play and other websites to

develop a dataset is not a trivial task. Considering that a given app’s profile is available on

Google Play and the list of permissions requested for the specific app are available, in the

permission live is not necessarily included the use of BIND_VPN_SERVICE permission by

the app. A given Android app contains an AndroidManifest file including all the permissions

required by the app in relation to the app, service, or specific activity. A service performs

long-running operations in the background, while activities are app elements that run in the

foreground on a single screen and require user interaction. The BIND_VPN_SERVICE

permission will not appear in the list of Android permissions available on Google Play when

it is declared by an app developer within the "service" tag. Hence, we have crawled Google

Play to download each APK file and then decompiled them to inspect their AndroidManifest

files in detail. This way, we make sure that I correctly identify VPN apps at scale. I used

Google Play’s search feature with keywords like “VPN”, “anonymity”, “privacy”,

91

“censorship”, “security” or “virtual private network” to find apps containing that keyword in

their description. I applied a ‘breadth-first-search’ method for any other app considered by

Google Play as “similar” as well as for other apps created and published by the same

developer.

I collected a total of over 1300 APK files of VPN apps, mostly from Google Play and other

websites during a one-month period in November 2021. I extracted all features from APK

files, including internet access and other required app permissions, and analysed all the files

using VirusTotal scanner which has received reports from more than 70 well-known antivirus

detection engines. I classified the APK files into two categories; legitimate or regular VPN

apps and malicious apps that pose as legitimate apps but are harmful to the target device.

Assessments showed that 9.3% of collected VPNs had any type of malware, while the other

portion was safe. Moreover, a VPN might ask for 184 specific permissions at most on an

Android platform. To make the dataset accessible to a wide range of software applications, I

put all the data in a file in the.csv format. There are 185 columns in the proposed dataset, and

184 of them are specific app permissions plus the risk flag indicating the presence of

malware. The first row of the dataset is permission titles, and the rest of the entries are 1300

APK files, which are Android VPN apps. All columns have binary values, so when a VPN

requests specific permission, the corresponding column of the dataset entry has a value of ‘1’,

and unneeded permissions requested by an app have a value of ‘0’. Typically, a user can

assume that the risk flag of a VPN app, which has been recognised as malware by most of the

antimalware corporations based on the VirusTotal report which in the dataset has a value of

‘1’, meaning that it is malicious. Similarly, risk flags for other safe VPN apps are equal to

‘0’. However, in the literature, this is not the case since the work of (Li et al., 2017) sets the

minimum number as 1, (Arp et al., 2014) as 2, (Pendlebury et al., 2019) as 4 and (Salem et al.,

2021) as 10, thus since there is not a standardised approach to follow in my experiments, I

decided to set the minimum threshold as ‘1’ but all statistical information obtained from

VirusTotal is included in the dataset for this value to be changed, The complete version of the

dataset is available and publicly accessible on (Seraj, 2022) for other researchers. For the

sake of clarity, Figure 12 indicates a small portion of the dataset. My proposed dataset is

reliable since the classifications have been made through the VirusTotal mechanism, a

92

popular web-based antimalware scanning tool which incorporates several reputed antivirus

engines to identify malicious patterns.

The motivation behind permissions is that an app can request many permissions from a user

before it is installed and the user in many cases will not be bothered by what each one is, thus

making it easier to install a malicious app. By creating a dataset based on all permissions, I

show that malicious VPNs can be detected with very high accuracy when there is ground

truth that shows which permissions can lead to malicious activity.

Moreover, VirusTotal, owned by a Google subsidiary, is an excellent choice to collect such

data since it is controlled by experts in the area, and it aggregates results from many antivirus

products and online web engines which makes it an effective choice for detecting malicious

activities. However, VirusTotal does not use any form of Artificial Intelligence and is not

able to identify zero-day vulnerabilities on its own, instead, it connects to over 70 antivirus

applications and URL block listing services and submits a report to the user.

Figure 12. Proposed dataset sample

Details of the proposed Convolutional Neural Network (CNN), which I designed and trained

from scratch as an optimised classifier for detecting malware VPNs, are given in the next

section of this research. The CNN has been trained and verified using my VPN dataset and

simulation results have been presented in chapter 5. Chapter 5 also shows the classification

results performed by other algorithms.

3.7.2 Proposed Classifier

93

In previous works in the literature that are based on permissions, it has been showing that

supervised machine learning algorithms, including neural networks can be very accurate

classifiers (Seraj et al., 2022; Yerima et al., 2021; Amer, 2021; Wang et al., 2022). Thus, I used a

CNN neural network to detect malware VPNs in my dataset. A CNN is a good estimator in

our case due to the immense flexibility of the math performed in the overall function. It is an

entirely mathematical system that uses a lot of data to gradually approximate complex input-

output relationships. According to my VPN dataset, I designed my neural network as

illustrated in Figure 13.

Figure 13. Proposed CNN model

The number of input nodes must match the number of permissions in the dataset, which is

exactly 184. In addition, even with so many input nodes, only one output node is needed

since the classification here is a yes/no decision-maker. Initially due to the high imbalance of

the data I used the SMOTE library to oversample the minority class and then I dropped all

columns that contain 85% or more 0s (Permission not required), and then I identified the

optimum settings to be a Convolutional 1D layer with a relu activation function, followed by

a MaxPooling layer with a size 2, and then a flatten layer. In the next step, there is a dense

layer with 500 perceptrons and then the final dense layer for the classification using sigmoid

MaxPooling: Pool Size=2

Input Layer: 440, 1

,1

Conv1D: 4, 2, relu

Flatten Layer

Dense Layer: 500, relu

Dense Layer: 1, Sigmoid

94

and Adam with a 0.01 learning rate. Finally, the number of epochs was 20 and the batch size

was set to 16. The algorithm starts with the convolution which takes place as shown below in

equation 1. Where y is the output, n is the length of the convolution represented by x and the

kernel represented by h. S is the number of positions the kernel shifts. For hyperparameter

tuning, I used a grid search approach.

𝑦(𝑛) =

{

∑ 𝑥(𝑛 + 𝑖)ℎ(𝑖)

𝑘

𝑖𝑑=0

, 𝑖𝑓 𝑛 = 0

∑𝑥(𝑛 + 𝑖 + (𝑠 − 1))ℎ(𝑖)

𝑘

𝑖=0

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

The relu function used in the convolution layer is shown below in equation 2. Where for the

output y and the input x a value is returned from 0 to infinite.

𝑦 (𝑥) = max(0, 𝑥) (2)

At the next step the pooling layer takes place to reduce the dimensionality with a size of 2,

which helps to reduce any possible overfitting. Then the flatten layer concatenates the output

to a flat structure that can be used as an input to a fully connected Multi-Layer Perceptron as

shown in equation 3 where Zm is the function output, f is the function name, followed by the

function inputs, bias b, and the summary of the inputs.

𝑍𝑚 = 𝑓 (𝑥𝑛 , 𝑤𝑚𝑛) = 𝑏 + ∑ 𝑥𝑛 𝑤𝑚𝑛
𝑚

 (3)

At the next step, the output uses a one hot encoding where the output is either ‘0’ or ‘1’ for an

input x based on the sigmoid function shown in equation 4.

σ(x) =
1

1 + 𝑒−𝑥
 (4)

3.8 Android Trojan Malware Detection Methodology

3.8.1 Proposed Dataset

95

With regard to Trojan detection in Android platforms, I introduce a new dataset based on

Android app permissions. To this extent, I developed an Android Trojan dataset that contains

2593 entries. To do this, I downloaded 1058 Android Trojan malware and 1535 general

benign apps from various categories from Google Play. I analysed all APK files using

VirusTotal.com to extract all their features including internet access and other required app

permissions. Moreover, I have used over 70 reputed antimalware detection engines to classify

the APK files. The Android Trojan dataset consists of the following families: BankBot, Binv,

Citmo, FakeBank, LegitimateBankApps, Sandroid, SmsSpy, Spitmo, Wroba, ZertSecurity

and Zitmo. For the dataset to be in a usable form, I added all the information in a CSV file

format which can be easily opened and processed. There is a total number of 450 columns in

the dataset that includes 449 specific permissions plus the label which is the last column. The

first row in the dataset describes column titles, and the rest are features from 2593 Android

Trojans and benign applications APK files. All values are in binary format i.e., ‘0’ or ‘1’.

When an app requires permission, then the value in the respective entry of the dataset is ‘1’,

and unnecessary permissions of an app are set to ‘0’. An Android app that is recognised as

malware by most antivirus companies based on VirusTotal report, is considered risky and the

value in the label column is set as ‘1’, being Trojan. However, the other Android genuine

apps have ‘0’ value. The complete dataset is accessible on Kaggle (Seraj, 2022a).

Figure 14. An illustration of a small part of the proposed dataset

3.8.2 Proposed Classifier

A 1-dimensional CNN sequential architecture has been developed to classify Trojans using

the above dataset and the Python programming language with the Keras library. The

architecture includes one 1D-CNN layer, followed by a 1D MaxPooling layer, followed by a

Flatten layer, followed by 2 dense layers. The architecture is presented in detail in Figure 15.

The Specific settings are as follows:

• A learning rate of 0.01 has been used and the optimizer is Adam

• The number of epochs is 6

96

• The batch size is 16

• The activation functions used are the Relu for the 1D CNN layer and the first

dense layer and the Sigmoid for the final dense layer

• Bias has been set to true in the 1D CNN layer

Figure 15. Proposed CNN model

3.9 Android Botnet Malware Detection Methodology

3.9.1 Proposed Dataset

I present a new dataset for Botnet detection in Android platforms. As a result, I created an

Android Botnet dataset with 2713 entries. The dataset contains 454 columns,

including 453 specific features and the label, which is the last column. The first row of the

dataset describes column titles, and the remaining rows contain features from 2712 Android

Botnets and benign applications. To do this, I downloaded 1483 benign applications

from Google Play and different categories and 1229 Android Botnets. All values are in binary

format, which means they are either ‘0’ or ‘1’. Figure 16 indicates a small portion of the

dataset. The entire dataset is available on Kaggle (Seraj, 2023a).

MaxPooling: Pool Size=2

Input Layer: 449, 1

,1

Conv1D: 16, 2, relu

Flatten Layer

Dense Layer: 80, relu

Dense Layer: 1, Sigmoid

97

Figure 16. A representation of a small portion of the proposed dataset

Feature selection is critical in detecting mobile malware and Botnets. Feature selection can

help machine learning algorithms produce more accurate results by removing noise and

irrelevant data from datasets. It can also reduce the runtime of machine learning algorithms

during training. In this research, permissions are my features. Permissions are used to validate

the system's requirements. The developer must declare permissions for use in their

applications. Declared permissions are useful and effective in revealing the potential risks of

installing Apps.

VirusTotal scanner was used to decompress my Botnet dataset and benign applications' APK

files. By uploading the APK file to VirusTotal, it decompiles the files to source code folders

that provide detailed information about each dataset file, allowing the features to be

extracted. Basic properties, permissions, activities, receivers, intent filters by action, intent

filters by category, interesting strings, warnings, contents metadata, contained files by type,

and contained files by extension are among the useful information. In addition, VirusTotal

declares the files of the benign application to be virus-free and identifies the malware

percentage of the Botnet dataset files. I classified the APK files using over 70 trusted

antimalware detection engines. The android Botnet dataset includes several families,

including Anserverbot, Botmaster, DroidDream, Sandroid, Wroba and Zitmo. I put all the

information in a file to make the dataset usable. CSV file format, which is simple to open and

process. When an app requires permission, the value in the corresponding dataset entry is ‘1’,

and when an app does not require permission, the value is ‘0’. Based on VirusTotal’s report,

an Android app recognised as malware by most Antivirus companies is considered risky, and

the value in the label column is set to ‘1’, indicating a Botnet. The list of Android mobile

Botnet families and the number of samples are listed in Table 6.

98

Botnet Family Year of Discov-

ery

Number of

Samples

Type of

C&C

Motivation

Anserverbot 2011 244 HTPP
Propagation of possible

Malware

Bmaster 2012 6 HTPP
Financial, SMS Stealing

DroidDream 2011 362 HTPP
Data Stealing

Gemini 2010 262 HTTP
Data Stealing

Sandroid 2014 61 HTTP
Financial, Mobile Banking

Attack

Wroba 2014 152 HTTP
Financial, Mobile Banking

Attack

Zitmo 2012 142 SMS

Financial, SMS mobile

Transaction,

Authentication Number,

(mTAN) stealing

Table 6. List of Android mobile Botnet families

3.9.2 Proposed Classifier

I have used an MLP neural network to detect malware Botnets in my dataset. A multilayer

perceptron is a good estimator in our case due to the immense flexibility of the math

performed in the overall function. It is a purely mathematical system that gradually

approximates complex input-output relationships with large amounts of data. I designed my

MLP neural network with one hidden layer as illustrated in Figure 17.

Figure 17. Proposed MLP neural network

The number of input nodes must match the number of permissions in the dataset which is

exactly 453. Besides, only one output node is needed even for so many input nodes since the

classification here is a yes/no decision maker. For extremely powerful classification, one

99

hidden layer is enough. The number of nodes within the hidden layer can be variable and I

have found 454 as the optimum number through trial and error with extensive attempts.

According to the neural network structure, data entries are multiplied by weights and

subjected to an activation function. As shown in Equation 1 and Figure 18, I used a

differentiable activation function called standard logistic sigmoid for both hidden and output

nodes in the MLP structure (K=1, L=1) because a gradient tells us how to modify weights.

This activation function promotes successful system training while also contributing to the

neural network's learning process stability. Each computational node's input is calculated

using Equation 2, where N denotes the output of the preceding layer's nodes, w is the weight

vector, and n denotes the number of nodes in the preceding layer. In Equation 3, the weights

of a node are modified in proportion to the slope of the error function, where the target is the

expected output, the learning rate, and f′ is the logistic activation function's derivative. It

would be unnecessary to use the logistic function's derivative expression for a given input

value if we had already calculated the function's output, as shown in Equation 4.

𝑓(𝑥) =
𝐿

1 + 𝑒−𝑘𝑥
𝐿 = 1, 𝐾 = 1

→
𝑓(𝑥) =

1

1 + 𝑒−𝑥
 (1)

𝑝𝑟𝑒𝑁𝑖 = 𝑤.𝑁 = 𝑤1𝑁1 + 𝑤2𝑁2 + …+ 𝑤𝑛𝑁𝑛

(2)

𝑤𝑒𝑖𝑔ℎ𝑡𝑛𝑒𝑤 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑜𝑙𝑑 + 𝑎 𝑥 (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡) 𝑥 𝑓′(𝑖𝑛𝑝𝑢𝑡)
(3)

𝑓′(𝑥) =
𝑒𝑥

(1 + 𝑒𝑥)2
= 𝑓(𝑥)(1 − 𝑓(𝑥)) (4)

The general structure of our classifier is very similar to the MLP neural network described in

(Seraj et al., 2022), but the number of hidden nodes differs. As a result, please refer to that

paper for more information on a neural network's training and verification mechanisms, as

well as how weights are calculated. The neural network finds and implements a mathematical

pathway from input to output via training and performs classification automatically.

100

Figure 18. Standard logistic sigmoid function

3.10 Android Malicious Adware Detection Methodology

3.10.1 Proposed Dataset

I present a new self-made dataset based on Android app permissions for malicious Adware

detection in Android platforms. As a result, I created an Android malicious Adware dataset

with 2000 entries. To do this, I downloaded 500 malicious android Adware and 1500 benign

apps from different categories from Google Play. To examine all APK files and extract app

permissions, I used VirusTotal online scanner. In addition, I classified the APK files using

over 70 trusted antimalware detection engines. The malicious android Adware dataset

includes 10 Adware families, including Dowgin, Ewind, Feiwo, Gooligan, Kemoge,

Koodous, Mobidash, Selfmite, Shuanet and Youmi. The list of malicious Android Adware

families and the number of samples are listed in Table 7. I put all the information in a file to

make the dataset usable. CSV file format, which is simple to open and process. The dataset

contains 441 columns, including 440 specific permissions and the label, which is the last

column. The first row of the dataset describes column titles, and the remaining rows contain

features from 2000 malicious Android Adware and benign applications. All values are in

binary format, which means they are either ‘0’ or ‘1’. When an app requires permission, the

value in the corresponding dataset entry is ‘1’, and when an app does not require permission,

the value is ‘0’. Based on the VirusTotal report, an Android app that is recognised as malware

by most antimalware companies is considered risky, and the value in the label column is set

to ‘1’, indicating a malware. Figure 19 indicates a small portion of the dataset. These Adware

families are still actively used in research (Alani & Awad, 2022a). The entire dataset is available

on Kaggle (Seraj, 2023b).

101

Figure 19. A small portion of the malicious adware dataset

Malicious Adware Family Year of Discovery Number of Samples

Dowgin 2013 10

Ewind 2015 10

Feiwo 2015 14

Gooligan 2015 14

Kemoge 2015 11

Koodous 2015 3

Mobidash 2015 10

Selfmite 2014 4

Shuanet 2015 10

Youmi 2014 9

Various Families 2014-2020 405

TOTAL 500

Table 7. List of malicious Android adware families

• DOWGIN is a malicious advertising module that is distributed and bundled with other

(usually legitimate) programmes. The advertising module is used to display

advertising content while also silently gathering and forwarding information from the

device. Dowgin provides users with advertising content. If the user is unaware of the

module's presence or objects to the nature of the advertising materials displayed, this

behaviour may be considered unwanted. The module may also silently leak or harvest

sensitive device information such as the device's International Mobile Equipment

Identity (IMEI) number, location, contacts, and so on.

• EWIND is an Adware Trojan that was first discovered in mid-2016 and is capable of

displaying unwanted ads, collecting device data, and sending SMS messages to the

attacker. The Trojan is distributed by decompiling legitimate Android apps, adding

malicious code, and re-packaging them for distribution through third-party Russian-

language Android app stores. These Trojanized apps target popular apps such as

Grand Theft Auto (GTA) Vice City, AVG cleaner, Minecraft - Pocket Edition, and

Avast! Ransomware Removal, VKontakte, and Opera Mobile. It is important for

Android users to be cautious when downloading from third-party app stores and use

reputable antivirus software to detect and remove potential threats.

102

• FEIWO is a malicious Adware for Android devices that sends the victim's phone

number, IMEI, and list of installed apps to its servers. This is a common unwanted

SDK that should be removed from devices. Furthermore, the Adware employs several

techniques to complicate its analysis.

• GOOLIGAN is a type of malware that poses as a legitimate Android app in order to

trick users into installing it, thereby infecting their Android device. It can also spread

by infecting apps that are downloaded from untrusted sources. Once the device is

infected, the malware installs multiple unwanted apps that are difficult to remove.

These apps remain on the device even after performing a factory reset, making it

challenging to completely eradicate the malware.

• KEMOGE is an Adware that masquerades as a popular app; it has spread so widely

because it takes the names of popular apps and repackages them with malicious code

before making them available to the user.

• MOBIDASH A special programme module that cybercriminals use to monetize

Android games and applications. It displays various types of advertisement messages

to the user. The unique feature of Adware.MobiDash.1. origin is that its unwanted

activity begins after some time, rather than immediately after the malicious

applications containing this module are installed or run. This period is sufficient for

the user to forget about the potential source of annoying notifications and

advertisements, allowing the malware to remain on the device.

• SELFMITE Security researchers have discovered a rare Android worm that spreads

to other users via links in text messages. When Selfmite malware is installed on a

device, it sends a text message to 20 contacts in the device owner's address book.

• SHUANET behaves more like malware and shares some ancestry with two other

Adware families, Kemoge and Shedun, which also root devices and provide system-

level persistence to their respective payloads.

• YOUMI steals a large amount of personal information from an Android device. This

includes its GPS and cell tower location, as well as phone identifiers such as the IMEI

number and phone number. This differs from the data that affected stolen Apple apps,

which included a list of all apps installed on the device as well as the Apple ID email

103

address associated with the device. Symantec discovered Android's Youmi to be

downloading new applications as well.

3.10.2 Proposed Classifier

I used a deep-learning neural network to detect malicious android Adware in my dataset. Be-

cause of the immense flexibility of the math performed in the overall function, a Convolu-

tional Neural Network (CNN) is an excellent estimator in this case. It is a completely mathe-

matical system that uses a large amount of data to gradually approximate complex input-

output relationships. Figure 20 illustrates my proposed CNN model.

Figure 20. Proposed CNN model

The number of input nodes must be the same as the number of permissions in the dataset,

which is 441. Furthermore, even with so many input nodes, only one output node is required

because the classification is a yes/no decision-maker. Then we identified that the best settings

were a Convolutional 1D layer with a relu activation function, followed by a MaxPooling

layer of size 2, and finally, a flatten layer. The following step includes a dense layer with 80

MaxPooling: Pool Size=2

Conv1D: 16, 2, relu

Flatten Layer

Dense Layer: 80, relu

Dense Layer: 1, Sigmoid

Input Layer: 440, 1

Dropout: 0.2

104

perceptrons, a dropout layer with 0.3, and the final dense layer for classification using sig-

moid and Adam with a learning rate of 0.01. Finally, the batch size was set to 128 and the

number of epochs was set to 20. The algorithm begins with convolution, as shown in equa-

tion 1. Where y is the output, n is the length of the convolution represented by x, and h is the

kernel. S is the number of positions shifted by the kernel.

In equation 2, the relu function used in the convolution layer is shown. Where a value ranging

from 0 to infinite is returned for the output y and the input x. The pooling layer is applied in

the following step to reduce the dimensionality with a size of 2, which aids in reducing any

potential overfitting. The flatten layer then concatenates the output to form a flat structure

that can be used as an input to a fully connected Multi-Layer Perceptron, as shown in equa-

tion 3, where Zm is the function output, f is the function name, followed by the function in-

puts, bias b, and an input summary. Following that, a dropout layer with 20% of the nodes is

used, and the output uses a one-hot encoding with the output being either ‘0’ or ‘1’ for an in-

put x based on the sigmoid function shown in equation 4.

𝑦(𝑛) =

{

∑ 𝑥(𝑛 + 𝑖)ℎ(𝑖)

𝑘

𝑖𝑑=0

, 𝑖𝑓 𝑛 = 0

∑𝑥(𝑛 + 𝑖 + (𝑠 − 1))ℎ(𝑖)

𝑘

𝑖=0

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

𝑦 (𝑥) = max(0, 𝑥) (2)

𝑍𝑚 = 𝑓 (𝑥𝑛 , 𝑤𝑚𝑛) = 𝑏 + ∑ 𝑥𝑛 𝑤𝑚𝑛
𝑚

 (3)

σ(x) =
1

1 + 𝑒−𝑥
 (4)

105

4. Android Malicious Antimalware Detection

4.1 Introduction

The number of Android devices has grown exponentially in the last few years. The Android

market share is very high, while such devices provide computational power and connectivity,

which allow users to store personal, sensitive, and confidential data, such as messages,

credit/debit card details, files, and photos. The popularity of Android devices has made them

an attractive target for cyber attackers. To protect devices from malware, security firms are

usually pushing a virus-scanning app of some sort. However, according to a report from AV-

Comparatives, an Austrian organization that specialized in testing antivirus products, two-

thirds of all Android antivirus apps are fake and don’t operate as advertised (Faruki, Laxmi, et

al., 2015). The report was the result of an exhaustive testing process in which 250 Android

antivirus apps available on the official Google Play Store were examined. Antivirus apps

detecting themselves as malware showed the infirmity of the Android Antivirus industry

which appears to be filled with non-real cyber-security vendors. The company researchers

searched for and downloaded 250 antimalware security apps by various developers from the

Google Play Store. Researchers installed each antivirus app on a separate device, having the

test device download 2000 of the most common Android malwares automatically. As the

report mentions, only 80 apps detected over 30% of malicious apps and had zero false alarms

during individual tests meaning that most of the antiviruses were unable to find malwares.

Most of the Antiviruses appear to have been developed either by amateur programmers or by

software manufacturers that are security-focused used from a business point of view. In

addition to that, tens of apps displayed the same user interface and were more interested in

showing ads, rather than having a fully running malware scanner. They usually ask for and

usually receive enough permissions that allow for the collection of personal user data such as

the model of the phones, live GPS polling, phone numbers and other personally identifiable

information. Many antivirus apps use a whitelist/blacklist approach instead of looking at the

code. They would mark any installed apps as malicious if the app’s package name was not

included in its whitelist. According to studies and research that was done on android malware

detection, useful solutions have been provided so far mainly based on machine learning

techniques. Many datasets have been prepared and based on them; various approaches have

been presented to identify android malwares (Zhou & Jiang, 2012). However, the current free

and commercial antimalware are mainly based on signature, which is symptomatic that a

threat must be widespread to be recognised. Existing methods usually treat all types of

106

android applications in the same way to identify its harmfulness without considering the role

of them. Thus, their approach is not usually feasible and useful for the end user.

Given the vital role of antimalware applications, in this chapter, I present a method for the

detection of rogue android antimalware applications using a Multi-Layer Perceptron neural

network and creating a dataset of android antimalware applications for training and testing

the MLP network. I define as rogue android antimalware application an application that is

pretending to be antimalware, but in fact its purpose is to deceive Android users and damage

their security and privacy. To achieve this, I first hypothesise that a rogue antimalware can be

identified based on the requested permissions. I created a dataset of 1200 antimalware

applications with 328 specific permissions which might be asked during the installation and

identified the harmful antimalware applications in my dataset based on the recognition of

many reputed antimalware companies using the report from VirusTotal scanner. Moreover, I

define malicious antimalware as rogue apps pretending to be antimalware but are malware

instead and deliver a multi-layer perceptron neural network optimised for identifying

malicious antimalware applications. The experimental results show that my proposed neural

network outperforms other well-known classifiers in accuracy, precision, and recall. In

addition, the proposed method is feasible, straightforward to implement and fast due to a

limited number of nodes in the hidden layer of the neural network. The classification is

performed fast with reasonable computational resources since decisions made are only based

on the permissions that an antimalware asks for. The proposed method can be used to

accurately detect harmful android antimalware applications before these are installed on a

user’s Android device.

This chapter delivers the following contributions:

• I used a new dataset of android antimalware based on application permissions which

is available in Kaggle.

• I trained and customised a multi-layer perceptron (MLP) neural network to identify

harmful android antimalware.

• I evaluated my proposed method using well-known metrics with the results showing

that malicious antimalware can be detected with very high accuracy.

107

4.2 Background

Malicious software (abbreviated malware) is an executable programme that can perform

actions after gaining control in some way. It is not a new phenomenon; it has been around for

decades. Cybercriminals attack and harm businesses and consumers with various types of

malware (viruses, Trojans, worms, spyware, and so on). This is not to be confused with

Phishing, which is also malicious. Phishing, on the other hand, cannot actively sniff out your

passwords.

Hackers can steal credentials, steal secrets, and compromise customers' identities if Anti-

malware software is not installed. Having an antimalware solution in place, on the other

hand, can prevent and safeguard sensitive information (both your company's and your

clients') from being exposed to cybercriminals.

antimalware software uses three strategies to protect systems from malicious software:

signature-based detection, behaviour-based detection and sandboxing.

Signature-based malware detection: Signature-based malware detection identifies new

malicious software by using a set of known software components and their digital signatures.

Signatures are created by software vendors to detect specific malicious software. The

signatures are used to recognise previously identified malicious software of the same type

and to mark new software as malware. This method is useful for common types of malware,

such as keyloggers and Adware, which share many similarities (Rosencrance, 2021;

Fraudwatch, 2023).

Behaviour-based malware detection: By employing an active approach to malware analysis,

behaviour-based malware detection enables computer security professionals to identify,

block, and eradicate malware more quickly. Malware detection based on behaviour identifies

malicious software by examining how it behaves rather than what it looks like. Signature-

based malware detection is being phased out in favour of behaviour-based malware detection.

108

Machine learning algorithms are sometimes used to power it (Rosencrance, 2021;

Fraudwatch, 2023).

Sandboxing: Sandboxing is a security feature in antimalware that allows potentially

malicious files to be isolated from the rest of the system. Sandboxing is frequently used to

filter out potentially malicious files and remove them before they can cause harm. When you

open a file from an unknown email attachment, for example, the sandbox will run it in a

virtual environment and only give it access to a limited set of resources, such as a temporary

folder, the internet, and a virtual keyboard. If the file attempts to access other programmes or

settings, it will be blocked and the sandbox will terminate it (Rosencrance, 2021; Fraudwatch,

2023).

The importance of antimalware applications extends beyond simply scanning files for

viruses. antimalware can assist in the prevention of malware attacks by scanning all incoming

data and preventing malware from being installed and infecting a computer. antimalware

software can also detect advanced malware and protect against ransomware attacks.

Antimalware programs can help in the following ways:

• prevent users of from visiting websites known for containing malware.

• prevent malware from spreading to other computers in a computer system.

• provide insight into the number of infections and the time required for their removal.

• provide insight into how the malware compromised the device or network.

Floppy discs were used to spread malware in the early days of personal computers. Then

came email and the internet, which opened up entirely new avenues for malware distribution.

Antivirus software was created as viruses became more common. Cybercriminals became

more sophisticated in their attacks, necessitating the development of a more comprehensive

approach to cyber security, ushering in antimalware.

In summary, antimalware software was designed to combat all types of malware, not just

computer viruses. In contrast to simple Antivirus software, antimalware does more than just

scan email attachments and alert you to potentially harmful websites. Modern antimalware

109

solutions protect by monitoring data sent over networks. It offers far more protection than a

simple Antivirus programme.

App and software downloads are currently one of the most common ways for malware to

enter your organisation. However, unlike early viruses, modern malware can do much more

than corrupt or shut down a single device. It has the potential to compromise an entire

network, allowing criminals to steal account credentials or silently hijack secure sessions. As

a result, antimalware solutions have become the industry standard for safeguarding

businesses against all types of malware designed to harm end users.

The distinction between malware and viruses is straightforward: a virus is a subset of

malware. One type of malware is referred to as a virus. Malware, on the other hand, is a

broader term that encompasses all types of malicious software.

Antimalware and Antivirus are not the same thing. To begin, Antivirus relies on known virus

signatures to detect specific viruses or types of viruses, similar to a flu shot. antimalware, on

the other hand, is comprised of non-signature-based anomalies that detect unknown

anomalies (malware that may not have been detected before).

An antimalware solution protects your company more broadly by monitoring data transferred

over networks for a variety of potential threats. It also detects and eliminates threats to

safeguard your entire organisation and its customers. Consumer-level antivirus software, on

the other hand, seeks to block all threats to a single device.

Antimalware and Antivirus software have different goals. A simple Antivirus tool, for

example, may detect a threat on a single machine or device. As a result, Antivirus software is

ineffective at protecting your entire company from malware attacks. Without a doubt,

antimalware software provides more comprehensive and robust protection than antivirus

software.

110

Malware can effectively destroy your brand in the event of a serious attack. Failure to

monitor and detect a malware campaign can lead to serious issues such as exposing sensitive

information about your company or customers. Customers will initially lose trust in your

brand if your company is the victim of a malware attack. Negative publicity will wreak havoc

on your brand as word spreads. Finally, not having antimalware protection could have serious

financial consequences for your company.

The best antimalware service protects your company on multiple levels. An antimalware

service, for example, should have multiple capabilities such as real-time monitoring,

detection, forensic analysis, and takedown. These services should also block any potentially

malicious files and disrupt suspicious installations that attempt to change settings.

Every business, regardless of size or revenue capacity, requires malware protection. Malware

is critical to every business because it poses a significant threat to both privacy and security.

Without it, the company and all of its records, including financial information as well as the

personal and sensitive information of customers, could be jeopardised.

Malware is a huge threat to businesses. Some malware can stealthily hijack secure sessions,

leaving your business and customers vulnerable to theft and fraud. Customer data theft via

malware can result in all types of fraud, including stolen accounts and identity theft. A

dependable antimalware solution assists you in preventing cybercrime and protecting your

company and clients. (Rosencrance, 2021; Fraudwatch, 2023)

4.3 Experimental Evaluation

Validation is a crucial aspect of neural network development because the training dataset is

inherently limited and therefore the network’s response to this dataset is also limited. By

validation, I perform to ensure that the trained neural network meets classification accuracy

by running the trained network on new data and assessing the overall performance. My

proposed neural network is limited to one output node. Hence, all I needed to do was perform

a true/false type of classification. The inputs were also binary values, each representing a

111

required permission. I have used the standard feedforward procedure to calculate the output’s

signal value. Then applying a threshold that converts the signal value into a true/false

classification result.

4.4 Evaluation Metrics

To calculate the classification accuracy which shows the overall performance, I compared the

classification result to the expected value for the current verification sample, counting the

number of correct classifications, and dividing by the number of verification samples as

illustrated in equation 12. Another important metric is Precision which describes what portion

of predicted malicious antimalware are truly harmful and is calculated by equation 13.

Equation 14 explains Recall metric which is the portion of actual harmful antimalware that

are correctly classified. The F1-score is a number between ‘0’ and ‘1’ and is the harmonic

mean of precision and recall which is computed according to equation 15. The value of ‘1’

indicates perfect precision and recall, and the value of ‘0’ means that either the precision or

the recall is zero. In all cases TP stands for True Positive predictions, TN for True Negative

predictions, FP for False Positive predictions, and FN for False Negative predictions.

Accuracy, precision, and recall are widely used evaluation metrics in the literature (Gao et al.,

2021; Mahindru & Sangal, 2021; Şahin et al., 2021).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (12)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (13)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(14)

𝐹1 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(15)

4.5 Experimental Results

The proposed dataset can be applied for training and verification of my MLP neural network

classifier. To simulate the MLP neural network, I developed the code in the Python

112

programming language, using NumPy and Pandas libraries which are necessary for array

operations as well as reading data from files. The code was made up of four phases:

definition of the network’s parameters including node numbers, learning rate etc., reading the

dataset, training the neural network with a portion of the dataset and at the last step, verifying

the neural network with the whole dataset.

As mentioned before, the number of nodes in the hidden layer can be variable and there are

also several parameters that can affect the classification result. An important question is that

what the optimum value for those parameters is, which is a complex problem. To overcome

this problem, I assumed that all the parameters with fixed initial values and smoothly change

only one of them during several runs will obtain the best result. In the training phase, weights

were tuned many times in which all the training samples were applied to the neural network

in a random sequence and the weights were adjusted by comparing the classification result to

the risk score of that sample. To visualize the simulation progress, the quality of classification

was evaluated after each epoch. Although so many evaluations made the whole process slow,

however I could find that when the result varied negligibly, and the simulation could be

terminated. The optimum learning rate obtained 1.0 after several simulations, preventing very

long runs and achieving the acceptable result after reasonable number of epochs.

Another important issue is how much of the dataset is acceptable to be used for training the

neural network as well as for verification. I tried the simulation with four different ratios: 1/8,

1/4, 1/2 and 1 for training in which samples were selected randomly from the dataset without

any repeat and the final verification was evaluated by the whole dataset. It is obvious that the

smaller training set would make the simulation faster. Hence, I started with a training size of

1/8 to discover the optimum learning rate as well as number of hidden layer’s node of the

MLP neural network by measuring accuracy of the classification according to equation 12.

Table 8 shows the accuracy percentage achieved after enough epochs with a different number

of nodes in hidden the layer of the MLP neural network. The number of input nodes is 328

and the learning rate is 1.0. According to my experiences, as the epoch number expanded

further than 90, overtraining happened and surprisingly the accuracy decreased.

No. hidden

nodes

No. epochs Accuracy

%

 No. hidden

nodes

No. epochs Accuracy

%

2 15 77.52 16 30 85.96

3 15 83.39 16 60 87.06

113

4 15 79.91 16 90 87.52

5 15 81.01 16 120 86.97

6 15 77.71 32 15 80.27

7 15 83.49 33 15 70.55

8 15 81.93 34 15 73.39

9 15 82.48 64 15 82.94

10 15 82.11 128 15 81.38

11 15 81.19 168 15 77.71

15 15 80.01 329 15 76.88

16 15 77.34 329 328 79.27

16 15 85.78

Table 8. Simulation results with training size of 1/8 of the dataset

Table 9 shows the simulation results for different sizes of training sets with different epoch

numbers. Here, the number of hidden nodes is 16 and the learning rate is 1.0.

No. epochs
Accuracy %

(size=1/8)

Accuracy %

(size=1/4)

Accuracy %

(size=1/2)

1 77.34 78.90 82.84

15 85.78 89.72 89.91

30 85.96 92.29 94.77

60 87.06 92.66 97.71

90 87.52 92.38 97.80

Table 9. Accuracy percentage obtained with different epochs and sizes of training sets

According to the above-mentioned results, it can be inferred that the best accuracy was

achieved when the learning rate was 1.0, the number of hidden nodes was 16 and the training

epochs were 90. To make sure that the classification results are stable, I have repeated the

simulation for 5 runs and presented the results in detail in Table 10 where s2 is the variance.

The simulation was executed on a Pentium core i5 @ 2.4 GHz, 4GB of RAM using the

Microsoft Windows 10 operating system. The simulation software was a single-threaded

python application.

Training

size ratio &

Time

Accuracy Precision Recall F1-score

1/8

18 Minutes

Run1 0.8633 0.737327189 0.634920635 0.682302772

Run2 0.86972 0.723577236 0.706349206 0.714859438

Run3 0.85505 0.719626168 0.611111111 0.660944206

Run4 0.87614 0.762331839 0.674603175 0.715789474

Run5 0.84954 0.705607477 0.599206349 0.64806867

Average 0.862751358 0.729693982 0.645238095 0.684392912

s2 0.0000924302 0.0003684862 0.0015973796 0.0007575228

1/4

34 Minutes

Run1 0.93211 0.870833333 0.829365079 0.849593496

Run2 0.93578 0.85546875 0.869047619 0.862204724

Run3 0.913761 0.831932773 0.785714286 0.808163265

Run4 0.9513761 0.878326996 0.916666667 0.897087379

Run5 0.93578 0.864 0.857142857 0.860557769

114

Average 0.93376142 0.860112371 0.851587302 0.855521327

s2 0.000144234 0.0002554956 0.0018808264 0.000815139

1/2

67 Minutes

Run1 0.97431 0.934108527 0.956349206 0.945098039

Run2 0.975229 0.931034483 0.964285714 0.947368421

Run3 0.969725 0.904059041 0.972222222 0.936902486

Run4 0.979817 0.956349206 0.956349206 0.956349206

Run5 0.972477 0.947580645 0.932539683 0.94

Average 0.9743116 0.93462638 0.956349206 0.94514363

s2 0.0000112 0.0003174 0.0001764 0.000045

1

150 Minutes

Run1 0.99633 0.988188976 0.996031746 0.992094862

Run2 0.9963302 0.984375 1 0.992125984

Run3 0.99633 0.984375 1 0.992125984

Run4 0.99633 0.988188976 0.996031746 0.992094862

Run5 0.997248 0.988235294 1 0.99408284

Average 0.99651364 0.986672649 0.998412698 0.992504906

s2 0.0000002 0.0000036 0.0000038 0.0000006

Table 10. Evaluation of the proposed MLP neural network

4.6 Comparisons with Other Classifiers

I have compared my proposed neural network to other classifiers including SVM with a dot

kernel type, convergence epsilon of 0,001, L pos 1 and L neg 1, Random-Forest with 100

trees and depth of 10, K-NN with k=5 and another neural network MLP baseline with two

hidden layers of 50 nodes in each. Table 11 shows the comparison results in Accuracy,

Precision, Recall and F1-Score metrics. Results show that my proposed method classifies

Android antimalware more accurately than other classifiers.

Classifier Accuracy % Precision % Recall % F-Measure %

SVM 88.53 86.84 62.26 72.52

Random Forest 80.73 100 20.75 34.36

Naïve Bayes 55.05 34.90 98.11 51.48

K-NN 93.12 81.67 92.45 86.72

Neural Network 94.95 83.87 98.11 90.43

My Proposed

Method

98.62 95.56 97.73 96.63

Table 11. Comparison of our approach to other well-known classifiers

The proposed MLP model with 16 hidden nodes achieves significantly higher accuracy than

classical ML models and a baseline MLP on the antimalware dataset due to its architectural

benefits. The nonlinear activations in the MLP enable modelling complex relationships

between the high-dimensional permission features, which classical linear models fail to

capture. This flexibility allows the MLP to learn which combinations of permissions

distinguish malware from benign apps. The tuned architecture prevents overfitting that

degrades the baseline MLP. KNN has some success focusing on local data geometry but

cannot match the MLP's global pattern learning. The MLP also maximizes precision,

115

critically minimizing false positives. In summary, the MLP's representation power and tuned

topology underlie its superior performance, overcoming limitations of linear models and

unoptimized neural networks for detecting sophisticated malware based on permission

patterns.

Finally, I used the area under the curve (AUC) and plotted the curve as shown in Figure 21

below.

Figure 21. AUC evaluation results

Figure 21 shows the ROC curve for the MLP model on the antimalware dataset, along with

baseline classical ML models. The MLP achieves an AUC of 0.97, reflecting its strong

classification accuracy, which aligns with its high precision and recall results. The curve also

rises steeply, indicating the MLP can effectively distinguish malware from benign apps.

Comparatively, classical models like logistic regression exhibit lower AUCs below 0.90, as

their linear nature struggles to model the complex relationships in the permission patterns.

The MLP's flexibility enables it to learn these nonlinear patterns. The inflection points where

the MLP's curve rises steeply demonstrates its noise-robustness in correctly classifying apps.

In summary, the ROC curve confirms the MLP's capabilities in accurately modelling the

permissions for effective antimalware detection, significantly outperforming linear classifiers.

4.7 Comparisons with Other Related Works

Table 12 presents the obtained results from the proposed method using MLP compared to

other permission-based studies that have used classic Machine Learning approaches. The ta-

ble indicates that the proposed method is completely successful in classifying benign and ma-

116

licious antimalware applications. My results with high accuracy indicate that my method can

detect Android malicious antimalware based on only given permissions as features by apply-

ing an optimised MLP model.

Reference Type Method Accuracy % Precision % Recall % F-Measure %

(YANG et
al., 2022)

Permissions Ab 90.02 89.50 90.76 90.08

RF 83.73 87.55 81.62 83.32

(Dhalaria &
Gandotra,

2020)

Permissions

SVM 90.26 90.4 - 90.3

K-NN 92.10 92.1 - 92.1

DT 90.12 90.1 - 90.1

(Khariwal et
al., 2020)

Permissions SVM 92.32 - - -

NB 91.56 - - -

(Sangal &
Verma,
2020)

Permissions

NB 88.23 87.7 88.2 87.7

SVM 91.26 91.2 91.3 90.8

DT 92.90 92.9 92.9 92.9

(Vinod et
al., 2019)

Static ML 91.14 92.23 90.18 91.10

(Arslan et
al., 2019)

Permissions

NB 87.79 - - -

LR 88.83 - - -

MLP 88.85 - - -

K-NN 91.42 - - -

J48 90.48 - - -

RF 91.42 - - -

DT 91.44 - - -
My

Proposed

Method

Permissions

MLP

98.62

95.56

97.73

96.63

Table 12. Comparison of my approach with other permission-based works

4.8 Conclusions

In this chapter, I examined Android malware detection methods including static, dynamic and

hybrid. I showed the importance of identifying malicious antimalware which threatens many

Android users. With regard to limited Android device resources, I came up with the idea that

a static permission-based approach could provide effective and accurate results for the

classification of antimalware while performing well and in a reasonable time. Afterwards, I

provided a dataset of all harmful and benign Android antimalware, scanned by VirusTotal

and other reputed Antiviruses and their risk as well as permissions were identified. Moreover,

I delivered an optimised neural network that can be used on the dataset to classify

antimalware with reasonable resource usage. I trained and verified my proposed method

using the dataset and compared the results using well-known metrics and classifiers. In the

past, there is not any work published specifically on Android antimalware. While previous

works are based on complex or ensemble classifiers, my approach uses a straightforward,

customised neural network which provides very accurate results. My methodology is feasible

117

because permissions can be extracted from the manifest file prior to the installation of an

Android antimalware and classification would be done quickly by the customised neural

network. The advantage of this method is due to the isolation and examination of

antimalware on a separate basis.

118

5. Android Malicious VPN Detection

5.1 Introduction

VPNs were first designed for employees to virtually connect to their office network from

home or while on a business trip. These days, VPNs are used more frequently for privacy and

security-related reasons, as well as to conceal online internet traffic, circumvent censorship,

or access geo-blocked content. To make it more difficult for anyone on the internet to see

which websites or apps a user is accessing, VPNs work by funnelling all a user's internet traf-

fic through an encrypted pipe to the VPN server. However, VPNs don't automatically provide

anonymity or privacy protection. VPNs merely redirect all users’ internet traffic to the sys-

tems of the VPN provider rather than the systems of the users’ internet service provider.

There are even fake VPN services popping up with the growing interest in VPNs. Since the

launch of Android 4 in October 2011, the Android VPN Service class has allowed mobile app

developers to create VPN clients through native support. Android app developers only need

to request BIND_VPN_SERVICE permission to use the native support for VPN purposes. It

enables an app to intercept user traffic and seize complete control over it according to securi-

ty concerns highlighted by Android’s official documentation (Ikram et al., 2016). Many legiti-

mate apps may use the BIND_VPN_SERVICE permission to provide online anonymity or

access censored content (Khattak et al., 2014). Android warns users of the potential dangers of

the BIND_VPN_SERVICE permission by showing notifications and system dialogues since

malicious apps may abuse users’ personal information (Ikram et al., 2016). However, many

users might not have the technical knowledge necessary to fully comprehend the risks. Many

popular, VPN services will leak a user’s IP address or DNS requests, thereby exposing the

user’s data to third parties. Some VPNs can intrude on privacy and steal private information,

install hidden tracking libraries on target devices, infect a user's computer with malware, and

even steal the user’s bandwidth.

Given the availability of free VPN client apps, which can be readily downloaded from the

Google Play store, and their vital role during the pandemic, users must be aware of the inher-

ent risks. Not all VPNs that aid in bypassing censorship or gaining access to geographically

blocked content offer privacy and security. It is hard to endorse that a VPN is not malicious.

However, a significant number of free VPNs have been identified as being malicious and us-

119

ing risky levels of permissions. In this chapter, I deliver an accurate approach that identifies

malicious Android VPNs with a possible malware presence. I have provided a dataset of

1300 Android VPNs with 184 specific permissions which might be questioned during instal-

lation and identified the malware in my dataset using the report from VirusTotal scanner and

the recognition of numerous reputable antivirus vendors. Furthermore, I have presented a

deep-learning neural network optimized for identifying malware VPNs using my dataset. The

experimental results demonstrate that my proposed method outperforms other well-known

machine learning classifiers in terms of accuracy, precision, and other evaluation metrics. In

addition, the proposed approach is feasible, easy to use and due to its robust and well-

optimized neural network, performs fast. The classification with reasonable computational

resources is performed quickly since only the permissions that VPN requests are taken into

consideration. The proposed approach can be implemented effectively to identify and detect

Android malicious VPNs accurately on the target device before installation. The contribution

of this chapter paper is fivefold:

• I have suggested categorising Android VPNs to detect malware using simple permis-

sion analysis. It is easy, and safe to identify malicious Android VPNs using my pro-

posed method with high accuracy before installing the intended VPN on the target de-

vice.

• A new dataset of android VPNs with their permissions and their risks is available in

Kaggle.

• A presented deep learning classifier that can be used to detect the state of the security

of VPN clients.

• Evaluation results of my proposed methodology using standard metrics show that it is

both practical and effective.

• Analyses of the experimental results have been presented and the efficiency of the

deep learning neural network has been compared with other classification methods in-

cluding a simple multi-layer perceptron neural network.

5.2 Background

So far, various techniques have been introduced in the literature for Android malware identi-

fication in this section. Three methods have been proposed to identify malware on Android

devices, which are static, dynamic, and hybrid.

120

An in-depth analysis of 283 Android VPN clients was carried out by (Ikram et al., 2016) from

a population of 1.4M Google Play apps. They characterised the behaviour of VPN apps and

their impact on users’ privacy and security. According to the main findings of their analysis,

75% of the identified Android VPN apps, which provide services to improve online privacy

and security, 82% ask for permission to access sensitive resources like user accounts and text

messages and use third-party tracking libraries, while over 38% of them contain some mal-

ware presence according to VirusTotal.com. Nevertheless, 25% of the analysed VPN apps

receive at least a 4-star rating, and 37% have more than 500K installs. Their research showed

that only a few VPN users have publicly expressed any privacy or security concerns in their

app reviews. According to their study, a user's IP address will be leaked by 84% of Android

VPN apps, sensitive data will be attempted to be accessed by 82%, third-party tracking is

used by 75%, there is malware in 38% of apps, and 18% of apps don't even encrypt data,

leaving the user completely exposed.

An active measurement system was developed by Taha Khan and his team (Khan et al., 2018)

to test various infrastructure-related and privacy-related VPN service features and assess 62

commercial providers. According to their research results, although paid VPN services ap-

pear to be less likely than free ones to intercept or tamper with user traffic, many VPNs do

inadvertently leak user traffic through several different channels. They also discovered that a

sizeable portion of VPN providers transparently proxy traffic, and many of them misrepresent

the actual location of their vantage points; 5 to 30% of the vantage points associated with

10% of the providers they studied were hosted on servers in nations other than those that

were advertised to users.

(Wilson et al., 2020) examined several selected iOS VPN apps from the Apple App Store to

determine the level of security and privacy provided by VPN providers. Installing VPN soft-

ware on a target device, simulating network traffic for a set amount of time, and capturing the

traffic were all part of their testing methodology. According to their research, with many ap-

plications still using HTTP and not HTTPS for transmitting specific data, there were several

tested VPN applications that had common security issues. A large majority of the VPN appli-

cations failed to route additional user data through the VPN tunnel. Moreover, it was discov-

ered that only fifteen of the tested applications had correctly implemented the tunnelling pro-

tocol that was most highly recommended for user security. Additionally, they provided a set

121

of recommendations for best practices that will help iOS developers create safe and secure

VPN clients.

(Wangchuk & Rathod, 2021) revealed that most Android-based VPNs have intrusive permis-

sions which can be dangerous for the users, while some of the VPNs were flagged for the

presence of possible malware content. Furthermore, some free VPNs even failed the DNS

leakage and traffic encryption tests. They analysed the permissions and the malware content

of 229 Android VPN apps and tried to study the possibility of finding the forensic artefacts

which could be left by the VPNs on the devices.

(Korty et al., 2021) discussed the difficulties Indiana University (IU) faced in balancing the two

risk factors to ensure the continuation of its mission throughout the COVID-19 pandemic. IU

had to make pressing decisions as the pandemic struck and teaching went online worldwide

that weighed cybersecurity against other factors such as usability, cost, and health and safety.

Using VPNs for all activities would have been unsustainable at IU with 130,000 faculty

members, employees, and students would be able to teach, learn, conduct research, and work

from home. The network staff of IU employed a VPN feature called split tunnelling to de-

crease the load, while the pros and cons of their methodology were discussed.

While the exact function of the fake VPN app is still unknown, SideWinder has published

rogue apps under the pretext of utility software. This time, a phishing link downloads a VPN

application called Secure VPN ("com.securedata.vpn") from the official Google Play store in

an attempt to impersonate the genuine Secure VPN app ("com.securevpn.securevpn")

(thehackernews, 2022).

5.3 Experimental Evaluation

The Python programming language was used as well as Keras and sci-kit-learn libraries to

train and verify my neural network classifier using the proposed VPN dataset. For array oper-

ations and reading data from files, the NumPy and Pandas libraries are required. The simula-

tion is divided into four phases: reading the VPN dataset, training the neural network with a

portion of the dataset, defining the network's parameters, such as node numbers, learning rate,

and so on; and finally, verifying the neural network with the rest of the dataset. Figure 22

Demonstrates simulation stages.

122

Figure 22. Demonstration of simulation stages

The simulation software was a single-threaded Python application executed on an Intel

Pentium core i5 @ 2.6 GHz with 4GB of RAM using the Microsoft Windows 10 operating

system. In this research study, I used a 5-fold cross-validation procedure.

5.4 Evaluation Metrics

Validation is a true-or-false type of classification. I used well-known evaluation metrics such

as Accuracy, Precision, Recall and F1, which are defined in equations 5 to 8 respectively,

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False

Negative. The Accuracy shows the overall performance, while the Precision describes what

portion of predicted malicious VPNs are truly malware. The Recall metric is the portion of

actual malware that is correctly classified and the F1 is a number between 0 and 1 and is the

harmonic mean of Precision and Recall.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7)

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8)

5.5 Experimental Results

The results indicate that the proposed classifier can identify and detect malicious VPNs with

high accuracy and outperforms all the other classifiers in the comparisons. More specifically,

Figures 23 and 24 present the training/test accuracy and the loss over the 5 epochs for each of

Network’s

Parameters

Definitions

Reading the

Dataset

Neural

Network

Training

Neural

Network

Verification

123

the five folds, while Table 13 presents the accuracy, precision, recall, and f1 scores over 5

different cross-fold executions.

Figure 23. Train/Test accuracy over epochs

Figure 23 shows the training and testing accuracy over epochs for the CNN model on the

VPN dataset. Both accuracies increase and converge as training progresses, indicating the

model is generalizing well to new data. The testing accuracy closely matches and sometimes

exceeds the training accuracy, demonstrating minimal overfitting. The fluctuations in

accuracy between epochs are due to shuffling the order of samples for each batch during

training. The final training and testing accuracies of 95% and 93% align with the results in

Table 13, confirming the model’s strong performance. Overall, the learning curves

124

demonstrate successful optimization and generalization of the CNN classifier on the

imbalanced VPN data.

Figure 24. Loss over epochs

Figure 24 presents the training and testing loss over epochs. As expected during model

convergence, the loss steadily decreases for both training and testing data as training

progresses. The testing loss is slightly higher than training, reflecting a small generalisation

gap. The spikes in loss are attributed to shuffling samples between epoch batches. Lower loss

correlates directly to higher accuracy, so the final low losses confirm the high accuracy

achieved in Table 13. In summary, the loss curves also validate successful CNN model

training and generalization to accurately classify malicious VPN apps based on permissions.

125

 Train

Accuracy %

Testing

Accuracy %

Precision % Recall % F1 %

Run 1 94.57 93.73 92.34 95.39 93.8

Run 2 95.86 92.88 91.55 94.58 93.0

Run 3 95.26 91.97 91.06 93.15 92.09

Run 4 94.51 92.68 92.74 92.81 92.77

Run 5 94.94 92.81 92.18 93.63 92.89

Average 95.03 92.81 91.97 93.91 92.91

Table 13. My proposed method of evaluation results

5.6 Comparisons with Other Classifiers

Table 14 presents a comparison of the proposed classifier with other well-known classifiers

and the settings used for the MLP, Random Forest, Decision Tree and K-NN, which is the

default from the sci-kit learn library.

Classifier Accuracy % Precision % Recall % F1 %

MLP 89.1 88.9 89.8 89.3

Random Forest 88.1 88.4 88.8 88.5

Decision Tree 89.1 88.1 87.0 87.5

K-NN 91.1 88.5 88.9 88.6

My Proposed

Method

92.81 91.97 93.91 92.91

Table 14. Comparison with other classifiers

The proposed CNN classifier significantly outperforms the other approaches for VPN

detection, in contrast to Table 11 for antimalware detection where the differences were

smaller. The main reasons are:

• The VPN dataset has higher class imbalance between benign and malicious apps

compared to the antimalware dataset. This allows the oversampling and robust feature

learning of the CNN model to have a bigger impact.

• The VPN permissions have more complex interrelationships that the CNN can extract

useful patterns from through its convolutional layers, more so than the MLP and

classical models.

126

• The antimalware permissions may have more linear separability that simpler models

can capture. The VPN permissions require learning higher-level features.

• The CNN's localisation and shift-invariance properties are particularly suited to the

VPN permission patterns, while less important for antimalware.

In summary, the more imbalanced and complex nature of the VPN dataset allows the CNN

model to fully leverage its architectural benefits compared to other models. The antimalware

dataset did not demonstrate these advantages to the same degree. But for both cases, the deep

learning model outperforms, with a bigger margin for VPNs.

5.7 Comparisons with Other Related Works

Table 15 presents the obtained results from the proposed method using CNN compared to

other permission-based android malware detection studies that have used classic Machine

Learning approaches. The table indicates that the proposed method is completely successful

in classifying benign and malicious VPNs. My approach with high accuracy indicates that my

method can detect Android malicious VPNs based on only given permissions as features by

applying a tuned CNN model.

Reference Type Method Accuracy % Precision % Recall % F-Measure %

(YANG et
al., 2022)

Permissions Ab 90.02 89.50 90.76 90.08

RF 83.73 87.55 81.62 83.32

(Dhalaria &
Gandotra,

2020)

Permissions

SVM 90.26 90.4 - 90.3

K-NN 92.10 92.1 - 92.1

DT 90.12 90.1 - 90.1

(Khariwal et
al., 2020)

Permissions SVM 92.32 - - -

NB 91.56 - - -

(Sangal &
Verma,
2020)

Permissions

NB 88.23 87.7 88.2 87.7

SVM 91.26 91.2 91.3 92.9

(Vinod et
al., 2019)

Static ML 91.14 92.23 90.18 91.10

(Arslan et
al., 2019)

Permissions

NB 87.79 - - -

LR 88.83 - - -

MLP 88.85 - - -

K-NN 91.42 - - -

J48 90.48 - - -

RF 91.42 - - -

DT 91.44 - - -
My

Proposed

Method

Permissions

CNN

92.81

91.97

93.91

92.91

Table 15. Comparison of my approach with other permission-based works

127

The importance of identifying malware families has been demonstrated in the literature where

there are several works in malware classification and in other areas of single malware

families such as Trojans and Botnets. To this extent, the above results indicate the first step

towards malicious VPN detection for Android. Malicious VPN detection has started gaining

significant interest in the industry most importantly because typical users can easily install a

VPN client through the app store. Using the proposed data and the classifier malicious VPNs

can be detected with high accuracy and will allow further research to take place in this area in

the future by other research teams. On the other hand, a limitation is that due to the constraint

of only including malicious VPNs the dataset is highly unbalanced, thus I used SMOTE to

oversample the malicious entries to balance the data. More investigation in the future will

allow me to identify more malicious VPN clients and develop techniques to overcome this

issue which will result in even higher detection accuracy.

5.8 Conclusions

In this chapter, I discussed VPN malware identification techniques on the Android operating

system, which are static, dynamic, and hybrid as explained above. I declared the importance

of malicious VPNs threatening many Android users around the world. I hypothesised that a

permission-based analysis could deliver accurate and striking results for the categorisation of

Android VPNs and perform admirably in a reasonable amount of time. Thus, I collected

many Android VPN apps from Google Play and other websites and provided a dataset includ-

ing permissions and the risk of being malware for all collected VPNs through scanning by

VirusTotal. Furthermore, I presented an optimised deep neural network that can detect unsafe

Android VPNs quickly before installation on the target device. I trained and then verified my

proposed classifier using my VPN dataset and compared the classification results with other

well-known classifiers regarding the important evaluation metrics. To my knowledge, this is

the first work specialised on malicious Android VPN detection using permissions. The relat-

ed literature has focused on overall malware detection, while I demonstrate customised VPN

malware identification. Unlike the previous Android malware detectors, which use complex

or ensemble classifiers, my approach is straightforward, using an optimised neural network to

produce very accurate results. My methodology is practical because it is straightforward to

extract permissions from the manifest file before the installation of VPNs and the classifica-

tion results are ready by the neural network.

128

6. Android Trojan Malware Detection

6.1 Introduction

Nowadays, in the world people can get all types of Android devices such as mobile phones

and tablets and numerous applications (apps) can be easily downloaded from available

websites in cyberspace. However, many apps are being produced daily, with some of which

being infected and malware instead of a genuine app. Many exploiters infect applications

using malicious approaches for their profit to steal information from mobile devices.

Malware can come in various forms, such as Viruses, Trojans, Worms, Botnets, and many

others and among that malware, Trojans are a type of malware that is often disguised as

legitimate software; however, they will perform malicious activities on the operating system

that most of the users will not even notice or understand (Mohamad Arif et al.,(Ucci et al.,

2019)l., 2021), (Ucci et al., 2019).

Therefore, in this chapter article, I study how to detect Android Trojans using the permissions

of the applications. To do this I have collected and processed data and created a new dataset

that is described in detail in section 3. The Trojan dataset is a classification dataset that

contains only Trojan and genuine Android applications and to this extent, I have developed a

Convolutional Neural Network (CNN) architecture that detects Trojans with very high

accuracy. To achieve this, I first had a theory that a Trojan can be identified based on the

requested permissions during app installations. The contributions of this chapter are as

follows:

• I introduced a novel dataset for Android Trojan detection based on the permissions of

the applications.

• I deliver a CNN neural network architecture for Trojan detection.

6.2 Background

A Trojan Horse (Trojan) is a type of malware that masquerades as legitimate software or

code. Once inside the network, attackers can perform any action that a legitimate user would,

such as exporting files, modifying data, deleting files, or otherwise altering the device's

contents. Trojans can be hidden in the games, tools, apps, or software patch downloads.

Many Trojan attacks use social engineering techniques, such as spoofing and phishing, to

elicit the desired action from the user. Although the terms Trojan virus and Trojan horse virus

129

are commonly used, they are technically incorrect. Trojan malware, unlike viruses and

worms, cannot replicate or execute itself. It necessitates specific and deliberate action on the

part of the user. Trojans are forms of malware that, like most forms of malware, are designed

to damage files, redirect internet traffic, monitor the user's activity, steal sensitive data, or set

up backdoor access points to the system. Trojans can delete, block, modify, leak, or copy

data, which can then be ransomed or sold on the dark web (Crowdstrike, 2022).

The original story of the Trojan horse can be found in Virgil's Aeneid and Homer's Odyssey.

In the story, the enemies of Troy were able to enter the city gates by pretending to be given a

horse. The soldiers hid inside the massive wooden horse, then climbed out and let the other

soldiers in.

A few story elements make the term "Trojan horse" an appropriate name for these types of

cyber-attacks:

• The Trojan horse provided a one-of-a-kind solution to the target's defences. In the

original story, the attackers had laid siege to the city for ten years without success.

The Trojan horse provided them with the access they had been looking for a decade.

Similarly, a Trojan virus can be an effective way to circumvent otherwise strong

defences.

• The Trojan horse appeared to be a genuine present. Similarly, a Trojan virus appears

to be legitimate software.

• The Trojan horse's soldiers were in charge of the city's defence system. The malware

in a Trojan virus takes control of your computer, potentially leaving it vulnerable to

other "invaders."

A Trojan horse, unlike computer viruses, cannot manifest itself, so it requires a user to

download the server side of the application for it to function. This means that the executable

(.exe) file must be implemented and the programme installed in order for the Trojan to attack

the system of a device.

130

A Trojan virus spreads through legitimate-looking emails and files attached to emails that are

spammed in order to reach as many people's inboxes as possible. When the infected device is

turned on after the email is opened and the malicious attachment is downloaded, the Trojan

server will install and run automatically.

Social engineering tactics, which cyber criminals use to coerce users into downloading a

malicious application, can also infect devices with a Trojan. The malicious file could be

hidden in banner advertisements, pop-up ads, or website links.

Infected computers can spread Trojan malware to other computers. A cyber-criminal converts

the device into a zombie computer, giving them remote control over it without the user's

knowledge. The zombie computer can then be used by hackers to spread malware across a

network of devices known as a Botnet.

For example, a user may receive an email from a friend with an attachment that appears to be

legitimate. The attachment, on the other hand, contains malicious code that executes and

installs the Trojan on their device. The user may be unaware that anything unusual has

occurred because their computer may continue to function normally with no indication that it

has been infected.

The malware will remain undetected until the user performs a specific action, such as visiting

a specific website or using a banking app. The malicious code will be activated, and the

Trojan will carry out the hacker's desired action. The malware may delete itself, go dormant,

or remain active on the device depending on the type of Trojan and how it was created.

Trojans can also use mobile malware to attack and infect smartphones and tablets. This could

happen if the attacker redirects traffic to a Wi-Fi-enabled device and then uses it to launch

cyberattacks.

131

There are many different types of Trojan horse viruses that cyber criminals use to carry out

various actions and attack methods. The following are the most common Trojans:

Backdoor Trojan: A backdoor Trojan allows an attacker to gain remote access to and control

a computer via a backdoor. This gives the malicious actor complete control over the device,

allowing them to delete files, reboot the computer, steal data, or upload malware. A backdoor

Trojan is frequently used to create a Botnet by connecting zombie computers together.

Banker Trojan: a type of malware that targets users' banking accounts and financial

information. It tries to steal credit and debit card account information, as well as information

from e-payment systems and online banking systems.

Distributed denial-of-service attacks (DDoS) Trojan: These programmes carry out attacks

that cause a network to become overburdened with traffic. It will send multiple requests from

a single computer or a group of computers in order to overwhelm a specific web address and

cause a denial of service.

Downloader Trojan: targets a computer that has already been infected with malware and

then downloads and installs additional malicious programmes on it. This could be more

Trojans or other types of malwares, such as Adware.

Exploit Trojan: An exploit malware programme is made up of code or data that exploits

specific vulnerabilities in an application or computer system. The cybercriminal will target

users via a phishing attack and then use the program's code to exploit a known vulnerability.

Fake antivirus Trojan: a virus that masquerades as an antivirus. The Trojan mimics the

operations of legitimate antivirus software. The Trojan is designed to detect and remove

threats in the same way that a regular antivirus programme does, then extort money from

users for removing threats that may not exist.

Game-thief Trojan: is specifically designed to steal user account information from people

who are playing online games.

Instant messaging (IM) Trojan: This type of Trojan is designed to steal users' logins and

passwords from IM services. It specifically targets AOL Instant Messenger, ICQ, MSN

Messenger, Skype, and Yahoo Pager.

132

Infostealer Trojan: This malware can be used to either install Trojans or prevent users from

detecting the presence of a malicious programme. The components of information stealer

Trojans can make detection by antivirus systems difficult.

Mailfinder Trojan: A mail finder Trojan is designed to harvest and steal email addresses

stored on a computer.

Ransom Trojan: Ransom Trojans attempt to degrade a computer's performance or to block

data on the device, preventing the user from accessing or using it. The attacker will then

demand a ransom fee from the user or organisation in order to undo the device damage or

unlock the affected data.

Remote access Trojan: This type of malware, like a backdoor Trojan, grants the attacker

complete control of a user's computer. The cybercriminal keeps access to the device via a

remote network connection, which they use to steal data or spy on a user.

Rootkit Trojan: a type of malware that hides itself on a user's computer. Its goal is to prevent

malicious programmes from being detected, allowing malware to remain active on an

infected computer for a longer period of time.

Short message service (SMS) Trojan: SMS Trojans infect mobile devices and have the

ability to send and intercept text messages. Sending messages to premium-rate phone

numbers, for example, raises the cost of a user's phone bill.

Spy Trojan: Spyware Trojans are programmes that are designed to sit on a user's computer

and monitor their activities. Logging their keyboard actions, taking screenshots, accessing the

applications they use, and tracking login data are all part of this.

SUNBURST: The SUNBURST trojan virus was distributed on a number of SolarWinds

Orion Platforms. Trojanized versions of a legitimate SolarWinds digitally signed file named

SolarWinds.Orion.Core.BusinessLayer.dll compromised victims. The Trojanized file

functions as a backdoor. It will remain dormant on a target machine for two weeks before

retrieving commands that will allow it to transfer, execute, perform reconnaissance, reboot,

and halt system services. Communication takes place via HTTP to predefined URIs.

A Trojan horse virus can frequently remain on a device for months without the user realising

it. However, telltale signs of the presence of a Trojan include sudden changes in computer

133

settings, a decrease in computer performance, or unusual activity. The most effective way to

detect a Trojan is to search a device with a Trojan scanner or malware-removal software.

Trojan attacks have caused significant damage by infecting computers and stealing user data.

Trojan horses include the following well-known examples:

Rakhni Trojan: The Rakhni Trojan infects devices by delivering ransomware or a

cryptojacker tool, which allows an attacker to use a device to mine cryptocurrency.

Tiny Banker: Tiny Banker allows hackers to steal financial information from users. It was

discovered after infecting at least 20 banks in the United States.

Zeus or Zbot: Zeus, also known as Zbot, is a toolkit that allows hackers to create Trojan

malware that targets financial services. To steal user credentials and financial information,

the source code employs techniques such as form grabbing and keystroke logging. (Fortinet,

2023), (Eset, 2023), (Avast, 2023), (Kaspersky, 2023).

6.3 Experimental Evaluation

For the experimental evaluation, I have proposed the CNN model described in section 4

developed using the Python programming language and the Keras library. For all

experiments, 5-fold cross-validation has been used.

6.4 Evaluation Metrics

For the experimental evaluation, I have used the Python programming language and the

Keras machine learning library. With regards to evaluation metrics, I have used Accuracy,

Precision, Recall, and F1 which are described in equations 1, 2, 3, and 4 respectively. TP

stands for true positive, TN for true negative, FP for false positive, and FN for false negative.

Accuracy, which is equation 1, shows the overall performance. Another significant metric is

Precision which describes the portion of predicted Trojans and is calculated by equation 2.

Equation 3 explains the Recall metric which is the portion of Trojan that is correctly

classified. The F1-score is a number between 0 and 1 and is the harmonic mean of precision

and recall which is computed according to equation 4. These are well-known metrics that

have been used in recent studies for similar problems in Android malware detection (Cai et al.,

2021), (Gao et al., 2021), (Yadav et al., 2022).

134

Overall, my proposed method outperforms alternative classifiers in all metrics.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3)

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4)

6.5 Experimental Results

This section delivers the results of the experimental evaluation. Figure 25 presents the results

of the proposed method architecture for both the train and test accuracy over 6 epochs. Figure

26 presents the loss results over 6 epochs.

135

Figure 25. Accuracy for each of the 5 folds

Figure 25 shows the training and testing accuracy of the proposed 1D CNN model over 6

epochs. The training accuracy increases rapidly in the first 2-3 epochs as the model learns,

reaching over 90%. The testing accuracy steadily improves as well, indicating the model is

generalizing successfully to new data. The gap between training and testing is small,

demonstrating minimal overfitting. The fluctuations between epochs are due to shuffling the

order of samples for each training batch. The model converges by epoch 6 with final training

and testing accuracy around 97-98%. This aligns with the high accuracy results in Table 16,

validating the strong malware detection capability of the CNN architecture.

136

Figure 26. Loss for each of the 5 folds

Figure 26 presents the training and testing loss curves over epochs. As expected, the loss

decreases over time for both training and testing as the model optimizes. The testing loss

follows but slightly exceeds the training loss, reflecting a small generalization gap. The minor

spikes are attributed to shuffling samples between epoch batches. Lower loss directly

correlates with higher accuracy, so the final low losses confirm the excellent accuracy

achieved in Table 16. In summary, the loss plots also validate successful training of the 1D

CNN model to accurately classify Android trojans based on permissions.

6.6 Comparisons with Other Classifiers

The algorithms used in the comparisons are the following with the default settings used from

the sci-kit learn library: Decision Tree, Random Forest, and Multi-Layer Perceptron. The

results are presented in Table 16 which provides a comparison between the proposed method

and the other well-known classifiers using accuracy, precision, recall, and F1. 5-fold cross-

validation has been used throughout.

137

Algorithm Accuracy % Precision % Recall % F1 %

Decision Tree 96.1 95.8 95.7 95.9

Random Forest 97.9 97.7 97.3 97.5

Multi-Layer Perceptron 97.8 97.8 96.7 97.7

My Proposed Method 98.06 99 97.71 98

Table 16. Comparison with other classifiers

6.7 Comparisons with Other Related Works

Table 17 presents the obtained results from the proposed method compared to other works

that have applied classic Machine Learning approaches. Moreover, I distinguished Trojan and

benign applications just by utilizing given permissions, while some of the mentioned works

employed static and dynamic features. My results indicate that my method can detect

Android Trojans with very high accuracy based on only given permissions as features.

Reference Type Method Accuracy % Precision % Recall % F1 %

(Ullah et al.,

2022)

Hybrid

SVM 96.64

-

-

- LR 91.5

RF 86.68

DT 82.25

(Dehkordy &
Rasoolzadegan,

2020)

Hybrid

K-NN 97.83

-

-

- ID3 94.36

SVM 93.54

My Proposed

Method

Permissions CNN 98.06 99 97.71 98

Table 17. Comparisons of my approach with other related works

6.8 Conclusions

In this chapter, I have concentrated on Trojan detection on Android platforms. I have

collected a new dataset which I have made available, and I delivered a novel neural network

architecture that can detect Trojans with very high accuracy. The results indicate that by

using the permissions of Trojan and genuine Android apps, Trojans can be detected in a

straightforward way which can be useful to the research community and beyond.

138

7. Android Botnet Malware Detection

7.1 Introduction

Today, Android is one of the most well-known operating systems. It has millions of

applications that are distributed through accredited or unofficial distributors. As a result, it is

one of the most common targets for malicious cyber-attacks. The Play Store on Android is

not very restrictive, making it simple to install malicious apps. Botnet applications are

classified as malware because they can be distributed through these stores and downloaded

by unlucky users onto their smartphones. Botnets are among the most dangerous hacking

techniques used on the internet today. Botnet developers frequently target smartphone users

to instal malicious tools and target a larger number of devices. This is frequently done to gain

access to sensitive data such as credit card numbers or to cause damage to individual hosts or

organisational resources through denial of service (DDoS) attacks (Hijawi et al., 2021;

Alothman & Rattadilok, 2018).

Botnet attacks have become a threat and risk to the network and internet security in recent

years. They include several malicious activities in network traffic. A Botnet is made up of

separate robot and network components. The botmaster programmes and builds the bot for

specific purposes using computers known as zombies. In the network, these computers are

clearly breaking the law. Botnets are extremely widespread and can affect millions of

computers. Botnets are networks made up of personal computers and smart devices known as

bots. One or more attackers, known as botmasters, oversee these bots, and their goal is to

carry out malicious activities. In other words, bots contain harmful software that runs on host

computers and enables the botmaster to remotely command and control the system (Hosseini

et al., 2022).

The popularity and adoption of Android smartphones have attracted malware authors to

spread the malware to smartphone users. Malware on smartphones can take the form of

Trojans, Viruses, Worms, or mobile Botnets. Mobile Botnets, also known as Android

Botnets, are more dangerous because they pose serious threats by stealing user credentials,

sending spam, and launching distributed denial of service (DDoS) attacks. A mobile Botnet is

defined as a collection of compromised mobile smartphones that are controlled by a

139

botmaster via a command and control (C&C) channel and used to carry out malicious

activities (Yusof et al., 2018).

Although numerous studies have been conducted to detect Android Botnet attacks,

classification accuracy can still be improved. Insufficient or smaller data in the experiments

results in lower accuracy. Machine learning is incapable of handling large amounts of

unstructured data because it typically requires structured data and uses traditional algorithms.

The small size of the dataset is also to blame for Android Botnet detection's poor

performance. Because the size of the sample data collection is limited, the confidence in the

estimate decreases and the uncertainty increases, resulting in lower precision. More data is

always a good idea when it comes to achieving the high efficacy of Android Botnet detection.

Furthermore, the use of untrained data affects an effect on the detection of Android Botnets.

Trained data is the most important and primary data that machines use to learn and predict.

Increased training data provides more information and assist in better user fit (Balasunthar &

Abdullah, 2022).

As a result, according to the explanation provided, there is an urgent need to develop new

methods for defeating mobile Botnets. Because of the popularity of Android mobile devices,

the goal of this chapter is to propose an innovative method for detecting Botnets in Android-

based devices. This study aims to produce a new mobile Botnet classification/detection based

on permissions. For this purpose, I have created and introduced a new dataset based on

permissions. Moreover, the Botnet dataset is a classification dataset that only includes

legitimate Android apps and Botnets. I have created an optimised multilayer perceptron

neural network (MLP) that is highly accurate at detecting Botnets.

The contributions of this chapter are as follows:

• I introduced a novel dataset with 454 permissions as features to discover Botnets

through the Android operating system.

• I proposed an optimised multilayer perceptron neural network (MLP) to detect

Android Botnets.

• I evaluated my proposed method using well-known metrics with the results showing

that Botnets can be detected with very high accuracy practically.

140

7.2 Background

Botnets are a type of malware that enables an attacker to gain control of a victim’s computer.

The botmaster, C&C server, and bot-infected machines are common Botnet components. The

Botnet is designed to infect mobile phones or computers and make them under the control of

Botnet owners or the "Botmaster". Botmasters are those who operate the command and

control of Botnets to attack the target via a communication channel, such as HTTP, Internet

Relay Chat (IRC), or peer-to-peer (P2P). The botmaster will use a Botnet to attack the victim

in a variety of ways, including denial of service (DDoS) attacks, spamming, malware and

advertisement distribution, espionage, hosting malicious applications, and other activities.

The overview of a Botnet is demonstrated in Figure 27.

Figure 27. Overview of a Botnet structure

A Botnet includes three types of programmes:

A. Server programmes: These programmes are located on the command-and-

control server and are used to control infected computers or bots.

B. Client programme: These are programmes installed on infected computers

while they wait for control instructions.

C. Malicious programme: These are the software or programmes, also known as

malware, which are used over the Internet to infect or compromise vulnerable

computers.

141

Communication is the most important aspect of a Botnet. The command-and-control

server continues to communicate with bots, instructing them to engage in malicious be-

haviour. The bots, in turn, continue to wait for instructions, perform the tasks assigned to

them, and send the collected data to the command-and-control server (Baruah, 2019).

In general, Botnets have four main phases in their lifecycle.

A. Phase Of Spread and Infection:

Botmasters will employ various methods and techniques to infect new targets and

transform them into new bots. After infecting the target, it will run a script or shell

code and instal itself on the victim machine.

B. Phase Of Command & Control:

The command and control (C&C) mechanism creates a communication interface

between bot-bot, C&C servers-bots, and C&C servers-bot master. Command and

control mechanisms are classified into three types: centralised, decentralised, and

unstructured.

C. Phase Of Attack:

The Botnet is a collection of malicious activities that spread throughout computer

networks. DDoS attacks, spamming, spreading malware and advertisements,

espionage, and hosting malicious applications and activities are just a few examples

of attacks.

D. Phase Of Destruction:

After performing malicious activities, botmasters may destruct a portion of the Botnet

(Tansettanakorn et al., 2016).

Figure 28. Life cycle of a Botnet

Foundation
Command &

Control
Attack Post-Attack

142

Botnet attacks are typically carried out by a group of hackers, and the owner has no idea that

he or she is on the victim list. Botnets are currently classified into five types based on the

Command and Control (C&C) channel. Because the programme is developed by the methods

and techniques employed, the Botnets are divided into these categories. They are as follows:

A. IRC Botnet (Internet Relay Chat): An IRC Botnet is created by using a cen-

tralised system to monitor the victim to perform malicious activities, and the

targeted bots are controlled by the main C&C channel.

B. P2P Botnet (Peer to Peer): It is accomplished using P2P protocols and a de-

centralised system with a network of nodes that keeps it alive, containing the

attacked bots as well as all relevant data transmission.

C. HTTP Botnet: An HTTP Botnet is a centralised system-based structure that

conducts attacks via the HTTP protocol. The bots use a specific URL and IP

address specified by the main botmaster as the C&C server. These hacking at-

tempts are carried out for financial theft.

D. Mobile Botnet: This attack makes use of mobile phone sharing, Bluetooth

technology, and text messaging. The botmaster can easily access the data using

this method via the C&C Channel.

E. Botnet Cloud: This is a very difficult task, so the botmaster creates and manag-

es the bots using the cloud service, putting the bots at significant risk of being

discovered. (Natacea, 2023), (Spiceworks, 2023)

7.3 Experimental Evaluation

I have developed an optimised Multilayer Perceptron (MLP) using Python and the Scikit-

learn library, as described in section 5. Moreover, 5-fold cross-validation has been used

throughout all experiments. Using the proposed Botnet dataset, I trained and validated my

MLP neural network classifier using the Python programming language. The NumPy and

Pandas libraries are required for array operations and reading data from files. The simulation

is divided into four stages: defining the network's parameters, such as node numbers and

learning rate, reading the Botnet dataset, training the MLP neural network with a portion of

the dataset, and finally verifying the neural network with the rest of the dataset.

143

7.4 Evaluation Metrics

I used the Python programming language with the sci-kit-learn library for the experimental

analysis. I have used Accuracy, Precision, Recall, and F1 as evaluation metrics; these metrics

are described in equations 1, 2, 3, and 4 respectively. True positive, true negative, false

positive, and false negative are all abbreviated as TP, TN, FP, and FN, respectively. Equation

1's Accuracy demonstrates overall performance. Another important metric is Precision, which

is calculated using equation 2 and describes the percentage of predicted Botnets. The Recall

metric, or the percentage of Botnet that is correctly classified, is defined by Equation 3. The

F1-score is a number between 0 and 1 that represents the harmonic mean of precision and

recall as calculated by equation 4.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3)

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

7.5 Experimental Results

This section describes the experiments and compares the proposed method to other well-

known classifiers as well as the most relevant previous research in this field. For evaluating

the proposed method, I used my hand-crafted dataset and selected 1229 Android botnet

samples from 7 different families. All the benign samples were scanned with the VirusTotal

to make sure that the benign class does not include any malware samples. The dataset

consists of 2713 samples, and 5-fold cross-validation was used to evaluate the proposed

method using this dataset. All experiments were performed on a 64-bit Microsoft Windows

11 pro–operating system and using hardware with intel(R) Core (TM) i5-8365U @ 1.60GHz

1.90 GHz CPU, 16.00GB RAM, and an Intel UHD Graphics 620 GPU.

144

7.6 Comparisons with Other Classifiers

The following algorithms were used in the comparisons, with the default settings from the

sci-kit learn library: Decision Tree, Random Forest, KNN, SVM, and Naive Bayes. The

results are shown in Table 18 which compares the proposed method to other well-known

classifiers based on Accuracy, Precision, Recall, F-1, and AUC using 5-fold cross-validation.

In order to highlight the significance of this research result, a comparison is made with

previous similar research. Table 19 indicates the comparison between (Hojjatinia et al., 2020;

Yerima & To, 2022; Yerima & Bashar, 2022; Balasunthar & Abdullah, 2022) respectively. These

comparative results show that the research method surpasses previous similar efforts.

Algorithm Accuracy% Precision% Recall% F-1% AUC%

Decision Tree 96.50 98.36 94.14 96.20 96.37

Random Forest 98.15 97.63 98.41 98.02 98.17

K-NN 98.34 99.52 96.31 97.89 98.00

SVM 97.60 98.39 96.45 97.41 97.53

Naïve Bayes 79.18 68.53 99.59 81.19 81.00

My Proposed

Method

98.88 99.99 98.46 98.88 98.80

Table 18. Comparisons with other classifiers

The algorithms were implemented in Python using default parameters from scikit-learn.

While the proposed MLP achieves the highest accuracy, precision, recall and F1 scores,

examining the model settings provides more insight. The KNN model obtained strong results

with k=5, indicating 5 nearest neighbours works well for this problem. The RBF kernel

proved effective for SVM, able to capture non-linear patterns. Naive Bayes suffered from the

simplicity of its assumptions. The neural network's hidden layers extract hierarchical feature

representations, capturing complex data relationships missed by simpler models.

7.7 Comparisons with Other Related Works

Table 19 shows the obtained results from the proposed method compared to other researchers

that have used traditional Machine Learning approaches (in terms of the used dataset, number

of samples, and performance). The table indicates that the proposed method is completely

successful in classifying benign and Botnet applications. Moreover, I distinguished Botnet

and benign applications just by utilising given permissions, while some of the mentioned

works employed more features alongside given permissions such as API calls or permissions

145

protection level. My promising results indicate that my method can detect Android Botnets

based on only given permissions as features with high accuracy.

Reference Type Method Accuracy% Precision% Recall% F-1%

(Yerima &

Bashar,

2022)

Images and a

manifest file

HOG

97.5

98.0

98.0

98.0

(Balasunthar

& Abdullah,

2022)

Permissions

CNN-SVM

96.9

-

-

96.9

(Yerima &

To, 2022)

Manifest file

texts

CNN 95.44 95.4 95.4 95.4

ANN 96.35 96.4 96.4 96.3

(Hojjatinia

et al., 2020)

Permissions CNN 97.2 95.5 96 95.7

My

Proposed

Method

Permissions

MLP

98.88

99.99

98.46

98.80

Table 19. Comparisons of my approach with other related works

The dataset sizes vary across works and may impact accuracy. The proposed MLP obtains the

highest scores using 2,713 samples, more than in other works. API calls and manifest data are

leveraged alongside permissions in some methods, but my approach relies solely on

permissions. This highlights their significance for Botnet detection. While CNNs have proven

effective for malware classification, my MLP architecture directly models feature

relationships. Training time is another consideration - deep networks can be computationally

intensive to train versus simpler models. In summary, the permissions-only feature extraction,

larger dataset, and optimized MLP architecture contribute to superior precision, recall and F1

over previous methods.

7.8 Conclusions

In this chapter, I employed Android permissions and an optimised multilayer perceptron

(MLP) to propose a novel method to detect Android Botnets. To the best of my knowledge,

this is the first Android Botnet detection method that applies a dataset with 454 permissions

146

as a feature. Initially, I downloaded 2713 APK files from various categories from the Google

play store and other third-party websites to create our intended dataset based on permissions.

Then, reverse engineering was applied on 1483 benign and 1229 Botnet applications from my

hand-crafted dataset to extract the AndroidManifest.xml files that provided access to the

permissions given to each application. Finally, I trained and tested a proposed MLP model

using the employed dataset in a 5-fold cross-validation experiment. Based on my experi-

ments, the proposed methodology outperforms several conventional ML methods in this field

by achieving 98.88% accuracy and 99.99% precision. These promising results indicate that

the proposed methodology can practically detect Android Botnets by employing the given

permissions.

147

8. Android Malicious Adware Detection

8.1 Introduction

The global smartphone market has experienced exceptional growth, thanks to the vast

number of available applications and an open-source code platform that encourages app

developers to create Android apps for free. These applications are considered essential to

Android phones, as they drive innovation, leisure, accessibility, and compatibility with

mobile devices. However, Adware or mobile advertising in the form of banner ads, rich

media, or interstitial ads is increasingly infiltrating Android applications, posing a threat to

users. The use of mobile devices has become widespread in recent years, and they are now

essential to our daily lives, resulting in an exponential increase in mobile users and apps.

Android, with over 2 billion users, is the most popular operating system worldwide and is

thus a common target for malicious actors. Adware, a type of malware that displays unwanted

and often offensive advertisements, is a prevalent threat to Android users (Javaid et al., 2018;

Alani & Awad, 2022b).

Advertising is a marketing strategy that promotes products, ideas, and services. With the

emergence of the internet and smartphones, digital advertising has become increasingly

popular. Digital ads are displayed while browsing websites or using mobile applications, and

since many smartphones run on the Android platform, there is a vast ecosystem of Android

apps. However, digital advertising is plagued by fraudulent activity, with Adware being a

prevalent security threat used to collect marketing data or display ads for profit. Adware is

more common and effective than traditional malware and goes beyond the judicious

advertising found in freeware or shareware. Adware is often installed alongside other

programmes and can continue generating ads even when the user is not running the desired

programme (Ndagi & Alhassan, 2019).

Smartphones have become essential tools in our daily lives, and the amount of sensitive

information we store on them has made them prime targets for hackers. Malicious code can

be installed on smartphones, allowing hackers to steal personal information and profit from

advertising and micropayment systems. The number of mobile malware infections has grown

exponentially, and Android devices are particularly vulnerable due to the openness of the

148

Android market and their high market share. Malicious Adware-based hacking attacks have

become more intense and diverse over time, with the most common type infiltrating and

controlling users' Android devices. Malicious Adware has infected almost all current Android

versions, making many Android devices worldwide vulnerable to threats. Advertisements in

some free Android apps have become more aggressive, and users may not be aware of the

changes on their devices. Even popular apps may contain Adware, and users may not object

to it or be aware of its effects (Lee & Park, 2020).

Machine learning is an advanced technique used in cybersecurity to identify and classify

malware, including Adware, based on patterns and behaviours rather than just matching

signatures. Machine learning algorithms are trained on large datasets of known malware and

can detect new and previously unknown malware. These algorithms can learn to recognise

and classify Adware based on its behaviour, such as its use of network connections, data

transmission, and system modification, among other things. By detecting Adware through

behaviour analysis, machine learning can identify new strains of Adware that traditional

signature-based methods might miss. Machine learning can also help security experts quickly

develop new rules and signatures for identifying Adware and other malware, allowing for

faster and more effective responses to new threats. Machine learning is expected to play an

increasingly important role in cybersecurity as new and more complex forms of malware

continue to emerge (Bagui & Benson, 2021).

Therefore, a different approach is proposed to detect and classify Adware-based permission

analysis using deep learning. This chapter describes a permission-based Adware detection

algorithm that uses a Convolutional neural network (CNN). This research analyses the use of

machine learning as a possible defence against mobile Adware. I classified Android apps

based on the features obtained from static analysis. The static features, which are

permissions, are obtained from the VirusTotal Scanner website. To detect Android Adware

using permissions, I first created a new dataset and then utilised a tuned CNN algorithm. I

employed a deep-learning technique to analyse Android Adware and benign apps, based on

the dataset that I have created. Specifically, I considered experiments involving neural

networks. This study compared several ML algorithms, namely, Decision Tree (DT),

Random Forest (RF), K-Nearest Neighbour (K-NN), Support Vector Machine (SVM), Naive

149

Bayes (NB), Multilayer Perceptron (MLP), Logistic Regression (LR), and Linear

Discriminant Analysis (LDA).

8.2 Background

Adware is often distributed alongside other software, especially free software, or software

that users may be tempted to download. Once installed on a user's device, the Adware can

track their online activities and display targeted advertisements, which can be annoying or

even harmful. Adware can also slow down a device's performance and cause it to crash. To

avoid Adware, users should be cautious when downloading software and only download from

trusted sources. They should also keep their devices and software up to date with the latest

security patches and use reputable antivirus software. Additionally, users can install ad-

blocking software or browser extensions to block unwanted advertisements (Narayanan et al.,

2014).

Adware is installed on a user's device through a security flaw in an existing application.

Users can unknowingly download it as well. This can occur when users download an

Adware-infected application or use software that contains flaws that Adware authors can

exploit. Adware's goal is to get users to click on or otherwise interact with advertisements.

Adware developers and distributors profit when users click on the online advertisements

served by their Adware. There is legitimate Adware that users agree to, but it is often

unwanted. Adware is frequently just an annoyance, but it can also contain malicious threats.

Figure 29 demonstrates how malicious Adware works.

150

Figure 29. Demonstration of how malicious adware works

Adware is any software programme, whether malicious or not, that can display

advertisements on a personal computer. Malicious programmes that display misleading

advertisements, blinking pop-up windows, massive digital billboards, and full-screen auto-

play advertisements within an internet browser are the most common examples. The term is a

compound of the words "advertising" and "software." The developer earns money every time

someone clicks on an advertisement displayed by Adware. Some types of Adware may

interfere with your web browsing experience by directing you to malicious websites. Then,

without your knowledge, some collect your browsing information and use it to serve you

advertisements that are more tailored to your preferences and thus more likely to be clicked

on. When Adware first became popular in 1995, many industry professionals assumed it was

all spyware, which is software that allows someone to obtain covert data from a computer

without the user's knowledge. Adware was demoted to the status of a "potentially undesirable

application," or PUA, as its credibility grew. As a result, despite its widespread use, little was

done to ensure its legality. Adware makers did not begin monitoring and blocking

problematic behaviour until the peak Adware years of 2005-2008.

151

Many people mix up Adware and malware, malicious software designed to harm a computer

or server. Malware includes viruses, spyware, worms, and some types of Adware. Pop-up

ads, inaccessible panels, and other types of malicious Adware can infect computers. Once

dangerous Adware has infiltrated a computer, it may perform a variety of malicious activities,

such as tracking the user's location, query history, and web browser viewing history, which

the malware programmer can then monetize by selling to third parties.

Adware is a cyber-security term that refers to Adware applications that exhibit dangerous or

irregular behaviour. Adware is classified as spyware when it tracks users' activities without

permission. Fraudsters take advantage of flaws in the validation process of ad networks or

flaws in a consumer's browser. When a user visits an infected website, malicious Adware can

spawn pop-ups, pop-unders, and persistent windows that allow for drive-by installations.

Visitors who disable ad blockers may be at risk of infection. Adware applications have been

discovered that prevent antivirus software from running. Because some Adware software is

legal or does not have uninstallation processes, security software may be unable to identify

which Adware applications are truly dangerous.

Adware is most commonly associated with annoying pop-up windows and advertisements,

but it can also take other forms. It is critical to distinguish between harmless and dangerous

Adware. The following are the most common types of Adware:

1. Legitimate Adware

Adware of this type allows you to subscribe to advertisements and software promotions,

allowing developers to distribute their programmes for free by offsetting their expenses.

Users instal this type of Adware on purpose to obtain a free item. You can also choose to

allow it to collect marketing data. All programmers, including reputable ones, create

legitimate Adware because providing clients with a free product is a legitimate and fair

method of gaining adoption. However, not all software downloads are agreed upon by both

the distributor and the user. In this situation, the line between legal and illegal blurs.

2. Potentially unwanted applications (PUAs)

PUAs are unwanted software packages that are bundled with legitimate complementary

software applications. PUPs, or potentially unwanted programmes, are another name for

them. Although not all PUAs are malicious, some may exhibit intrusive behaviours such as

displaying pop-up advertisements or slowing down your device. It can slow down a

152

computer's performance and potentially introduce security issues such as spyware and other

unwanted software.

3. Legal abusive adware PUA

PUAs, both legal and abusive, are designed to bombard you with advertisements. Excessive

advertising can be found in packaged software, internet browser toolbars, and other places.

This is also legal because no malware is involved. Ads for fitness pills, for example, are

common in Adware like this.

4. Legal deceptive adware PUA

This category includes legal Adware that deceives the user in some way. This type of PUA

may make it difficult to uninstall secure third-party software. This strategy is occasionally

used by legal Adware, and it is lawful if the developer did not put malware-infected

advertising or software there on purpose. Unfortunately, certain Adware can inadvertently

infect devices with malware.

5. Illegal malicious adware PUA

This category includes malicious Adware that is either illegal to use or distribute. The PUA

earns money by distributing malicious programmes to machines such as spyware, viruses,

and other malware. The malware could be hidden within the Adware, the websites it

promotes, or other software programmes. The authors and distributors are spreading this

threat on purpose and may employ aggressive tactics (Lutkevich, 2021).

According to (BasuMallick, 2022), deceptive and abusive Adware is designed to manipulate

users into interacting with advertisements or to obtain consent through deceptive means, such

as bombarding them with unwanted ads or making it difficult to uninstall unwanted software.

While Adware is not inherently malicious, it can create vulnerabilities that may be exploited

by malicious software. Only Adware that is specifically designed to deliver harmful software

to the user is considered malicious. Some types of malicious Adware include the following:

1. Spyware: Adware can contain code that tracks and records a user's personal information

and internet browsing habits. If this data is collected without the user's knowledge or consent

and sold to third parties, it is considered spyware. Many privacy advocates are critical of

these practices.

2. Potentially unwanted programs (PUPs): Malicious Adware or spyware can be bundled

with free or shareware software downloaded from the internet. Users may unknowingly

153

download Adware from an infected website. Antimalware programs often flag Adware as a

potentially unwanted program, regardless of whether it is malicious or not.

3. Man-in-the-middle (MitM) attacks: Adware can also be used in MitM attacks, where the

attacker routes user traffic through the Adware vendor's system, even over secure connec-

tions. The communicating parties believe they are exchanging information securely, but the

attacker can collect and manipulate sensitive information during the conversation.

Some common advertisement attacks are described and explained in the sections that follow.

The impact of threats and attacks on an adversary, developers, users, and platform ends is de-

scribed in Table 20, which summarises their relationship.

Attacks/Threats Adversary End Developer End User End Android End

Malware Unauthorized Data

Collection

Code Level Security

Issues

Victim Data Exposure

to other apps

Malicious Ads Attack Generator

(e.g., DDoS attack)

Victim Victim Lack of Security

Control

Malicious Ad-

Libraries

Attack Generator Money making &

Lack of

Security Check

Victim No Privilege

Escalation

Permission

Misuse

Developer’s ac-

cessed

Permissions misuse

Ad-Libraries accessed

Permissions misuse

Victim No Privilege

Escalation

MitM Attack Generator Targeted Applications Victim Lack of Security

Control

Certificate

Compromise

Targeted Sites via

Valid certificate

Lack of Security

Check

Victim Lack of Security

Control

Click-Fraud

Attack

Victim Make Money or

Exhaust Adversary

Security

Exploitation

Lack of Security

Control

Table 20. Attacks/Threats and their impact on user’s privacy

Attack/Threats are described below:

• Adversary End: This refers to an attack that occurs due to the presence of malicious

advertisement libraries or networks. These libraries or networks may be designed to

serve ads that contain malware or to redirect users to phishing or other malicious web-

154

sites. When users interact with these ads, they may inadvertently download malware

or give away sensitive information.

• Developer End: The two directions in which developers launch attacks are against

advertisers, to exhaust their budget and abuse power, and against users, to steal per-

sonal information or make money. The terms "Adversary End" and "Developer End"

are interrelated because app developers and ad libraries collaborate with each other.

They share permissions and are located in the same code piece with the same UID.

These two categories are separated only for the purpose of better understanding their

behaviour.

• User End: refers to the end-users of a system who may be vulnerable to attacks due to

their lack of security awareness, knowledge, and implementation of existing defensive

measures. This means that users may not be aware of potential security risks and how

to protect themselves from them, such as using strong passwords, avoiding clicking

on suspicious links, and regularly updating their software. As a result, they become

easy targets for attackers who can steal their personal information, and financial data,

or use their devices for malicious purposes.

• Android End: The security control of the Android platform is a significant factor,

which has some vulnerabilities, including the absence of privilege escalation, ad

SDKs, and application code permissions for developers.

As described in Table 20 summarizes the relationship between them where the impact of

attacks/threats on ‘Adversary developers’, users and platforms are described.

• Malware: The term malvertising is used to describe online advertisements that dis-

tribute malware (Lutkevich, 2021). Malware can be transmitted to an Android device

through malicious software or advertisements. Users may be directed to other pages

where they can download additional software or malicious applications by clicking on

these ads while using the app. The majority of Android malware is in the form of Tro-

jans.

• Malicious Ads: Malicious Ads: It is related to malware injection in some ways. The

separation from malware serves only to categorise malicious advertisements. Malware

can, however, be injected through the code of developers or malicious libraries.

• Click-Fraud Attack: Adware attacks can occur not only on Android devices but also

on ad networks. These attacks aim to exploit security vulnerabilities in the Android

platform and other systems. Click fraud is an example of a cyber-criminal activity that

155

has become increasingly common. Attackers use Adware to generate fraudulent

clicks, with the goal of either increasing revenue for developers or depleting the

budget of advertisers.

• Malicious Ad-Libraries: One type of attack involves the use of malicious ad-libraries

that have access to sensitive information. These libraries can collect data through the

permission mechanism and send targeted ads to users. A developer can use up to 65 of

these libraries simultaneously, giving them access to a significant amount of personal

data. This type of attack can be especially dangerous as it can result in the theft of

sensitive information.

• Permission Misuse: Permissions are crucial for application security, but their misuse

can lead to various attacks. Malware injection, malicious ads, malicious advertisement

libraries, and authorities misusing permissions are the primary causes of Android

phone rooting. However, rooting is only beneficial if done by the user to gain com-

plete access to the device. Malicious software can also root the phone and take com-

plete control of it, which is a significant security concern. Therefore, applications

should not be granted "super-user access" even if the phone is rooted.

• Man-in-the-Middle Attack: a type of attack that targets smartphone users. This attack

is classified as MiTM because it involves intercepting communication between two

parties, with the attacker positioned in the middle, allowing them to read or modify

data in transit. Examples of this type of attack include SSL hijacking, SSL stripping,

and DNS spoofing.

8.3 Experimental Evaluation

I developed a tuned convolutional neural network (CNN) with Python and the Scikit-learn,

Keras, and TensorFlow libraries. Furthermore, 5-fold cross-validation was used in all exper-

iments. I used the Python programming language to train and validate my neural network

classifier on my malicious Adware dataset. For array operations and reading data from files,

the NumPy and Pandas libraries are required. The simulation is divided into the following

stages: defining the network's parameters, such as node numbers and learning rate, reading

the dataset, training the neural network, and finally validating the neural network with the

remaining dataset. Figure 30 demonstrates the simulation stages.

156

Figure 30. Demonstration of simulation stages

8.4 Evaluation Metrics

In the experiments conducted, I utilised the Python programming language, alongside the

scikit-learn, Keras, and TensorFlow libraries. To assess the performance of our approach,

I employed evaluation metrics such as Accuracy, Precision, Recall, and F1, which are

specified in equations 1, 2, 3, and 4, respectively. The acronyms TP, TN, FP, and FN cor-

respond to true positive, true negative, false positive, and false negative, respectively. Ac-

curacy, calculated via Equation 1, provides an overall indication of model performance.

Precision, determined using Equation 2, describes the proportion of predicted Adware and

is another vital metric. The Recall metric, as defined in Equation 3, represents the per-

centage of correctly classified Adware. Additionally, I utilised the F1-score, which is a

number between 0 and 1 that determines the harmonic mean of precision and recall, as

expressed by Equation 4.

The basic four performance measures of a binary ML-based classifier are:

• True Positives (TP) is a performance metric that represents the number of positive

samples that are correctly classified as positive by a binary machine learning classifi-

er. It is calculated by dividing the number of test instances are true and predicted val-

ues are 1 (positive) by the total number of test instances whose true value is 1.

• False Positives (FP) refer to the number of instances in which a negative sample is

predicted as positive by a binary machine learning classifier. It is calculated as the

number of test instances whose true value is 0 and the predicted value is 1, divided by

the number of test instances whose true value is 0.

• True Negatives (TN) refer to the number of negative samples that are correctly classi-

fied as negative by the binary classifier. Specifically, it is the number of test instances

whose true value is negative (0) and the predicted value is also negative (0), which is

then divided by the total number of test instances whose true value is negative (0).

Network’s

Parameters

Definitions

Reading the

Dataset

Neural

Network

Training

Neural

Network

Validation

157

• False Negatives (FN) are the number of positive samples that were incorrectly classi-

fied as negative. This is calculated by counting the number of test instances whose

true value is 1 (positive) and the predicted value is 0 (negative), and then dividing by

the total number of test instances whose true value is 1 (positive).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3)

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

8.5 Experimental Results

This section describes the experiments and compares the proposed method to other well-

known classifiers as well as the most relevant previous research in this field. I used a self-

made dataset to evaluate the proposed method and selected 500 Android malicious Adware

samples from 10 families. All the benign samples were scanned through the VirusTotal scan-

ner to make sure that the benign class does not include any malware samples. The dataset

contains 2000 samples, and the proposed method was evaluated using 5-fold stratified cross-

validation on this dataset. In addition, all experiments were carried out on a 64-bit Microsoft

Windows 11 Professional operating system with hardware including an Intel(R) Core (TM)

i5-8365U @ 1.60GHz 1.90GHz CPU, 16.00GB RAM, and an Intel UHD Graphics 620 GPU.

8.6 Comparisons with Other Classifiers

In the comparisons, the following algorithms were used with the sci-kit learn library's default

settings: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbour(K-NN), Support

Vector Machine (SVM), Naive Bayes (NB) and Multilayer Perceptron (MLP). Figures 31 and

32 show the training/test accuracy and loss over the course of 5 epochs for each of the five

folds for the 5-fold cross-validation for the 1st run the final evaluation results of which are

158

presented in the top row of Table 21. Table 21 shows the accuracy, precision, recall and F1

scores across 5 different cross-fold executions and at the end is the average of these

completed executions. Table 22 compares the proposed method to other well-known

classifiers in terms of Accuracy, Precision, Recall and F-1 using 5-fold cross-validation.

Figure 31. Training and test accuracy over epochs

Figure 31 shows the training and testing accuracy of the proposed MLP model over 5 epochs.

The training accuracy increases rapidly in the first 2 epochs as the model learns, exceeding

95%. The testing accuracy also steadily improves, indicating successful generalization. The

minimal gap between training and testing demonstrates little overfitting. The minor

159

fluctuations are due to shuffling the order of samples for each training batch between epochs.

The model converges by epoch 5 with final training and testing accuracy around 98%,

aligning with the strong results in Table 21. This confirms the malware detection capability

of the MLP architecture.

Figure 32. Model loss over epochs

Figure 32 presents the training and testing loss curves over epochs. As expected during model

convergence, the loss decreases over time for both training and testing data. The testing loss

follows but slightly exceeds the training loss, reflecting a small generalization gap. Minor

spikes are attributed to shuffling samples between epoch batches. Lower loss directly

correlates with higher accuracy, so the final low losses validate the excellent accuracy

160

achieved in Table 21. In summary, the loss plots confirm successful training of the MLP

model to accurately classify Android Botnets based solely on permissions.

Execution No Accuracy % Precision % Recall % F1 %

Run 1 98.35 98.51 98.19 98.34

Run 2 98.53 98.41 98.67 98.53

Run 3 97.76 97.21 98.35 97.77

Run 4 98.91 98.83 98.99 98.90

Run 5 97.65 97.61 97.71 97.65

Average 98.24 98.11 98.38 98.24

Table 21. Evaluation results

Algorithm Accuracy % Precision % Recall % F1 %

DT 94.00 89.50 93.54 91.48

RF 96.66 94.20 94.89 94.54

K-NN 96.00 89.24 95.29 94.00

SVM 95.33 89.86 95.68 92.68

NB 94.88 92.68 93.25 92.96

MLP 95.77 91.30 95.71 93.92

My Proposed

Method

98.24 98.11 98.38 98.24

Table 22. Comparisons with other classifiers

8.7 Comparisons with Other Related Works

Table 23 presents the obtained results from the proposed method using CNN compared to

other aware studies that have used classic Machine Learning approaches. The table indicates

that the proposed method is completely successful in classifying benign and malicious Ad-

ware applications. My results with high accuracy indicate that my method can practically de-

tect Android malicious Adware based on only given permissions as features by applying a

tuned CNN model.

161

Reference Type Method Accuracy% Precision% Recall% F1%

AdStop

(Alani &

Awad,

2022b)

Network Traf-

fic
MLP1

95.7

94.7

93.9

93.7

(Dobhal et

al., 2020)

Adware Be-

havior

LR2 96.0 94.5 94.9 94.6

LDA3 96.2 94.3 95.7 95.0

K-NN4 95.1 92.4 95.2 93.6

DT5 94.2 92.2 91.8 92.5

NB6 68.8 71.2 77.1 67.0

(Lee & Park,

2020)
Features

Dynamic

Random

Forest7

96.6

95.1

95.4

95.1

AdDetect

(Narayanan

et al., 2014)

Module of apps SVM8

95.4

93.7

94.1

93.8

MadDroid Permissions CNN 98.24 98.11 98.38 98.24

Table 23. Comparisons with the other works

The algorithms used in the comparisons are the following:

1 Multilayer Perceptron: activation: 'relu', solver: 'adam', learning_rate_init: 0.001, 200 iterations

2 Linear Regression: fit_intercept: True, normalize: False, copy_X: True, n_jobs: None, positive:

False, precompute: False

3 Linear Discriminant Analysis: solver: 'svd'

4 K-Nearest Neighbor: n_neighbors: 5

5 Decision Tree: criterion: "gini", splitter: "best

6 Naive Bayes: priors: None, var_smoothing: 1e-9

7 Random Forest: n_estimators: 100

8 Support Vector Machine: C: 1.0, kernel: 'rbf', degree: 3, gamma: 'scale', coef0: 0.0, shrinking:

True, probability: False

8.8 Conclusions

In this chapter, I present a novel method for detecting malicious Android Adware using

Android permissions and a tuned convolutional neural network. To the best of my

knowledge, I am the first researchers to use permissions as features and apply the CNN

162

model to detect malicious Android Adware. To begin, I downloaded 1500 benign APK files

from the Google Play Store from various categories and 500 APK files infected with

malicious Adware to create my own dataset based on permissions. The AndroidManifest.xml

files that provided access to the permissions granted to each application were then extracted

using reverse engineering from 1500 benign and 500 malicious Adware apps from my

dataset. Finally, in a 5-fold cross-validation experiment, I trained and tested a proposed CNN

model using the employed dataset. My experiments show that the proposed method

outperforms several conventional ML methods in this field, achieving 98.24% accuracy and

98.11% precision. These promising results suggest that the proposed method can detect

Android Adware using the permissions provided.

163

9. Research Conclusions and Proposed Future Works

9.1 Discussion

The results of my research demonstrate the efficacy of using machine learning techniques to

detect malicious antimalwares and VPNs, Android Trojans, mobile Botnets, and malicious

Adwares on Android devices. By leveraging application permissions, I was able to develop

specialized datasets and models for each type of malware, which led to high accuracy rates in

identifying harmful applications.

One of the key benefits of my approach is its ability to detect targeted threats that may be

missed by traditional signature-based approaches. The use of application permissions

provides a more fine-grained view of the behaviour of an application, which enables the

detection of malicious apps that may appear benign based on their code alone. Additionally,

the models I developed are able to adapt to new and emerging threats by learning from new

data, making them more resilient to novel attacks. Another advantage of our approach is its

scalability. With the rapid growth of mobile devices and applications, the number of potential

threats is increasing exponentially, making manual detection infeasible. Machine learning

techniques enable automated detection and classification of malware, which can significantly

reduce the workload of security analysts and enable more timely responses to emerging

threats.

Despite these benefits, there are some limitations to my approach. One limitation is the

potential for false positives, where legitimate applications may be classified as malicious due

to their permissions. While my models achieved high accuracy rates, they may still

misclassify some applications, leading to unnecessary alerts and user frustration. This

emphasizes the need for a balance between accuracy and usability in mobile security

solutions. Another limitation is the reliance on the accuracy of the application permissions

reported by the Android operating system. Malware authors may attempt to obfuscate their

true behaviour by manipulating the permissions requested by their applications. This can lead

to incorrect assumptions about the behaviour of an application and reduce the effectiveness of

my models. Additionally, some malware may attempt to exploit vulnerabilities in the Android

system to bypass permission checks altogether.

164

Despite these limitations, I believe that my work provides a valuable contribution to the field

of mobile security. By demonstrating the effectiveness of machine learning techniques in

detecting targeted mobile threats, I hope to inspire further research in this area and enable the

development of more robust and effective security solutions for mobile devices.

9.2 Novelty

The novelty of my proposed approaches relies on in the security aspect and more particularly

it uses permissions of Android malware to detect malicious antimalwares, VPNs, Trojans,

Botnets and Malicious Adwares and shows how a neural network should be trained and tuned

to maximize accuracy. It is the first method in the literature that is based on app permissions

and neural networks to identify malicious antimalwares, VPNs, and Trojans, Botnets, and

Malicious Adwares. While other works that are based on permissions exist, these are

generally used for all kinds of android malware detection. Therefore, having a tuned neural

network based on permissions it is a fast and accurate way to detect malicious antimalwares

and VPNs only which is a very important sub-category of Android malware. While other

methods can detect malware, they do it either for all types of malwares which requires large

datasets and the methods applied to make it computationally expensive. Thus, this study

investigates how a permission-based analysis can provide a robust method that is able to

identify malicious Anti-malware, VPN as well as Trojan, Botnet, and Malicious Adware apps

in Android. To achieve this, I collected antimalwares, VPNs and Trojans, Botnets, and

Malicious Adwares from official online stores and analysed them using VirusTotal website.

This work provides datasets of 1200 antimalwares, 1300 VPNs and 2593(1058 Trojans and

1535 Benign), 2713(1229 Botnets and 1483 Benign) and 2000 (500 Malicious Adwares and

1500 Benign) including permissions plus tuned neural network platforms which identify

harmful antimalwares, VPNs, and Trojans, Botnets, and Malicious Adwares. The platforms

are fast, secure, and reliable and can identify malicious antimalwares, VPNs, and Trojans,

Botnets, and Malicious Adwares and uses an optimised neural network.

9.3 Limitations

The features used are limited to application permissions. Additional static or dynamic

features like API calls, network traffic, resource usage etc. could provide a more

comprehensive view of app behaviour and improve detection accuracy. Relying solely on

permissions may miss some types of malware obfuscation techniques. Furthermore, I need to

assess the robustness of my models against adversarial attacks. Adversaries may try to avoid

165

detection by changing the permissions of the application or introducing subtle changes to the

malware code. Future research will focus on developing techniques to detect and defend

against such attacks. Finally, I'll need to expand my work to other mobile platforms like iOS

and Windows Mobile. While my models are designed for the Android operating system,

similar approaches could be used to address the growing threat of mobile malware on other

platforms. All in all, there are numerous opportunities for improvement and expansion in this

area's future work, and I hope that my work will inspire further research in this field.

9.4 Conclusion

Finally, by addressing the critical issue of detecting Android malware, this thesis has made a

significant contribution to the field of mobile security. I have demonstrated that targeted and

precise detection of various types of malware is possible using machine learning techniques

and specialised datasets. I have achieved high accuracy in identifying malicious antimalwares

and VPNs, Android Trojans, mobile Botnets, and malicious Adwares by proposing novel

approaches to feature engineering and model optimisation. One of my approach's main

strengths is the creation of tailored datasets for each type of malware. My datasets were able

to capture unique features and behaviours of the malware by focusing on specific application

permissions, allowing for more effective detection. Furthermore, my proposed neural

network architectures, which included techniques like dropout, batch normalisation, and

transfer learning, were optimised to achieve high accuracy rates while avoiding overfitting.

This study's findings have significant implications for the field of mobile security. Traditional

signature-based approaches are becoming less effective as the number and sophistication of

Android malware grows. My approach's targeted and precise detection has the potential to

greatly improve the ability to detect and mitigate mobile malware threats, resulting in a safer

and more secure mobile ecosystem for users. Although my research has focused on Android

malware detection, the method I developed is applicable to other types of mobile devices and

operating systems. The application of machine learning techniques and specialised datasets

has the potential to transform the field of mobile security by providing a scalable and

adaptable solution capable of keeping up with the rapid growth and evolution of mobile

devices and applications.

166

Overall, this thesis adds to the field of mobile security by demonstrating the efficacy of

machine learning techniques in detecting targeted mobile threats. I demonstrated that precise

and scalable detection of various types of malware is possible by developing specialised

datasets and optimised neural network architectures. This research has significant

implications for mobile security, and I hope that it will inspire additional research and

development in this field to address the growing threat of mobile malware.

9.5 Future Work

While my research has yielded promising results in detecting malicious antimalwares and

VPNs, Android Trojans, mobile Botnets, and malicious Adwares based on application

permissions, there are still several avenues for further investigation. One possibility is to

investigate the use of features other than application permissions to improve the performance

of our models. Device metadata such as hardware and software configurations, for example,

could be included to provide a more comprehensive view of the device's security posture.

Furthermore, network traffic and user behaviour data could be used to improve the accuracy

of my models. Another possible avenue of research is to look into the use of alternative

machine learning techniques such as ensemble models, deep learning, and transfer learning.

Ensemble models combine multiple models to improve prediction accuracy, whereas deep

learning techniques can learn more complex and abstract data representations automatically.

Transfer learning can improve performance on new, related tasks by leveraging pre-trained

models on similar tasks.

167

References
Aafer, Y., Du, W. and Yin, H. (2013). DroidAPIMiner: Mining API-level features for robust malware

detection in android. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering, LNICST.

Abdul Kadir, A. F., Stakhanova, N. and Ghorbani, A. A. (2015). Android Botnets: What URLs are telling

us. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics).

Alani, M. M. and Awad, A. I. (2022a). AdStop: Efficient flow-based mobile adware detection using

machine learning. Computers & Security, 117: 102718.

Alani, M. M. and Awad, A. I. (2022b). AdStop: Efficient flow-based mobile adware detection using

machine learning. Computers & Security, 117: 102718.

Alothman, B. and Rattadilok, P. (2018). Android botnet detection: An integrated source code mining

approach. In: 2017 12th International Conference for Internet Technology and Secured

Transactions, ICITST 2017.

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression.

American Statistician, 46.

Amer, E. (2021). Permission-Based Approach for Android Malware Analysis through Ensemble-Based

Voting Model. In: 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference,

MIUCC 2021.

Amro, B. (2017). Malware Detection Techniques for Mobile Devices. International Journal of Mobile

Network Communications & Telematics, 7.

Android Developers (2020). Permission (on-line).

AppBrain (2023). Number of available applications in the Google Play Store (on-line).

https://www.appbrain.com/stats/number-of-android-apps. Accessed 1 March 2023.

Apvrille, A. (2012). Symbian worm Yxes: Towards mobile botnets? Journal in Computer Virology, 8.

Apvrille, A. (2014). The evolution of mobile malware. Computer Fraud and Security, 2014.

Armando, A., Carbone, R., Costa, G. and Merlo, A. (2015). Android Permissions Unleashed. In:

Proceedings of the Computer Security Foundations Workshop.

Arora, A., Peddoju, S. K. and Conti, M. (2020). PermPair: Android Malware Detection Using

Permission Pairs. IEEE Transactions on Information Forensics and Security, 15.

Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H. and Rieck, K. (2014). Drebin: Effective and

Explainable Detection of Android Malware in Your Pocket.

Arshad, S., Ali, M., Khan, A. and Ahmed, M. (2016). Android Malware Detection & Protection: A

Survey. International Journal of Advanced Computer Science and Applications, 7.

Arslan, R. S., Doǧru, I. A. and Barişçi, N. (2019). Permission-Based Malware Detection System for

Android Using Machine Learning Techniques. International Journal of Software Engineering and

Knowledge Engineering, 29.

Arul, E. and Punidha, A. (2021). Adware Attack Detection on IoT Devices Using Deep Logistic

Regression SVM (DL-SVM-IoT).

168

Atkinson, T. and Cavallaro, I. L. (2017). Hunting ELFs : An investigation into Android malware

detection.

Aung, Z. and Zaw, W. (2013). Permission-Based Android Malware Detection. International Journal of

Scientific & Technology Research, 2.

Avdiienko, V., Kuznetsov, K., Gorla, A., Zeller, A., Arzt, S., Rasthofer, S. and Bodden, E. (2015). Mining

apps for abnormal usage of sensitive data. In: Proceedings - International Conference on

Software Engineering.

Azmoodeh, A., Dehghantanha, A., Conti, M. and Choo, K. K. R. (2018). Detecting crypto-ransomware

in IoT networks based on energy consumption footprint. Journal of Ambient Intelligence and

Humanized Computing, 9.

Bagui, S. and Benson, D. (2021). Android Adware Detection Using Machine Learning. International

Journal of Cyber Research and Education, 3.

’Bahar, Z. (2022). Your free VPN app could be a trojan: How to spot fake vpns, NordVPN (on-line).

https://nordvpn.com/blog/fake-vpn/. Accessed 7 February 2023.

Balasunthar, S. and Abdullah, Z. (2022). Comparison of Convolutional Neural Network and Artificial

Neural Network for Android Botnet Attack Detection. Applied Information Technology And

Computer Science, 3.

Baruah, S. (2019). Botnet Detection : Analysis of Various Techniques Sangita Baruah a. International

Journal of Computational Intelligence & IoT (IJCIIoT): Proceedings, 2.

BasuMallick, C. (2022). What Is Adware? Definition, Removal, and Prevention Best Practices for 2022

(on-line). https://www.spiceworks.com/it-security/security-general/articles/what-is-adware/.

Accessed 15 February 2023.

Bayazit, E. C., Sahingoz, O. K. and Dogan, B. (2022). A Deep Learning Based Android Malware

Detection System with Static Analysis. In: 2022 International Congress on Human-Computer

Interaction, Optimization and Robotic Applications (HORA). IEEE. pp.1–6.

Benats, G., Bandara, A., Yu, Y., Colin, J. N. and Nuseibeh, B. (2011). PrimAndroid: Privacy policy

modelling and analysis for android applications. In: Proceedings - 2011 IEEE International

Symposium on Policies for Distributed Systems and Networks, POLICY 2011.

Benton, K., Camp, L. J. and Garg, V. (2013). Studying the effectiveness of android application

permissions requests. In: 2013 IEEE International Conference on Pervasive Computing and

Communications Workshops, PerCom Workshops 2013.

Bhatnagar, V. and Sharma, S. (2012). Data Mining : A Necessity For Information Security. Journal of

Knowledge Management Practice, 13.

Blowers, M., Fernandez, S., Froberg, B., Williams, J., Corbin, G. and Nelson, K. (2014). Data Mining in

Cyber Operations. Advances in Information Security, 61.

Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning

algorithms. Pattern Recognition, 30.

’BRATISLAVA, K. (2022). Eset Research: Bahamut Group targets android users with fake VPN apps;

spyware steals users’ conversations, ESET (on-line).

https://www.eset.com/int/about/newsroom/press-releases/research/eset-research-bahamut-

169

group-targets-android-users-with-fake-vpn-apps-spyware-steals-users-convers/. Accessed 7

February 2023.

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T. and Sadeghi, A. (2011). XManDroid: A New Android

Evolution to Mitigate Privilege Escalation Attacks. Technische Universität Darmstadt, Technical

Report.

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A. and Shastry, B. (2012). Towards Taming

Privilege-Escalation Attacks on Android. In: Proceedings of the 19th Annual Network &

Distributed System Security Symposium.

Burguera, I., Zurutuza, U. and Nadjm-Tehrani, S. (2011). Crowdroid: Behavior-based malware

detection system for android. In: Proceedings of the ACM Conference on Computer and

Communications Security.

Cai, H., Meng, N., Ryder, B. and Yao, D. (2019). DroidCat: Effective android malware detection and

categorization via app-level profiling. IEEE Transactions on Information Forensics and Security,

14.

Cai, L., Li, Y. and Xiong, Z. (2021). JOWMDroid: Android malware detection based on feature

weighting with joint optimization of weight-mapping and classifier parameters. Computers and

Security, 100.

Canfora, G., Mercaldo, F., Medvet, E. and Visaggio, C. A. (2015). Detecting Android malware using

sequences of system calls. In: 3rd International Workshop on Software Development Lifecycle

for Mobile, DeMobile 2015 - Proceedings.

CheetahMobile (2014). 2014 Half Year Security Report (on-line). https://www.cmcm.com/blog/2014-

07-18/186.html. Accessed 5 March 2023.

Chen, J., Alalfi, M. H., Dean, T. R. and Zou, Y. (2015). Detecting Android Malware Using Clone

Detection. Journal of Computer Science and Technology, 30.

Chen, T., Mao, Q., Yang, Y., Lv, M. and Zhu, J. (2018). TinyDroid: A lightweight and efficient model for

android malware detection and classification. Mobile Information Systems, 2018.

Chin, E., Felt, A. P., Greenwood, K. and Wagner, D. (2011). Analyzing inter-application

communication in Android. In: MobiSys’11 - Compilation Proceedings of the 9th International

Conference on Mobile Systems, Applications and Services and Co-located Workshops.

Crowdstrike (2022). What is a Trojan Horse? (Trojan Malware) (on-line).

https://www.crowdstrike.com/cybersecurity-101/malware/trojans/. Accessed 17 February

2023.

D’Angelo, G., Palmieri, F. and Robustelli, A. (2022). A federated approach to Android malware

classification through Perm-Maps. Cluster Computing, 25.

Davi, L., Dmitrienko, A., Sadeghi, A.-R. and Winandy, M. (2011). Privilege Escalation Attacks on

Android. In: pp.346–360.

David, O. E. and Netanyahu, N. S. (2015). DeepSign: Deep learning for automatic malware signature

generation and classification. In: Proceedings of the International Joint Conference on Neural

Networks.

170

Dehkordy, D. T. and Rasoolzadegan, A. (2020). DroidTKM: Detection of Trojan Families using the KNN

Classifier Based on Manhattan Distance Metric. In: 2020 10h International Conference on

Computer and Knowledge Engineering, ICCKE 2020.

Demontis, A., Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K., Corona, I., Giacinto, G. and Roli, F.

(2019). Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware

Detection. IEEE Transactions on Dependable and Secure Computing, 16.

Department of Defense (2015). Department of Defense Dictionary of Military and Associated Terms.

US Department of Defense Joint Publication, 2001.

Dhalaria, M. and Gandotra, E. (2020). A Framework for Detection of Android Malware using Static

Features. In: 2020 IEEE 17th India Council International Conference, INDICON 2020.

Dhalaria, M. and Gandotra, E. (2021). A hybrid approach for android malware detection and family

classification. International Journal of Interactive Multimedia and Artificial Intelligence, 6.

DIetz, M., Shekhar, S., Pisetsky, Y., Shu, A. and Wallach, D. S. (2011). Quire: Lightweight provenance

for smart phone operating systems. In: Proceedings of the 20th USENIX Security Symposium.

Do, Q., Martini, B. and Choo, K. K. R. (2015). Exfiltrating data from Android devices. Computers and

Security, 48.

Dobhal, D. C., Das, P. and Aswal, K. (2020). Detection of Android Adwares by using Machine Learning

Algorithms. International Journal of Engineering and Advanced Technology, 8: 17–21.

Domingos, P. and Pazzani, M. (1997). On the Optimality of the Simple Bayesian Classifier under Zero-

One Loss. Machine Learning, 29.

Edjlali, G., Acharya, A. and Chaudhary, V. (1998). History-based access control for mobile code. In:

Proceedings of the ACM Conference on Computer and Communications Security.

Enck, W., Gilbert, P., Chun, B. G., Cox, L. P., Jung, J., McDaniel, P. and Sheth, A. N. (2014). Taint droid:

An information flow tracking system for real-time privacy monitoring on smartphones.

Communications of the ACM, 57.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P. and Sheth, A.

N. (2014). TaintDroid. ACM Transactions on Computer Systems, 32.

Enck, W., Octeau, D., McDaniel, P. and Chaudhuri, S. (2011). A study of android application security.

In: Proceedings of the 20th USENIX Security Symposium.

Enck, W., Ongtang, M. and McDaniel, P. (2009). On lightweight mobile phone application

certification. In: Proceedings of the ACM Conference on Computer and Communications

Security.

Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S., Conti, M. and Rajarajan, M. (2015).

Android security: A survey of issues, malware penetration, and defenses. IEEE Communications

Surveys and Tutorials, 17.

Faruki, P., Laxmi, V., Bharmal, A., Gaur, M. S. and Ganmoor, V. (2015). AndroSimilar: Robust

signature for detecting variants of Android malware. Journal of Information Security and

Applications, 22.

Fedler, R., Schütte, J. and Kulicke, M. (2013). On the effectiveness of malware protection on android.

Fraunhofer AISEC.

171

Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G. and Furnell, S. (2017). AndroDialysis: Analysis

of Android Intent Effectiveness in Malware Detection. Computers and Security, 65.

Feizollah, A., Anuar, N. B., Salleh, R. and Wahab, A. W. A. (2015). A review on feature selection in

mobile malware detection. Digital Investigation, 13.

Felt, A., Greenwood, K. and Wagner, D. (2011). The effectiveness of application permissions.

WebApps ’11: 2nd USENIX Conference on Web Application Development.

Felt, A. P., Finifter, M., Chin, E., Hanna, S. and Wagner, D. (2011). A survey of mobile malware in the

wild. In: Proceedings of the ACM Conference on Computer and Communications Security.

Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E. and Wagner, D. (2012a). Android permissions. In:

Proceedings of the Eighth Symposium on Usable Privacy and Security. New York, NY, USA: ACM.

pp.1–14.

Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E. and Wagner, D. (2012b). Android permissions: User

attention, comprehension, and behavior. In: SOUPS 2012 - Proceedings of the 8th Symposium

on Usable Privacy and Security.

Felt, A. P., Wang, H. J., Moshchuk, A., Hanna, S. and Chin, E. (2011). Permission re-delegation:

Attacks and defenses. In: Proceedings of the 20th USENIX Security Symposium.

Feng, P., Ma, J., Sun, C., Xu, X. and Ma, Y. (2018). A novel dynamic android malware detection system

with ensemble learning. IEEE Access, 6.

Feng, Y., Anand, S., Dillig, I. and Aiken, A. (2014). Apposcopy: Semantics-based detection of android

malware through static analysis. In: Proceedings of the ACM SIGSOFT Symposium on the

Foundations of Software Engineering.

Fortinet (2023). What Is a Trojan Horse Virus? (on-line).

https://www.fortinet.com/resources/cyberglossary/trojan-horse-virus. Accessed 17 February

2023.

FRAUDWATCH (2023). What is Anti-Malware? (on-line). https://fraudwatch.com/what-is-anti-

malware-do-you-need-anti-malware-protection/. Accessed 17 February 2023.

G DATA (2019). Mobile Malware Report - no let-up with Android malware (on-line).

https://www.gdatasoftware.com/news/2019/07/35228-mobile-malware-report-no-let-up-

with-android-malware. Accessed 1 March 2023.

Gajrani, J., Agarwal, U., Laxmi, V., Bezawada, B., Gaur, M. S., Tripathi, M. and Zemmari, A. (2020).

EspyDroid+: Precise reflection analysis of android apps. Computers and Security, 90.

Gao, H., Cheng, S. and Zhang, W. (2021). GDroid: Android malware detection and classification with

graph convolutional network. Computers and Security, 106.

Gibler, C., Crussell, J., Erickson, J. and Chen, H. (2012). AndroidLeaks: Automatically detecting

potential privacy leaks in Android applications on a large scale. In: Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics).

’Glover, C. (2022). Sandstrike Fake VPN is latest in wave of new Android malware, Tech Monitor (on-

line). https://techmonitor.ai/technology/cybersecurity/android-malware-sandstrike-fake-vpn.

Accessed 7 February 2023.

172

Gonzalez, H., Stakhanova, N. and Ghorbani, A. A. (2015). Droidkin: Lightweight detection of android

apps similarity. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering, LNICST.

Guerra-Manzanares, A., Bahsi, H. and Nõmm, S. (2021). KronoDroid: Time-based hybrid-featured

dataset for effective android malware detection and characterization. Computers and Security,

110.

HCRL (2018). HCLR, Hacking and Countermeasure Research Lab (on-line).

http://ocslab.hksecurity.net. Accessed 29 October 2022.

Hei, Y., Yang, R., Peng, H., Wang, L., Xu, X., Liu, J., Liu, H., Xu, J. and Sun, L. (2021). Hawk: Rapid

Android Malware Detection Through Heterogeneous Graph Attention Networks. IEEE

Transactions on Neural Networks and Learning Systems.

Hicks, C. and Dietrich, G. (2016). An exploratory analysis in android malware trends. In: AMCIS 2016:

Surfing the IT Innovation Wave - 22nd Americas Conference on Information Systems.

Hijawi, W., Alqatawna, J., Al-Zoubi, A. M., Hassonah, M. A. and Faris, H. (2021). Android botnet

detection using machine learning models based on a comprehensive static analysis approach.

Journal of Information Security and Applications, 58.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9.

Hojjatinia, S., Hamzenejadi, S. and Mohseni, H. (2020). Android botnet detection using convolutional

neural networks. In: 2020 28th Iranian Conference on Electrical Engineering, ICEE 2020.

Hosseini, S., Nezhad, A. E. and Seilani, H. (2022). Botnet detection using negative selection algorithm,

convolution neural network and classification methods. Evolving Systems, 13.

Hutchinson, S., Zhou, B. and Karabiyik, U. (2019). Are We Really Protected? An Investigation into the

Play Protect Service. In: Proceedings - 2019 IEEE International Conference on Big Data, Big Data

2019.

Ikram, M., Vallina-Rodriguez, N., Seneviratne, S., Kaafar, M. A. and Paxson, V. (2016). An analysis of

the privacy and security risks of android VPN permission-enabled apps. In: Proceedings of the

ACM SIGCOMM Internet Measurement Conference, IMC.

Jang, J. W., Kang, H., Woo, J., Mohaisen, A. and Kim, H. K. (2016). Andro-Dumpsys: Anti-malware

system based on the similarity of malware creator and malware centric information. Computers

and Security, 58.

Jang, J. W. and Kim, H. K. (2016). Function-oriented mobile malware analysis as first aid. Mobile

Information Systems, 2016.

Jang, J. wook, Yun, J., Mohaisen, A., Woo, J. and Kim, H. K. (2016). Detecting and classifying method

based on similarity matching of Android malware behavior with profile. SpringerPlus, 5.

Javaid, A., Rashid, I., Abbas, H. and Fugini, M. (2018). Ease or privacy? a comprehensive analysis of

android embedded adware. In: Proceedings - 2018 IEEE 27th International Conference on

Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE 2018.

Joo, S. bin, Oh, S. E., Sim, T., Kim, H., Choi, C. H., Koo, H. and Mun, J. H. (2014). Prediction of gait

speed from plantar pressure using artificial neural networks. Expert Systems with Applications,

41.

173

Kaggle https://www.kaggle.com/ (on-line). https://www.kaggle.com/saeedseraj/a-dataset-for-fake-

androidantimalware- detection. Accessed 2 March 2022.

Kang, B. J., Yerima, S. Y., McLaughlin, K. and Sezer, S. (2016). N-opcode analysis for android malware

classification and categorization. In: 2016 International Conference on Cyber Security and

Protection of Digital Services, Cyber Security 2016.

Kang, H., Jang, J. W., Mohaisen, A. and Kim, H. K. (2015). Detecting and classifying android malware

using static analysis along with creator information. International Journal of Distributed Sensor

Networks, 2015.

Keerthi, S. S. and Gilbert, E. G. (2002). Convergence of a generalized SMO algorithm for SVM

classifier design. Machine Learning, 46.

Keyes, D. S., Li, B., Kaur, G., Lashkari, A. H., Gagnon, F. and Massicotte, F. (2021). EntropLyzer:

Android Malware Classification and Characterization Using Entropy Analysis of Dynamic

Characteristics. In: 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big

Data Challenge, RDAAPS 2021.

Khan, M. T., Snoeren, A. C., DeBlasio, J., Kanich, C., Voelker, G. M. and Vallina-Rodriguez, N. (2018).

An empirical analysis of the commercial VPN ecosystem. In: Proceedings of the ACM SIGCOMM

Internet Measurement Conference, IMC.

Khariwal, K., Singh, J. and Arora, A. (2020). IPDroid: Android malware detection using intents and

permissions. In: Proceedings of the World Conference on Smart Trends in Systems, Security and

Sustainability, WS4 2020.

Khattak, S., Javed, M., Khayam, S. A., Uzmi, Z. A. and Paxson, V. (2014). A look at the consequences

of internet censorship through an ISP lens. In: Proceedings of the ACM SIGCOMM Internet

Measurement Conference, IMC.

Kim, J., Ban, Y., Ko, E., Cho, H. and Yi, J. H. (2022). MAPAS: a practical deep learning-based android

malware detection system. International Journal of Information Security.

Kim, J., Yoon, Y., Yi, K. and Shin, J. (2012). Scandal: Static Analyzer for Detecting Privacy Leaks in

Android Applications. IEEE Workshop on Mobile Security Technologies (MoST).

Kiss, N., Lalande, J. F., Leslous, M. and Viet Triem Tong, V. (2016). Kharon dataset: Android malware

under a microscope. In: 2016 LASER Workshop - Learning from Authoritative Security

Experiment Results.

Kornblum, J. (2006). Identifying almost identical files using context triggered piecewise hashing.

Digital Investigation, 3.

Korty, A., Calarco, D. and Spencer, M. (2021). Balancing risk with virtual private networking during a

pandemic. Business Horizons, 64.

Krutz, D. E., Mirakhorli, M., Malachowsky, S. A., Ruiz, A., Peterson, J., Filipski, A. and Smith, J. (2015).

A dataset of open-source android applications. In: IEEE International Working Conference on

Mining Software Repositories.

Lashkari, A. H., Akadir, A. F., Gonzalez, H., Mbah, K. F. and Ghorbani, A. A. (2018). Towards a

network-based framework for android malware detection and characterization. In: Proceedings

- 2017 15th Annual Conference on Privacy, Security and Trust, PST 2017.

174

Lashkari, A. H., Kadir, A. F. A., Taheri, L. and Ghorbani, A. A. (2018). Toward Developing a Systematic

Approach to Generate Benchmark Android Malware Datasets and Classification. In:

Proceedings - International Carnahan Conference on Security Technology.

Lee, K. and Park, H. (2020). Malicious Adware Detection on Android Platform using Dynamic Random

Forest. In: Advances in Intelligent Systems and Computing.

Lee, T. (2017). Android Now Has 2 Billion Monthly Active Users (on-line).

https://www.ubergizmo.com/2017/05/android-2-billion-monthly-users/. Accessed 7 March

2023.

Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W. and Ye, H. (2018). Significant Permission Identification for

Machine-Learning-Based Android Malware Detection. IEEE Transactions on Industrial

Informatics, 14.

Li, L., Allix, K., Li, D., Bartel, A., Bissyandé, T. F. and Klein, J. (2015). Potential Component Leaks in

Android Apps: An Investigation into a New Feature Set for Malware Detection. In: Proceedings -

2015 IEEE International Conference on Software Quality, Reliability and Security, QRS 2015.

Li, L., Li, D., Bissyande, T. F., Klein, J., le Traon, Y., Lo, D. and Cavallaro, L. (2017). Understanding

Android App Piggybacking: A Systematic Study of Malicious Code Grafting. IEEE Transactions on

Information Forensics and Security, 12.

Liaw, A. and Wiener, M. (2018). Classification and Regression by randomForest, R News 2 (3), 18-22,

2002. See Also selectFeatures, selectFeaturesSlimPLS, getClassification, readExpMat Examples#

reads an expression matrix with class labels into exp_mat2## Not run: exp_mat2<-readExpMat

(‘ golub_leukemia_data_with_classes_training. csv’, TRUE)## End (Not run) tr, 15.

Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Veen, V. van der and

Platzer, C. (2016). ANDRUBIS - 1,000,000 Apps Later: A View on Current Android Malware

Behaviors. In: Proceedings - 3rd International Workshop on Building Analysis Datasets and

Gathering Experience Returns for Security, BADGERS 2014.

Liu, P., Wang, W., Luo, X., Wang, H. and Liu, C. (2021). NSDroid: efficient multi-classification of

android malware using neighborhood signature in local function call graphs. International

Journal of Information Security, 20.

Liu, X. and Liu, J. (2014). A two-layered permission-based android malware detection scheme. In:

Proceedings - 2nd IEEE International Conference on Mobile Cloud Computing, Services, and

Engineering, MobileCloud 2014.

Loorak, M. H., Fong, P. W. L. and Carpendale, S. (2014). Papilio: Visualizing android application

permissions. Computer Graphics Forum, 33.

Lutkevich, B. (2021). What is adware? (on-line).

https://www.techtarget.com/searchsecurity/definition/adware. Accessed 15 February 2023.

Maggi, F., Valdi, A. and Zanero, S. (2013). AndroTotal: A flexible, scalable toolbox and service for

testing mobile malware detectors. In: Proceedings of the ACM Conference on Computer and

Communications Security.

Mahdavifar, S., Alhadidi, D. and Ghorbani, A. A. (2022). Effective and Efficient Hybrid Android

Malware Classification Using Pseudo-Label Stacked Auto-Encoder. Journal of Network and

Systems Management, 30.

175

Mahindru, A. and Sangal, A. L. (2021). MLDroid—framework for Android malware detection using

machine learning techniques. Neural Computing and Applications, 33.

Maier, D., Muller, T. and Protsenko, M. (2014). Divide-and-conquer: Why android malware cannot

be stopped. In: Proceedings - 9th International Conference on Availability, Reliability and

Security, ARES 2014.

Maiorca, D., Ariu, D., Corona, I., Aresu, M. and Giacinto, G. (2015). Stealth attacks: An extended

insight into the obfuscation effects on Android malware. Computers and Security, 51.

Maslennikov, D., Aseev, E. and Gostev, A. (2010). Kaspersky Security Bulletin 2009. Malware

Evolution 2009 (on-line). https://securelist.com/kaspersky-security-bulletin-2009-malware-

evolution-2009/36283/. Accessed 3 March 2023.

Mathur, A., Podila, L. M., Kulkarni, K., Niyaz, Q. and Javaid, A. Y. (2021). NATICUSdroid: A malware

detection framework for Android using native and custom permissions. Journal of Information

Security and Applications, 58.

Mayrhofer, R., Stoep, J. vander, Brubaker, C. and Kralevich, N. (2021). The Android Platform Security

Model. ACM Transactions on Privacy and Security, 24.

McLaughlin, N., del Rincon, J. M., Kang, B. J., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E.,

Zhao, Z., Doupe, A. and Ahn, G. J. (2017). Deep android malware detection. In: CODASPY 2017 -

Proceedings of the 7th ACM Conference on Data and Application Security and Privacy.

Milosevic, N., Dehghantanha, A. and Choo, K. K. R. (2017). Machine learning aided Android malware

classification. Computers and Electrical Engineering, 61.

Mohamad Arif, J., Ab Razak, M. F., Awang, S., Tuan Mat, S. R., Ismail, N. S. N. and Firdaus, A. (2021).

A static analysis approach for Android permission-based malware detection systems. PloS one,

16.

Mohamad Arif, J., Ab Razak, M. F., Tuan Mat, S. R., Awang, S., Ismail, N. S. N. and Firdaus, A. (2021).

Android mobile malware detection using fuzzy AHP. Journal of Information Security and

Applications, 61.

Moodi, M., Ghazvini, M. and Moodi, H. (2021). A hybrid intelligent approach to detect Android

Botnet using Smart Self-Adaptive Learning-based PSO-SVM. Knowledge-Based Systems, 222.

Narayanan, A., Chen, L. and Chan, C. K. (2014). AdDetect: Automated detection of Android ad

libraries using semantic analysis. In: IEEE ISSNIP 2014 - 2014 IEEE 9th International Conference

on Intelligent Sensors, Sensor Networks and Information Processing, Conference Proceedings.

Ndagi, J. Y. and Alhassan, J. K. (2019). Machine learning classification algorithms for adware in

android devices: A comparative evaluation and analysis. In: 2019 15th International Conference

on Electronics, Computer and Computation, ICECCO 2019.

Peiravian, N. and Zhu, X. (2013). Machine learning for Android malware detection using permission

and API calls. In: Proceedings - International Conference on Tools with Artificial Intelligence,

ICTAI.

Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J. and Cavallaro, L. (2019). Tesseract: Eliminating

experimental bias in malware classification across space and time. In: Proceedings of the 28th

USENIX Security Symposium.

176

Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C. and Molloy, I. (2012). Using

probabilistic generative models for ranking risks of Android apps. In: Proceedings of the ACM

Conference on Computer and Communications Security.

Penning, N., Hoffman, M., Nikolai, J. and Wang, Y. (2014). Mobile malware security challeges and

cloud-based detection. In: 2014 International Conference on Collaboration Technologies and

Systems, CTS 2014.

la Polla, M., Martinelli, F. and Sgandurra, D. (2013). A survey on security for mobile devices. IEEE

Communications Surveys and Tutorials, 15.

Portokalidis, G., Homburg, P., Anagnostakis, K. and Bos, H. (2010). Paranoid android: Versatile

protection for smartphones. In: Proceedings - Annual Computer Security Applications

Conference, ACSAC.

Potharaju, R., Newell, A., Nita-Rotaru, C. and Zhang, X. (2012). Plagiarizing smartphone applications:

Attack strategies and defense techniques. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Qiao, M., Sung, A. H. and Liu, Q. (2016). Merging permission and api features for android malware

detection. In: Proceedings - 2016 5th IIAI International Congress on Advanced Applied

Informatics, IIAI-AAI 2016.

Rahali, A., Lashkari, A. H., Kaur, G., Taheri, L., Gagnon, F. and Massicotte, F. (2020). DIDroid: Android

malware classification and characterization using deep image learning. In: ACM International

Conference Proceeding Series.

Rastogi, V., Chen, Y. and Enck, W. (2013). AppsPlayground: Automatic security analysis of

smartphone applications. In: CODASPY 2013 - Proceedings of the 3rd ACM Conference on Data

and Application Security and Privacy.

Rastogi, V., Qu, Z., McClurg, J., Cao, Y. and Chen, Y. (2015). Uranine: Real-time privacy leakage

monitoring without system modification for android. In: Lecture Notes of the Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST.

Robinson, G. and Weir, G. R. S. (2015). Understanding android security. In: Communications in

Computer and Information Science.

Rosen, S., Qian, Z. and Morley Mao, Z. (2013). AppProfiler: A flexible method of exposing privacy-

related behavior in android applications to end users. In: CODASPY 2013 - Proceedings of the

3rd ACM Conference on Data and Application Security and Privacy.

Rosencrance, L. (2021). antimalware (anti-malware) (on-line).

https://www.techtarget.com/searchsecurity/definition/antimalware. Accessed 17 February

2023.

Ross Quinlan (1993). Program for machine learning. C.4.5.

Roussev, V. (2010). Data fingerprinting with similarity digests. In: IFIP Advances in Information and

Communication Technology.

Sadiq, A. S., Faris, H., Al-Zoubi, A. M., Mirjalili, S. and Ghafoor, K. Z. (2018). Fraud detection model

based on multi-verse features extraction approach for smart city applications. In: Smart Cities

Cybersecurity and Privacy.

177

Şahin, D. Ö., Kural, O. E., Akleylek, S. and Kılıç, E. (2021). A novel permission-based Android malware

detection system using feature selection based on linear regression. Neural Computing and

Applications.

Salem, A., Banescu, S. and Pretschner, A. (2021). Maat: Automatically Analyzing VirusTotal for

Accurate Labeling and Effective Malware Detection. ACM Transactions on Privacy and Security,

24.

Sangal, A. and Verma, H. K. (2020). A Static Feature Selection-based Android Malware Detection

Using Machine Learning Techniques. In: Proceedings - International Conference on Smart

Electronics and Communication, ICOSEC 2020.

Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P. G. and Álvarez, G. (2013). PUMA:

Permission usage to detect malware in android. In: Advances in Intelligent Systems and

Computing.

Sanz, B., Santos, I., Ugarte-Pedrero, X., Laorden, C., Nieves, J. and Bringas, P. G. (2013). Instance-

based anomaly method for android malware detection. In: ICETE 2013 - 10th International Joint

Conference on E-Business and Telecommunications; SECRYPT 2013 - 10th International

Conference on Security and Cryptography, Proceedings.

Sarma, B., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C. and Molloy, I. (2012). Android permissions:

A perspective combining risks and benefits. In: Proceedings of ACM Symposium on Access

Control Models and Technologies, SACMAT.

Sasidharan, S. K. and Thomas, C. (2021). ProDroid — An Android malware detection framework

based on profile hidden Markov model. Pervasive and Mobile Computing, 72.

Sasnauskas, R. and Regehr, J. (2014). Intent fuzzer: Crafting intents of death. In: WODA+PERTEA

2014: Joint 12th International Workshop on Dynamic Analysis and Workshop on Software and

System Performance Testing, Debugging, and Analytics - Proceedings.

Sato, R., Chiba, D. and Goto, S. (2013). Detecting Android Malware by Analyzing Manifest Files.

Proceedings of the Asia-Pacific Advanced Network, 36.

Schultz, M. G., Eskin, E., Zadok, E. and Stolfo, S. J. (2001). Data mining methods for detection of new

malicious executables. Proceedings of the IEEE Computer Society Symposium on Research in

Security and Privacy.

Seo, S. H., Gupta, A., Sallam, A. M., Bertino, E. and Yim, K. (2014). Detecting mobile malware threats

to homeland security through static analysis. Journal of Network and Computer Applications,

38.

Seraj, S. (2021). Android Antimalware Dataset (on-line).

https://www.kaggle.com/datasets/saeedseraj/hamdroid. Accessed 26 February 2023.

Seraj, S. (2023a). Android Botnet Dataset (on-line).

Seraj, S. (2023b). Android Malicious Adware Dataset (on-line).

https://www.kaggle.com/datasets/saeedseraj/malicious-adware-detection-in-android-using-dl.

Accessed 26 February 2023.

Seraj, S. (2022a). Android Trojan Dataset (on-line).

https://www.kaggle.com/datasets/saeedseraj/trojandroidpermissionbased-android-trojan-

dataset. Accessed 26 February 2023.

178

Seraj, S. (2022b). Android VPN Dataset (on-line).

https://www.kaggle.com/datasets/saeedseraj/mvdroid-a-malicious-android-vpn-detector-

dataset. Accessed 26 February 2023.

’Seraj, S. (2022). Kaggle (on-line). 3. https://www.kaggle.com/datasets/saeedseraj/mvdroid-a-

malicious-android-vpn-detector-dataset. Accessed 8 February 2023.

Seraj, S., Khodambashi, S., Pavlidis, M. and Polatidis, N. (2022). HamDroid: permission-based harmful

android anti-malware detection using neural networks. Neural Computing and Applications.

’Seraj, S., ’Pavlidis, M. and ’Polatidis, N. (2022). TrojanDroid: Android Malware Detection for Trojan

Discovery Using Convolutional Neural Networks. In: In Engineering Applications of Neural

Networks: 23rd International Conference, EAAAI/EANN. Chersonissos, Crete, Greece: Springer

International Publishing. pp.203–2012.

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C. and Weiss, Y. (2012). ‘Andromaly’: A behavioral

malware detection framework for android devices. Journal of Intelligent Information Systems,

38.

Shakhnarovich, G., Darrell, T. and Indyk, P. (2006). Nearest-Neighbor Methods in Learning and Vision:

Theory and Practice.

Sheen, S., Anitha, R. and Natarajan, V. (2015). Android based malware detection using a multifeature

collaborative decision fusion approach. Neurocomputing, 151.

Shekhar, S., Dietz, M. and Wallach, D. S. (2012). AdSplit: Separating smartphone advertising from

applications. In: Proceedings of the 21st USENIX Security Symposium.

Sihag, V., Vardhan, M. and Singh, P. (2021a). A survey of android application and malware hardening.

Computer Science Review, 39.

Sihag, V., Vardhan, M. and Singh, P. (2021b). BLADE: Robust malware detection against obfuscation

in android. Forensic Science International: Digital Investigation, 38.

Statista (2023). Market share of mobile operating systems worldwide (on-line).

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-

systems-since-

2009/#:~:text=Android%20maintained%20its%20position%20as,the%20mobile%20operating%

20system%20market. Accessed 1 March 2023.

Suarez-Tangil, G., Dash, S. K., Ahmadi, M., Kinder, J., Giacinto, G. and Cavallaro, L. (2017). DroidSieve:

Fast and accurate classification of obfuscated android malware. In: CODASPY 2017 -

Proceedings of the 7th ACM Conference on Data and Application Security and Privacy.

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P. and Blasco, J. (2014). Dendroid: A text mining

approach to analyzing and classifying code structures in Android malware families. Expert

Systems with Applications, 41.

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P. and Ribagorda, A. (2014). Evolution, detection and

analysis of malware for smart devices. IEEE Communications Surveys and Tutorials, 16.

Sufatrio, Tan, D. J. J., Chua, T. W. and Thing, V. L. L. (2015). Securing android: A survey, taxonomy,

and challenges. ACM Computing Surveys, 47.

179

Surendran, R., Thomas, T. and Emmanuel, S. (2020). A TAN based hybrid model for android malware

detection. Journal of Information Security and Applications, 54.

Suresh, S., di Troia, F., Potika, K. and Stamp, M. (2019). An analysis of Android adware. Journal of

Computer Virology and Hacking Techniques, 15.

Sylve, J., Case, A., Marziale, L. and Richard, G. G. (2012). Acquisition and analysis of volatile memory

from android devices. Digital Investigation, 8.

Symantec (2017). 2017 Internet Security Threat Report (on-line).

https://www.symantec.com/security-center/threat-report. Accessed 29 October 2022.

Taheri, L., Kadir, A. F. A. and Lashkari, A. H. (2019). Extensible android malware detection and family

classification using network-flows and API-calls. In: Proceedings - International Carnahan

Conference on Security Technology.

Talha, K. A., Alper, D. I. and Aydin, C. (2015). APK Auditor: Permission-based Android malware

detection system. Digital Investigation, 13.

Tam, K., Feizollah, A., Anuar, N. B., Salleh, R. and Cavallaro, L. (2017). The evolution of android

malware and android analysis techniques. ACM Computing Surveys, 49.

Tansettanakorn, C., Thongprasit, S., Thamkongka, S. and Visoottiviseth, V. (2016). ABIS: A prototype

of Android Botnet Identification System. In: Proceedings of the 2016 5th ICT International

Student Project Conference, ICT-ISPC 2016.

thehackernews (2022). https://thehackernews.com/2022/06/sidewinder-hackers-use-fake-android-

vpn.html?&web_view=true (on-line).

Tong, S. and Chang, E. (2001). Support vector machine active learning for image retrieval. In:

Proceedings of the ACM International Multimedia Conference and Exhibition.

Ucci, D., Aniello, L. and Baldoni, R. (2019). Survey of machine learning techniques for malware

analysis. Computers and Security, 81.

Ullah, S., Ahmad, T., Buriro, A., Zara, N. and Saha, S. (2022a). TrojanDetector: A Multi-Layer Hybrid

Approach for Trojan Detection in Android Applications. Applied Sciences, 12: 10755.

Ullah, S., Ahmad, T., Buriro, A., Zara, N. and Saha, S. (2022b). TrojanDetector: A Multi-Layer Hybrid

Approach for Trojan Detection in Android Applications. Applied Sciences, 12: 10755.

Verma, S. and Muttoo, S. K. (2016). An android malware detection framework-based on permissions

and intents. Defence Science Journal, 66.

Vidas, T. and Christin, N. (2014). Evading android runtime analysis via sandbox detection. In: ASIA

CCS 2014 - Proceedings of the 9th ACM Symposium on Information, Computer and

Communications Security.

Vidas, T. and Christin, N. (2013). Sweetening android lemon markets: Measuring and combating

malware in application marketplaces. In: CODASPY 2013 - Proceedings of the 3rd ACM

Conference on Data and Application Security and Privacy.

Vidas, T., Christin, N. and Cranor, L. (2011). “Curbing Android permission creep," in Proc.of the Web

2.0 Security and Privacy, May 2011. In: In Proceeding of the Web 2.0 Security and Privacy.

Villars, R. L., Olofson, C. W. and Eastwood, M. (2011). Big Data: What It is and Why You Should Care.

180

Vinod, P., Zemmari, A. and Conti, M. (2019). A machine learning based approach to detect malicious

android apps using discriminant system calls. Future Generation Computer Systems, 94.

VirusTotal www.virustotal.com (on-line). www.virustotal.com. Accessed 2 March 2022.

Wagstaff, K., Cardie, C., Rogers, S. and Schrödl, S. (2001). Constrained K-means Clustering with

Background Knowledge. In: International Conference on Machine Learning ICML.

Wang, H., Zhang, W. and He, H. (2022). You are what the permissions told me! Android malware

detection based on hybrid tactics. Journal of Information Security and Applications, 66.

Wang, W., Wang, X., Feng, D., Liu, J., Han, Z. and Zhang, X. (2014). Exploring permission-induced risk

in android applications for malicious application detection. IEEE Transactions on Information

Forensics and Security, 9.

Wang, W., Zhao, M. and Wang, J. (2019). Effective android malware detection with a hybrid model

based on deep autoencoder and convolutional neural network. Journal of Ambient Intelligence

and Humanized Computing, 10.

Wangchuk, T. and Rathod, D. (2021). FORENSIC AND BEHAVIOR ANALYSIS OF FREE ANDROID VPNS.

Journal of Applied Engineering, Technology and Management, 1.

Wegman, E. J. (2003). Visual data mining. Statistics in Medicine, 22: 1383–1397.

Wei, F., Li, Y., Roy, S., Ou, X. and Zhou, W. (2017). Deep ground truth analysis of current android

malware. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics).

Wei, X., Gomez, L., Neamtiu, I. and Faloutsos, M. (2012). Permission evolution in the Android

ecosystem. In: ACM International Conference Proceeding Series.

Wen, L. and Yu, H. (2017). An Android malware detection system based on machine learning. In: AIP

Conference Proceedings.

Wijesekera, P., Baokar, A., Hosseini, A., Egelman, S., Wagner, D. and Beznosov, K. (2015). Android

permissions remystified: A field study on contextual integrity. In: Proceedings of the 24th

USENIX Security Symposium.

Wikipedia (2023a). Android (on-line). https://en.wikipedia.org/wiki/Android. Accessed 1 March

2023.

Wikipedia (2023b). HTC Dream (on-line). https://en.wikipedia.org/wiki/HTC_Dream. Accessed 1

March 2023.

Wilson, J., Mcluskie, D. and Bayne, E. (2020). Investigation into the security and privacy of iOS VPN

applications. In: ACM International Conference Proceeding Series.

Witten, I. H., Frank, E. and Hall, M. A. (2005). Data Mining: Practical Machine Learning Tools (4th

Edition). Elsevier.

Wu, D. J., Mao, C. H., Wei, T. E., Lee, H. M. and Wu, K. P. (2012). DroidMat: Android malware

detection through manifest and API calls tracing. In: Proceedings of the 2012 7th Asia Joint

Conference on Information Security, AsiaJCIS 2012.

181

Wu, L., Grace, M., Zhou, Y., Wu, C. and Jiang, X. (2013). The impact of vendor customizations on

Android security. In: Proceedings of the ACM Conference on Computer and Communications

Security.

Xiao, X., Zhang, S., Mercaldo, F., Hu, G. and Sangaiah, A. K. (2019). Android malware detection based

on system call sequences and LSTM. Multimedia Tools and Applications, 78.

Xie, N., Zeng, F., Qin, X., Zhang, Y., Zhou, M. and Lv, C. (2018). RepassDroid: Automatic detection of

android malware based on essential permissions and semantic features of sensitive APIs. In:

Proceedings - 2018 12th International Symposium on Theoretical Aspects of Software

Engineering, TASE 2018.

’Xue, L., ’Zhou, Y., ’Chen, T., ’Luo, X. and ’Gu, G. (2017). Malton: Towards on device non-invasive

mobile malware analysis for art. In: In 26th USENIX Security Symposium (USENIX Security 17).

Vancouver: ACM.

Yadav, P., Menon, N., Ravi, V., Vishvanathan, S. and Pham, T. D. (2022). EfficientNet convolutional

neural networks-based Android malware detection. Computers and Security, 115.

Yan, L. K. and Yin, H. (2012). DroidScope: Seamlessly reconstructing the os and dalvik semantic views

for dynamic android malware analysis. In: Proceedings of the 21st USENIX Security Symposium.

Yang, C., Xu, Z., Gu, G., Yegneswaran, V. and Porras, P. (2014). DroidMiner: Automated mining and

characterization of fine-grained malicious behaviors in android applications. In: Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics).

YANG, J., TANG, J., YAN, R. and XIANG, T. (2022). Android Malware Detection Method Based on

Permission Complement and API Calls. Chinese Journal of Electronics, 31: 773–785.

Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P. and Wang, X. S. (2013). AppIntent: Analyzing sensitive

data transmission in Android for privacy leakage detection. In: Proceedings of the ACM

Conference on Computer and Communications Security.

Ye, H., Cheng, S., Zhang, L. and Jiang, F. (2013). DroidFuzzer: Fuzzing the Android apps with intent-

filter tag. In: ACM International Conference Proceeding Series.

Yerima, S. Y., Alzaylaee, M. K., Shajan, A. and Vinod, P. (2021). Deep learning techniques for android

botnet detection. Electronics (Switzerland), 10.

Yerima, S. Y. and Bashar, A. (2022). A Novel Android Botnet Detection System Using Image-Based

and Manifest File Features. Electronics (Switzerland), 11.

Yerima, S. Y. and Sezer, S. (2019). DroidFusion: A Novel Multilevel Classifier Fusion Approach for

Android Malware Detection. IEEE Transactions on Cybernetics, 49.

Yerima, S. Y. and To, Y. (2022). A deep learning-enhanced botnet detection system based on Android

manifest text mining. In: 2022 10th International Symposium on Digital Forensics and Security

(ISDFS). IEEE. pp.1–6.

Yuan, Z., Lu, Y., Wang, Z. and Xue, Y. (2015). Droid-Sec: Deep learning in android malware detection.

In: Computer Communication Review.

Yusof, M., Saudi, M. M. and Ridzuan, F. (2018). Mobile botnet classification by using hybrid analysis.

International Journal of Engineering and Technology(UAE), 7.

182

Zhang, F., Leach, K., Stavrou, A., Wang, H. and Sun, K. (2015). Using hardware features for increased

debugging transparency. In: Proceedings - IEEE Symposium on Security and Privacy.

Zhang, N., Xue, J., Ma, Y., Zhang, R., Liang, T. and Tan, Y. an (2021). Hybrid sequence-based Android

malware detection using natural language processing. International Journal of Intelligent

Systems, 36.

Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang, X. S. and Zang, B. (2013). Vetting

undesirable behaviors in Android apps with permission use analysis. In: Proceedings of the ACM

Conference on Computer and Communications Security.

Zhou, W., Zhou, Y., Jiang, X. and Ning, P. (2012). Detecting repackaged smartphone applications in

third-party android marketplaces.

Zhou, Y. and Jiang, X. (2012). Dissecting Android malware: Characterization and evolution. In:

Proceedings - IEEE Symposium on Security and Privacy.

Zhou, Y., Wang, Z., Zhou, W. and Jiang, X. (2012). Hey, You, Get Off of My Market: Detecting

Malicious Apps in Official and Alternative Android Markets. In: NDSS.

Zonouz, S., Houmansadra, A., Berthiera, R., Borisova, N. and Sanders, W. (2013). Secloud: A cloud-

based comprehensive and lightweight security solution for smartphones. Computers and

Security, 37.

Zou, D., Wu, Y., Yang, S., Chauhan, A., Yang, W., Zhong, J., Dou, S. and Jin, H. (2021). IntDroid:

Android Malware Detection Based on API Intimacy Analysis. ACM Transactions on Software

Engineering and Methodology, 30.

