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Abstract

We present a novel, hybrid approach for clustering text databases. We use a genetic algorithm to 

generate and evolve a set of search queries in Apache Lucene format.  Clusters are formed as the set 

of documents matched by a search query.  The queries are optimized to maximize the number of 

documents returned and to minimize the overlap between clusters (documents returned by more 

than one query).   Where queries contain more than one word, we have found it useful to assign one 

word to be the root and constrain the query construction such that the set of documents returned 

by any additional query words intersect with the set returned by the root word.  Multiword queries 

1 Corresponding author.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4552319

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



2

are interpreted disjunctively. We also describe how a gene can be used to determine the number of 

clusters (k).  

Not all documents in a collection are returned by any of the search queries in a set, so once the 

search query evolution is completed a second stage is performed whereby a KNN algorithm is 

applied to assign all unassigned documents to their nearest cluster.   We describe the method and 

present results using 8 text datasets comparing effectiveness with well-known existing algorithms. 

We note that search query format has the qualitative benefits of being interpretable and providing 

an explanation of cluster construction. 

Keywords

Document clustering, search query, genetic algorithm, machine learning, Apache Lucene.

1 Introduction

Clustering algorithms group a collection of documents into subsets or clusters to enable users to 

explore, organise, summarise, curate and visualise large volumes of text.  Documents within a cluster 

should be similar to each other (cohesion) whilst documents in different clusters should be dissimilar 

(separation).  Text clustering is a crucial component of text mining as it involves classifying and 

grouping similar content.  

For automated clustering, documents are traditionally represented by a multi-dimensional feature 

vector where each dimension corresponds to a weighted value of a term within the document 

collection [1]. Various similarity or distance measures have been proposed and are a central 

component of most text clustering algorithms. Using such a method it is often difficult for a human 

to understand how the clustering is performed and there has been some criticism of the black box 

nature of many successful machine learning models, particularly where large datasets may contain 
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human biases and prejudices [2, 3].  As a result of the risks associated with relying on sophisticated 

machine learning text clustering models which we do not really understand, significant have efforts 

have been made to create explainable systems. Work has been done on alternative models which 

recognise word order such as using lexical chains to preserve the semantic relationships between 

words, for example by using WordNet [4, 5].  Efforts have also been made to generate a set of 

human interpretable rules from ‘black box’ systems such as support vector machines as in [6].   

Another effective approach has involved combining neural network models with symbolic 

representations [7].

Most text clustering systems require that the user provide the number of required clusters (k) in 

advance.  However, k is often not known. We also present a solution to the harder problem of 

discovering k as well as defining clusters.

1.1 Motivation 
When constructing a search query, a human user will normally try to find a word or combination of 

words that returns the documents they are interested in but will not return other documents.  In 

their seminal work Manning et al. assert that the ‘fundamental assumption’ of information retrieval 

is what they term the ‘cluster hypothesis’:  

Documents in the same cluster behave similarly with respect to relevance to information 

needs.  The hypothesis states that if there is a document from a cluster that is relevant to a 

search request, then it is likely that other documents from the same cluster are also 

relevant2.” [8]

Following this hypothesis, we have developed a system called eSQ (evolved Search Queries), which 

uses a Genetic Algorithm (GA) for evolving a set of search queries where a cluster is the documents 

returned by a single query in the set.  The overall objective is to develop an effective clustering 

2 Our emphasis
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system with a natural fit for information retrieval needs and with the following desirable 

characteristics:

1. easily interpreted by a human.

2. modifiable by a human.

3. provide a causal explanation of cluster construction.

1.2 Contribution
We believe this is the first attempt to produce effective document clustering based on simple, 

explainable multi-word search queries. Furthermore, we also believe that this is the first attempt to 

use a GA to determine the number of clusters required.  The techniques presented should be useful 

in both text mining and the development of new methods of clustering. 

2 Background

Many algorithms have been proposed to achieve document clustering but the most popular is the k-

means algorithm. K-means begins with k arbitrary centres, typically chosen uniformly at random 

from the data points. Each point is then assigned to the nearest centre, and each centre is 

recomputed as the centre of mass of all points assigned to it. These two steps are repeated until the 

process stabilizes.  K-means++ is an enhanced version of the k-means algorithm and uses a 

randomised seeding technique which is a specific way of selecting initial centres [9, 10].  K-means 

(and its variants) is still widely used and an active topic of current research [11].  The main 

disadvantage of k-means is that we must provide the desired number of clusters to the algorithm in 

advance.  Furthermore, clustering algorithms such as k-means are limited in their ability to capture 

contextual information and semantically explain the reasoning behind the clustering results.  

Agglomerative clustering is a popular alternative to k-means which can determine a suitable value 

for k.  Agglomerative clustering is the bottom-up form of hierarchical clustering which treats each 

data point or object as cluster at the initial stage [12]. In subsequent iterations, using a linkage 

function the cluster joins the nearest cluster at distance D. The distance D is calculated using metrics 
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such as Euclidean distance. The iteration continues until a large cluster with all the objects is formed 

[12].  There have been attempts to combine agglomerative clustering and k-means [13].

The system we propose uses a GA which is a stochastic global optimisation technique which mimics 

the process of Darwinian evolution whereby the search for solutions is guided by the principles of 

selection and heredity [14].  GAs have proved to be an effective computational method, especially in 

situations where the search space is un-characterized (mathematically), not fully understood, or/and 

highly dimensional [16].  Clustering a large volume of text is an example of unsupervised problems 

that fits all these characteristics and GAs have been used here, often as a means of optimizing the 

allocation of cluster centres  [17, 18, 19]. Frequently, each chromosome represents a combination of 

centres which represent the candidate solution to the clustering problem [11]. Commonly, a ratio of 

the intra-cluster distance of clusters against the inter-cluster distances between the cluster can be 

used.  Document clustering using a fitness function based on the concept of nearest neighbour 

separation has also been proposed [20].

GAs have also been in use for some time to generate rules for text classification [21, 22, 23] and 

clustering [11, 24, 25], which have the advantage of being explainable.  The simple disjunctive search 

queries produced by the eSQ system are easy to understand and are potentially modifiable by a 

human analyst. The eSQ system presented here also has a novel fitness test based entirely on the 

count of unique query hits.  We also describe how the query-based clustering system has been 

combined with a second stage where a KNN classifier is used to assign documents not belonging to 

any query generated cluster to their nearest cluster.
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3 Materials and Methods

3.1 Apache Lucene

Apache Lucene is a high-performance full-text indexing and searching software library written in 

Java. Evolutionary computation is notoriously resource-intensive, and we find that using Lucene to 

store and query the document collections is a significant boost to the performance of the system.

3.2 Document Collections

Different clustering algorithms can produce divergent results when compared to each other on 

different datasets with different types of text.  We, therefore, ran our experiments on 8 different 

datasets selected from 3 document collections containing very different types of document.  Each 

dataset is labelled in bold.

CrisisLex

An increasing number of short texts are being generated and it has been noted that this 

environment is complicated by sparsity and high-dimensionality, meaning that the vector space 

model and normal text clustering methods may not work well [26, 27].  CrisisLex.org is a repository 

of crisis-related social media data and tools [28]. The ‘CrisisLexT6’ collection2 contains tweets 

collected in 2012-13 in different crisis situations. We use 1000 of the tweets from each of the 

categories.  Crisis3 is created from: Colorado wildfires, Boston bombings and Queensland floods. 

Crisis4 is created from   Colorado wildfires, Boston bombings, Queensland floods and LA airport 

shootings.

20 Newsgroups

In the 20 Newsgroups collection [29] documents are messages posted to Usenet newsgroups, and 

the categories are the newsgroups themselves. The data on this set is considered particularly noisy 

and as might be expected does include complications such as duplicate entries and cross postings.   

We create three datasets from this collection by randomly selecting 400 documents from each of 
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the categories. NG3 is created from: rec.sport.hockey, sci.space and soc.religion.christian.  NG5 is 

from: comp.os.ms-windows.misc, misc.forsale, rec.sport.hockey, sci.space, soc.religion.christian.  

NG6 is from: comp.graphics, rec.sport.hockey, sci.crypt, sci,space, soc.religion.christian, 

talk.politics.gun as in [18].

Reuters-21578

Reuters-21578 news collection contains news articles collected from the Reuters newswire in 1987. 

We create three datasets using 200 documents from each category.  R4 contains documents from 

crude, earn, grain, money-fx.  R5 contains documents from: coffee, crude, interest, sugar, trade.  R6 

contains documents from acq, crude, earn, grain, money-fx and ship as used in [18]

3.3  Method

We use a GA to specify a set of search queries.  The documents returned by each query is a cluster. 

We use a simplified example based on the problem of clustering documents in the Newsgroup 5 

(NG5) dataset to assist the explanation.  To begin we assume the simpler case of evolving single 

word queries.  We will then go onto to explain the extra requirements needed when building 

multiword queries.

Step 1: pre-processing

Before we start evolving queries, all the text is placed in lower case and a small stop set is used to 

remove common words with little semantic weight. For each dataset, a Lucene index is constructed 

from the collection of documents, and each document labelled (using Lucene fields) according to its 

pre-set category.  Of course, the GA has no access to the category label which is only used to 

evaluate the effectiveness of the clustering once all the stages have completed. 

Step 2: create a wordlist

In the second step, we create an ordered list of significant words which is used by the GA for building 

queries. To construct the list, the TF*IDF (term frequency * inverse document frequency) value for 

each term in the collection is calculated. TF-IDF (often used in term weighting) is used to identify 
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terms that are concentrated in particular documents and may therefore be of more significance in a 

collection.  TF is the number of occurrences of a term in a document and IDF is the inverse of the 

number of documents in which the term occurs.  For each term in the index, we determine TF*IDF 

values occurring in each document as indicated in the groovy style pseudo code below, where terms 

is the set of terms and documents is the set of documents in the index.

Map<Term, Double> tMap = [:]
terms.each {term ->
  double tfidfTotal = 0
  documents.each {doc ->
    tfidfTotal += tf * idf
  }
  tMap.put(term, tfidifTotal)
}
TermList tList= tMap.sort{it.value}.keySet

Terms are sorted by their overall TF*IDF value, and the top 100 words are selected for use in query 

building. This step is only required once for each index before the start of the evolution, after which 

the list is fixed. The integer index is simply the words place in the TF*IDF ordering.  In the example 

shown in Table I the length of the list is only 8. 

 Table 1. word list

0 1 2 3 4 5 6 7

space nasa god orbit hockey file sale game

Step 3: determine k (the number of categories).

If k is predefined, then this step can be omitted.  If k is genome defined, we include an extra gene in 

the genome for this purpose.  An int value in the inclusive range [2 .. 9] (8 possible cluster sizes) is 

used.

Step 4: Create generation 0

Table II shows a sample chromosome from the population of generation 0.  Chromosomes have an 
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integer representation where the values can be in the range [0 .. 100] (the maximum size of the 

wordlist).  In the example below each gene defines a single word search query (SQ) and each search 

query defines the cluster as those documents which contain that word

Table 2. Creating single word search queries

SQ0 SQ1 SQ2 SQ3 SQ4

Chromosome: 0 4 5 1 7

Query Words: space hockey file nasa game

In the example above the number of clusters (k=5) is determined from the known number of 

categories before the start of the evolution.  However, as mentioned above we can optionally add 

another gene in the chromosome to set a value for k (the number of clusters). 

Step 5: fire each query in the set.

 In our example, five single word search queries are generated for the NG5 dataset. For each 

individual in the population fire each of the search queries and determine its fitness by examining 

the clusters of documents returned by the queries and counting the number of documents returned 

which occur in only 1 cluster (see fitness calculation below).

Step 6: apply genetic operators

Apply genetic operators to create a new generation.

Step 7: repeat

Repeat steps 5-6 for 120 generations (termination criteria) and select the individual with the highest 

fitness. 

Step 8: create training documents

The selected individual at the end of a run will produce a set of single word search queries. Fire each 
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of these queries and save the document clusters produced as training documents.   Remove any 

documents which are returned by more than 1 query.

Step 9: KNN

Some documents in the collection may not contain any of the query words or are returned by more 

than one query and are therefore not included in any of the clusters.  We use the training 

documents from step 8 together with the Lucene implementation of the K-Nearest Neighbour (KNN) 

algorithm to add each unassigned document to its closest cluster.  

Step 10: evaluation.

If evaluation is required measure the final V Measure and Adjuster Rand Index value of the 

expanded clusters with reference to the original category labels. 

A GA contains many random elements, so we therefore repeat each run 11 times.

3.3.1 Parameters

We used a fixed set of standard GA parameters in all our experiments which are summarised in 

Table 3.  We use an island model with 4 subpopulations as a means to increase diversity and 

exchange 3 individuals every 30 generations.

Table 3. GA parameters

Parameter Value

Selection Type Tournament

Subpopulations 4

Population Size 512

Generations 120

Crossover Probability 0.8

Mutation Probability 0.1
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Elitism Best 2

3.3.2 Multi-word Queries

We can build multiword queries by extending the length of the genome, for example doubling the 

length of the genome to allow for two-word queries and taking the modulus of k to determine which 

query each gene relates to. A word can only be added once to a set of queries: if the genome 

specifies two or more occurrences of a particular word, only the first occurrence is used. Where a 

query is made of two or more words they are connected with a logical OR (disjunction) such that 

documents are returned which contain any of the words in the query.

When building a query specified by a chromosome, we have found it useful to add a requirement for 

queries made of two or more words.  Each word in a multi-word query can also be used as a single 

word query.  Before we add a new word (newWord) to a query already containing a word 

(rootWord), we must first check that the intersect requirement is met by calculating the following: 

andCount: count of documents containing the newWord AND the rootWord

newWordCount: count of documents containing the newWord

intersectRatio: andCount/newWordCount

We have experimented with various values for the minimum intersectRatio and have found 0.5 to be 

a suitable value (see results section below).  If intersect Ratio >= 0.5 the word is added to the query 

otherwise nothing is added.  In other words, before we add a new word to a query, we check that at 

least 50% the documents which contain the new word also contain the root word.  This method also 

has the advantage of making the first word in a query more likely to be a good cluster label.
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3.4 Example generating 3 search queries (SQ0, SQ1, SQ2)
Table 4 shows and example where k is determined in the first gene of the chromosome and the rest 

of the chromosome is used to build up a multi-word query.

Table 4: chromosome to determine k and create 3 search queries (SQ)

Representation K SQ0 SQ1 SQ2 SQ0 SQ1 SQ2 SQ0 SQ1 SQ2

Chromosome 3 0 7 2 3 3 5 1 4 2

In this case the chromosome specifies a k value of 3 meaning that 3 clusters will be created.   The 3 

queries shown in Table 5 will be created.

Table 5: creating multi-word queries

Gene Specified Words Final Query Comment

SQ0 0,3,1  space, orbit, nasa space OR orbit OR nasa orbit and nasa both have a high 

intersect ratio with root word 

space

SQ1 7,3,4 game, orbit, hockey game OR hockey orbit does not meet the intersect 

requirement for the root word 

game so is not included in the 

final query.

SQ2 2,5,2 god, file, god god file does not meet the intersect 

requirement for the root word 

god.  Repeated word is ignored.
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3.5 Fitness Calculation 

Text clustering aims to return sets of documents which are related to each other but not related to 

documents in other clusters. We have created and tested two fitness functions that aim to partition 

a document collection into clusters by generating a set of search queries. The first fitness function is 

for the case where the desired number of clusters (k) is known in advance.  In the second case, the 

GA will attempt to determine the optimal value for k. 

When calculating fitness from a set of queries generated by a chromosome, we define uniqueHits as 

the count of documents returned by exactly one query in the set of queries.

Let Q be a set of queries, let D be a set of documents. Let M ⊆ Q X D be the set of pairs (q, d) where 

query qϵQ matches document dϵD :

uniqueHits: |{d ϵ D ∶ q ϵ Q, ∃! (q,d) ϵ M}| 

For the case where k is known in advance, we have found that uniqueHits is a good fitness measure 

where the higher the value (the number of documents returned by a exactly one query) the better 

the fitness. 

We have noticed that in the case where k is defined in the chromosome the GA often produces 

solutions with too many categories with respect to the labelled collections.  In fact, this is to be 

expected since overlapping clusters do not lead to a reduction in fitness.  We found that introducing 

a small penalty for more clusters, as in the second fitness test (below), improved effectiveness.

uniqueHits * (1 - (k * penalty))

We have found a suitable value for penalty to be 0.02.  This value is examined in the results section. 

Below we show pseudo code to calculate uniqueHits for a set of words generated from a 

chromosome.  Note that in Apache Lucene ‘SHOULD’ is similar to connecting terms with an OR in a 

query and ‘MUST_NOT’ is used to indicate that the term MUST NOT occur if a query is to return a 

document.
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Set queries = [q0..qk]
int uniqueHits = 0
 
queries.each {q ->  
  BooleanQuery uniqueQ= new BooleanQuery()
  uniqueQ.add(q, SHOULD)
  Set otherQueries = queries.remove(q)
 
otherQueries.each {otherQ ->

   uniqueQ.add(otherQ, MUST_NOT)
  }

  uniqueHits += search(uniqueQ).hits.size
}

return uniqueHits

3.6 Effectiveness Measures

Effectiveness is determined by referring to the original category labels (ground truth) from the 

relevant collection.  

3.6.1 V measure

We use V-measure [30] as the primary method of assigning effectiveness. The V-measure is based on 

a combination of homogeneity (h) and completeness (c).  A perfectly homogeneous clustering is one 

where each cluster has data-points belonging to the same class label. Homogeneity describes the 

closeness of the clustering algorithm to this perfection.

A perfectly complete clustering is one where all data-points belonging to the same class are 

clustered into the same cluster. Completeness describes the closeness of the clustering to this 

perfection. The V-measure score is the harmonic mean of homogeneity and completeness as given 

by

𝑉 =
(1 + 𝛽) ∗ ℎ ∗ 𝑐

(𝛽 ∗ ℎ + 𝑐)

We assign a default value of 1 to beta so that homogeneity and completeness are given equal 

weighting.
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3.6.2 Adjusted Rand Index

We also provide the adjusted Rand Index (ARI) [9] as a secondary performance measure.   ARI is a 

measure of the similarity between the clusters produced by the algorithm and the original document 

labels.   The ARI is calculated as follows:

𝐴𝑅𝐼 =  
2(𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 ― 𝑐ℎ𝑎𝑛𝑐𝑒)

𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 + 𝑐ℎ𝑎𝑛𝑐𝑒

where:

 agreement is the number of pairs of points that are assigned to the same cluster in both 

clusters.

 chance is the expected number of pairs of points that would be assigned to the same cluster 

by chance, given the number of clusters and the size of the data set.

The ARI can take values between -1 and 1, where -1 indicates perfect disagreement and 1 indicates 

perfect agreement. A value of 0 indicates that the two clusters are no better than random.

3.6.3 Cluster count error

We also provide the cluster count error which is simply the absolute value of the number of classes 

minus the number of clusters.  This measure is only relevant for the case where k is not known in 

advance.

3.7 Definitions

Let W be the set of all words in any document in a collection, so W ⊆ ℘(Σ∗), here ℘(X) is the power 

set of X, Σ is a finite alphabet and Σ∗ is the set of finite strings over Σ.

We consider a document as an unstructured set of words, i.e. a document belongs to ℘(W ). In this 

way, we ignore the order and multiplicity of the words in the document. [Later, we may consider a 

document as a multi set of words.]. Let D ⊆ ℘(℘(W )) be a set of documents.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4552319

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



16

In the simplest case, a query is a single word w ∈ W . By membership, each query defines the set 

δ(w) ⊆ D, of all documents d such that w ∈ d. More generally, a query q is a set of words (i.e. q ∈ 

℘(W )). The query q matches the document d ∈ D if and only if  𝑞 ∩ 𝑑 ≠ ∅   i.e. if at least one word of 

the query occurs at least once in the document. Again, for any query q we define  𝛿′(𝑞) ⊆ 𝐷   to be 

the set of documents d such that q matches d. Observe that

𝛿′(𝑞) =
𝑤∈𝑞

𝛿(𝑤)

A chromosome (𝑞𝑖:𝑖 < 𝑘) is a sequence of k queries (some k > 1).  A uniqueHit for a chromosome 

occurs when a document matches exactly one of its k queries. The uniqueHitcount for a 

chromosome is the count of documents matching exactly 1 query in the set. Let

𝑢(𝑞𝑖:𝑖 < 𝑘 =
𝑖<𝑘

𝛿′ (𝑞𝑖)\
𝑖<𝑗,𝑘

(𝛿′(𝑞𝑖)⋂𝛿′(𝑞𝑗))

The symmetric difference of the 𝛿′(𝑞𝑖)𝑠, i.e., the set of all documents that are matched by exactly 

one of the k queries.

A class labelling of D is any finite partition of D, so a class labelling {Si : i < s} consists of s disjoint non-

empty sets (some finite s) whose union is the whole of D. s is the size of the partition. So, a class 

labelling belongs to

℘(℘(D)).

Let C = {Si : i < s} be a class labelling of size s, and let K = {qj : j < k} be a set of k queries for some finite 

k. For j < k let 𝑄𝑗 = 𝛿′(𝑞𝑗) ⊆ 𝐷, the set of documents that match qj. 
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We may define the V measure of (C, K) by

𝑉(𝐶,𝐾) =
2ℎ𝑐

ℎ + 𝑐

where  

ℎ = 1 ―
𝐻(𝐶|𝐾)

𝐻(𝐶)

𝑐 = 1 ―
𝐻(𝐾|𝐶)

𝐻(𝐾)

𝐻(𝐶│𝐾) = ―
𝑖<𝑠,𝑗<𝑘

(|𝑆𝑖 ∩ 𝑄𝑗|
𝐷 .𝑙𝑜𝑔(|𝑆𝑖 ∩ 𝑄𝑗|

|𝑄𝑗| ))

𝐻(𝐾│𝐶) = ―
𝑖<𝑠,𝑗<𝑘

(|𝑆𝑖 ∩ 𝑄𝑗|
𝐷 .𝑙𝑜𝑔(|𝑆𝑖 ∩ 𝑄𝑗|

|𝑆𝑖| ))

𝐻(𝐶) = ―
𝑖<𝑠

(Σ𝑗<𝑘|𝑆𝑖 ∩ 𝑄𝑗|
𝑠 .𝑙𝑜𝑔(Σ𝑗<𝑘|𝑆𝑖 ∩ 𝑄𝑗|

𝑠 ))

𝐻(𝐾) = ―
𝑗<𝑘

(Σ𝑖<𝑠|𝑆𝑖 ∩ 𝑄𝑗|
𝑠 .𝑙𝑜𝑔(Σ𝑖<𝑠|𝑆𝑖 ∩ 𝑄𝑗|

𝑘 ))
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3.8 Cluster Expansion using KNN

The clusters produced by the GA generated search queries have a drawback in that many of the 

documents are not returned by any query; on average only 70% of the documents are clustered.  If 

we discard the documents which are not in any cluster and then analyse the remaining documents 

which are clustered with reference to the original class labels the clusters have a high V-measure, 

mostly above 0.9 and sometimes approaching 1. However, it is usually the case that we need to add 

every document to a cluster.  To achieve this, we include a second stage whereby the query 

generated clusters are used as training documents for a classifier.  We use a KNN classifier to assign 

each of the unassigned documents to their nearest cluster.  Figure 1 shows the NG3 collection where 

an X represents a document which has been assigned to a category.  For example, cluster A shows all 

the documents which contain the word ‘god’.  Y indicates a document which does not contain any of 

the search query words (‘god’, ‘hockey’ or ‘nasa’) and are therefore not included in any cluster.  The 

arrows represent the process whereby the Lucene implementation of KNN assigns documents y0 – 

y3 to the nearest cluster. We use a Euclidean distance measure with a K value of 10.  

Figure 1: KNN cluster expansion
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4 Results and Discussion

4.1 Intersect requirement

The intersect requirement was developed to support multi word query building in the situation 

where k is not known in advance.  In this situation, if the intersect constraint is not included the GA 

will almost always select a value of 2 for the number of clusters (k).  For example, a typical clustering 

for the NG5 set is shown by the set of 2 queries is shown in Table 6

Table 6. Clusters generated with no intersect requirement.

Cluster Query Words Document Hits

1 hockey nhl game players  208

2 sale please mail windows god space high work apr anyone  1357

The fitness test is a based on the count of documents returned by exactly one query, so the query 

set shown achieves a high fitness, but the number of clusters (2) does not match the number of 

labelled classes (5) and the second query is returning documents from multiple classes. 

Completeness is high (0.852) but homogeneity low (0.212) and the V-measure for this clustering is 

also low (0.340).

We can improve things by restricting the GA to using one word per cluster.  In this case, using more 

queries can result in more unique hits and higher fitness.  A typical result is shown with the set of 

queries below:
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Table 7. single word queries (NG5)

Query Word Document hits

1 space 204

2 windows 278

3 team 176

4 sale 192

5 god 205

The correct number of categories has been identified, and the evaluation metrics show a distinct 

improvement (v: 0.773, h: 0.773, c: 0.774). 

The intersect constraint allows an individual to add more words to a single term query, but only 

when the set of documents retrieved by the first term (root term) in a query intersects with the set 

of documents retrieved by any new term added to the query.  In the results shown below we require 

that 50% of the documents retrieved by the new term are found in the set retrieved by the root 

term.  The rationale for the intersect requirement is to create a mechanism which allows GAs to 

produce queries with multiple terms, but only retrieving related documents ideally from a single 

category.  Using the intersect requirement we get an even bigger improvement. A typical result of a 

run using the intersect constraint is shown in Table 8.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4552319

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



21

Table 8. multi-word queries with intersect requirement (NG5)

Query words Document Hits

1 sale 192

2 windows files 295

3 game players hockey games 299

4 god christ jesus church 294

5 space moon nasa 262

The GA can add more keywords to queries provided the intersect requirement is met for each new 

term. The set of queries above has correctly created 5 clusters with (v: 0.882, h: 0.880, c: 0.883).  

We ran the GA across all the indexes with various values between 0 and 1 for the intersect 

requirements and present the results in Figure 2.

Figure 2: Average V, H and C scores across all 8 datasets for different values of the minimum intersect ratio where k is 
discovered, and multi-word queries are enabled.

Following these results, we use an intersect ratio of 0.5 in the experiments described below.
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4.2 Penalty for more clusters

In the situation where k is not known in advance, the number of clusters produced by the GA is 

typically higher than the number of categories existing in the original collection. This higher 

fragmentation leads to weaker results, and we found effectiveness could be improved by 

introducing in the fitness a small penalty based on the number of clusters:  

fitness = uniqueHits * (1.0 - (kPenalty * k))

We investigated various values for the penalty (k penalty) as shown in Figure 3

Figure 3: average values for V and Adjusted Rand Index across all 8 datasets for different values of k penalty where k is 

discovered, and multi-word queries are enabled.

We also investigated how the cluster count error responds to different values of k penalty as shown 

in Figure 4. 
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Figure 4: average cluster count error across all 8 datasets for different values of k penalty

V measure and Adjusted Rand peak with a k penalty of 0.02 and the cluster count error is at its 

lowest for this value.  Following these results, we selected a penalty of 0.02 in the experiments 

described below for the case where k is not known in advance. 

4.3 Overview

Table 9: average across all indexes

Query Type v-measure ARI

Multi-word 0.730 0.728k-discovered

Single-word 0.677 0.650
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Figure 5: results overview

Multi-word queries perform better than single word queries.  Where k is given in advance results are 

slightly improved.  

4.4 Comparison with k-means ++

We present a basic comparison across the 8 datasets for the eSQ (multi-word) system and the 

implementation of k-means++ in scikit-learn [9].  The value of k is given in advance for k-means++ 

but we show the results for eSQ where k is discovered (a harder problem).  11 runs were obtained 

for both systems and the average value of the V measure and ARI is shown.   We use a tf-idf based 

vectorizer and a feature size of 1000 for k-means++.
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Table 10: comparison of eSQ and k-means++ 

v ARI
eSQ k-means++ eSQ k-means++

 CRISIS3 0.600 0.451 0.580 0.322
 CRISIS4 0.682 0.565 0.673 0.421
 NG3 0.910 0.865 0.944 0.9
 NG5 0.731 0.718 0.734 0.632
 NG6 0.733 0.657 0.744 0.524
 R4 0.841 0.632 0.864 0.5
 R5 0.709 0.529 0.720 0.444
 R6 0.633 0.607 0.568 0.459
Average 0.730 0.628 0.728 0.525

These results are visualized in Figure 6 and Figure 7 showing that eSQ (k discovered) outperforms k-

means++ in every dataset.

Figure 6: V measure for eSQ (k discovered) and k-means++
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Figure 7: ARI for eSQ (k discovered) and k-means++

Table 11 shows the standard deviation across the 11 runs.

Table 11. Standard deviation of V measure

eSQ k-means ++
 CRISIS3 0.007 0.121
 CRISIS4 0.005 0.081
 NG3 0.002 0.025
 NG5 0.009 0.070
 NG6 0.005 0.041
 R4 0.028 0.071
 R5 0.012 0.062
 R6 0.029 0.081
Average 0.099 0.138

4.5 Comparison with agglomerative clustering and spectral clustering
We also tested using agglomerative clustering and spectral clustering [31], but both performed quite 

poorly compared to k-means++ or eSQ.  Agglomerative clustering also has the advantage of not 

requiring the number of clusters to be provided in advance.
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Table 12 V measure for Agglomerative and Spectral clustering

Agglomerative Spectral
crisis3 0.243 0.040
crisis4 0.293 0.067
NG3 0.309 0.813
NG5 0.364 0.610
NG6 0.403 0.639
R4 0.446 0.433
R5 0.474 0.302
R6 0.467 0.326
Average 0.375 0.404

Spectral clustering is often performing better than agglomerative clustering but is failing to 

effectively cluster the short text (tweet) data in the crisis datasets.

5 Conclusions and future work

We have presented eSQ, a novel system for text clustering which is based on GA generated search 

queries.  The eSQ system can produce effective text clustering by using search queries at cluster 

centres, with the advantage that the exact number of clusters does not need to be provided in 

advance.  eSQ is different to most modern clustering systems which would use a document or a 

point in a multi-dimensional space as the cluster centre.  The initial clusters (formed from the GA 

generated search queries) are produced without using a measure of similarity between documents. 

The search query method has the advantage of interpretability where the search terms function as 

cluster labels.  As mentioned in the introduction the cluster hypothesis suggests that search query 

method will naturally align with information retrieval requirements [8].  

Currently the algorithm only generates disjunctive queries and is only suitable for clustering text 

documents.  We would like to experiment with more complex queries which include conjunction, 

negation and other search query types as have successfully been used in text classification [23].  We 
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would also like to develop the algorithm so that it could be applied to cluster other media such as 

images.
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