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A new model for mono-component droplet heating/evaporation is developed, tested, and applied to the analysis of

in-house experimental data. The new model links the previously developed liquid phase model, using the analytical

solution to the heat transfer equation at each timestep, and the gas phase model, using the solution to the equations of

the conservation of mass, momentum and energy leading to an explicit expression for the Nusselt number and implicit

expression for evaporation rate of the droplet. The latter expressions are used as boundary conditions for the liquid

phase model. The new model is verified using a comparison between its predictions of the droplet temperatures and

radii for very large liquid thermal conductivity (1000 W/(m·K) and those of the model, using the assumption that the

thermal conductivity of liquid is infinitely large. The closeness between the predictions of these models supports the

reliability of both. The model is validated using the experimental data obtained at the Heat Transfer laboratory of Tomsk

Polytechnical University with regard to the heating/evaporation of droplets. The deviations between the measured and

predicted droplet radii and temperatures in most cases are shown to be within experimental error margins.

I. INTRODUCTION

Interest in the problem of modelling droplet heating,

evaporation and related problems has been stimulated by

numerous engineering, pharmaceutical, and environmental

applications1–4. Various approaches to this problem have been

discussed in numerous papers summarised in monographs3,5.

Commonly used approaches to modelling these processes use

the assumptions that the thermal conductivity of liquid is in-

finitely large and heat and mass transfer in the gas phase

can be described using the Abramzon and Sirignano model6

(e.g.7,8). The first assumption is commonly based on the

observation that the thermal conductivity of liquid is much

larger than that of gas. This reasoning would be applicable to

steady state processes, but the processes during droplet heat-

ing/evaporation are transient during which the processes in the

liquid phase are controlled by thermal diffusivity rather than

by thermal conductivity. The former is much larger for gas

than for liquid3.

The importance of finite liquid thermal conductivity in the

analysis of droplet heating/evaporation was demonstrated in

a number of models summarised in3. It seems that the most

practically useful among these models is the one using the an-

alytical solution to the heat transfer equation in the droplet

based on the Robin boundary condition at its surface. This so-

lution was implemented into numerical codes and used at each

timestep of the calculations9. In the latter paper, a simplified

version of the Abramzon and Sirignano model6 was applied

for modelling of the processes in the gas phase. The effect

of recirculation inside the droplet due to its motion relative to

the ambient gas was considered using the Effective Thermal

Conductivity (ETC) model3.

One of the most important assumptions of the Abramzon

and Sirignano model6 is that the density of the mixture of air

and vapour above the surface of the evaporating droplet is con-

stant (it does not depend on the distance from this surface).

This assumption may become questionable for droplets evap-

orating in high temperature environments and a model that

did not use it was developed in10. Although the latter model

does not predict an explicit expression for the evaporation rate

(as was the case with the Abramzon and Sirignano model6),

finding this rate using the approach developed in10 is much

simpler than using a rigorous approach, based on the mass,

momentum and energy conservation equations. This simplic-

ity was based on keeping only the leading term in the asymp-

totic expansion of the vapour mass fraction equation. This

approach was rigorously investigated and justified in11. The

analysis of10 used the assumption that there are no temper-

ature gradients in the droplet (liquid thermal conductivity is

infinitely large). This paper focuses on the development and

testing of the new model incorporating the liquid phase model

developed in9 and gas phase model developed in10. The key

ideas of these models and the details of incorporating the mod-

els into a numerical algorithm are described in Section II. In

Section III the predictions of the numerical algorithm based

on the new model are verified using a comparison of the pre-

dictions of this algorithm in the limit of infinitely large liquid

thermal conductivity and the prediction of the algorithm based

on the model described in10. The effect of various parameters

on droplet heating and evaporation characteristics, predicted

by the new model, are illustrated in Section IV. The results of

validation of the predictions of the new model using in-house

experimental data are presented in Section V. The key find-

ings are summarised in Section VI.
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II. MODEL AND NUMERICAL ALGORITHM

As mentioned in Section I, the model was built by combin-

ing the liquid phase model developed in9 and the gas phase

model developed in10. Basic ideas of the latter models are

summarised in Appendices A and B. The model applies to sin-

gle component droplets, and spherical symmetry is assumed.

The heat transfer process in a liquid droplet with radius Rd

is described using the analytical solution to the heat transfer

equation for temperature T 3,9:

∂T

∂ t
= κ

(

∂ 2T

∂R2
+

2

R

∂T

∂R

)

, (1)

where t is time, R is the distance from the droplet centre, κ is

thermal diffusivity.

The liquid thermophysical properties are considered to be

constant during each timestep. The droplet radius changes

with time due to swelling and evaporation but is considered to

be constant during each timestep. The analytical solution to

Eq. (1), as presented in3, is reproduced in Appendix A (Ex-

pression (7)). Boundary condition (4) was used, and the val-

ues of h (convective heat transfer coefficient) and Rd (droplet

radius) were predicted by the gas phase model10, which uses

the analytical solutions to the quasi-steady species, momen-

tum, and energy equations (see Appendix B, Eqs. (9)-(12)).

The latter solutions were obtained assuming that thermal con-

ductivity, heat capacity and the mass diffusion coefficient are

uniform in the gas phase, while the dependence of the gas

density on temperature is explicitly considered. The main out-

come of these solutions is an implicit equation to evaluate the

droplet evaporation rate (Eq. (19)), and the gas temperature

distribution (Eq. (14)). The latter allows one to evaluate h.

The effect of the droplets’ movement on their heating is

introduced via the following corrections to Nu (cf. a similar

correlation used in6):

Numov = Nu
{

F (1+Re ·Pr)1/3
}

, (2)

where

F = max
[

1,Re0.077
]

,

Numov is the moving droplet’s Nusselt number, Nu is defined

by Expression (20), Pr and Re are Prandtl and Reynolds num-

bers, respectively.

Similarly, the effect of the droplets’ movement on their

evaporation is introduced via the following corrections to

m̂ev
3,6:

m̂ev,mov = m̂ev

{

F (1+Re ·Sc)1/3
}

, (3)

where m̂ev,mov is the normalised evaporation rate for the mov-

ing droplets, m̂ev is defined by Expression (19). There are

other ways to consider the effect of convection on the heat and

mass transfer between the droplet and the surrounding gas,

like the approach based on film theory12. The present method

is used here for its simplicity and straightforwardness.

The effects of thermal radiation and droplet support were

considered assuming that both radiative heat and heat sup-

plied by conduction from the support are homogeneously and

instantaneously distributed throughout the whole droplet vol-

ume. The effective absorption factor was approximated by a

power function of droplet radius (see3,13 for the details). Both

effects are relatively small for the cases to be considered.

The model was implemented in Matlab R2020a code and

100 terms were used in the series (7) (see Appendix A).

Timesteps of 0.0001 s were used to calculate the heat-

ing/evaporation of droplets, and 10,000 cells along the droplet

radius were used to calculate the integrals used in (7). The

roots of Eq. (8) were obtained using the bisection method with

an absolute error of not more than 10−12.

This choice of parameters for use in calculations was based

on the observation that further increase in the number of terms

in the series and in the number of cells, and decrease in the

timestep and errors in the bisection method do not affect the

results of calculation.

The following key steps of the numerical algorithm were

used:

1. The initial temperature distribution inside and outside the

droplet is assumed or the distributions predicted at the previ-

ous timestep are used.

2. The droplet volume average temperature is calculated.

3. The values of liquid and effective thermal conductivity

are calculated.

4. The other liquid properties at the average droplet tem-

perature are calculated.

5. The thermophysical properties in the ambient gas

(air)/vapour mixture at the reference temperature, are calcu-

lated using the ‘1/3 rule’14.

6. The evaporation rate is calculated using Equation (3).

7. The values of the Nusselt number (Expression (2)) and

the corresponding convective heat transfer coefficient h are

calculated.

8. The temperature distribution inside and outside the

droplet is calculated using the solutions for liquid and gas

phases.

9. The droplet’s radius at the end of the timestep, taking

into account its evaporation and swelling, is calculated.

10. The calculations return to Step 1 and the process is

repeated.

III. VERIFICATION OF THE NUMERICAL ALGORITHM

The verification of the numerical algorithm based on the

new model was performed using a comparison of its predic-

tions in the limiting case of a droplet with unrealistically large

thermal conductivity (1000 W/(m·K) with the predictions of

the original model10, which assumes infinite thermal conduc-

tivity. The values of input parameters presented in Table I

were used for calculations.

Results of the comparison between the time evolution of

(Rd/Rd0)
2 and Td/Td0 predicted by the model presented in

Section II with liquid thermal conductivity 1000 W/(m·K),

and the model described in10 are presented in Figure 1. As
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TABLE I. The values of the parameters used for model verification.

Parameter Value Description

Rd0 10−5 m Initial droplet radius

Td0 300 K Initial droplet temperature

Ta 600 K Ambient temperature

p 101325 Pa Ambient pressure

Mv 0.226446 kg/mole Vapour molar mass

Ma 0.02895 kg/mole Ambient air molar mass

Tcr 723 K Critical temperature of n-hexadecane

FIG. 1. Non-dimensional droplet radii squared (Rd/Rd0)
2 and

non-dimensional volume average temperature Td/Td0 versus non-

dimensional time τ = tDv0/R2
d0, where Dv0 is the vapour diffu-

sion coefficient taken at the initial temperature Td0, predicted by the

model presented in Section II, with liquid thermal conductivity equal

to 1000 W/(m·K) (curves "1") and the model described in10 (curves

"2"). Input parameters presented in Table I were used in calculations.

follows from this figure, the matching between the results pre-

dicted by both models is satisfactory (the difference between

the predicted values of (Rd/Rd0)
2 and Td/Td0 is less than 1%).

This gives us confidence in using the new algorithm for the

analysis of droplet heating/evaporation.

IV. PARAMETRIC STUDY

The parametric study focuses on the investigation of the

effect of finite liquid thermal conductivity on droplet heat-

ing/evaporation. At first the same input parameters as for the

plots in Figure 1 were used. Two values of thermal conduc-

tivity of n-hexadecane were considered: 1000 W/(m·K) (to

approximate the Infinite Thermal Conductivity model) and its

realistic temperature dependence (see Table II in Appendix

C). Plots of droplet radii versus time predicted for both cases

are presented in Figure 2a. As follows from this figure, taking

into account the effect of realistic liquid thermal conductivity

leads to a 5.4% reduction in the droplet lifetime.

The same plots as in Figure 2a, but for Rd0 = 3 mm and

Tg = 1200 K, are presented in Figure 2b. As follows from that

figure, in the case of the larger droplets, the effect of finite

(a)

(b)

FIG. 2. Plots of droplet radii versus time predicted by the Infinite

Thermal Conductivity (ITC) model (with a liquid thermal conduc-

tivity equal to 1000 W/(m·K) (curve "1") and a realistic temperature

dependent thermal conductivity of n-hexadecane (see Table II in Ap-

pendix C) (curve "2") for the input parameters presented in Table I

(a); the same as in Figure 2a but for Rd0 = 3 mm and Tg = 1200 K

(b).

liquid thermal conductivity leads to a 21.7% reduction in the

droplet lifetime. This reduction is much larger than in the

case shown in Figure 2a and should be considered in practical

engineering applications.

Plots of normalised droplet temperature versus normalised

distance from the droplet centre for five time instants for the

same input parameters as in Figure 2a (considering the effect

of finite liquid thermal conductivity) are presented in Figure

3. The presence of a temperature gradient in the droplet is

clearly seen at the start of the heating process. At t = 3 ms, this

gradient becomes close to zero throughout the droplet volume,

which may justify the applicability of the ITC model in this

case.

The same plots as in Figure 3, but for Rd0 = 3 mm and

Tg = 1200 K and different time instants, are shown in Figure

4. The reported results confirm that the effects of temperature

gradient in the liquid phase are important at the beginning of

the process, but less important at its final stages.
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FIG. 3. Plots of normalised liquid and gas temperature versus nor-

malised distance from the droplet centre ξ = R/Rd for the input pa-

rameters presented in Table I and liquid n-hexadecane thermal con-

ductivity given in Table II in Appendix C at t = 0 ms (curve "1"),

t = 0.5 ms (curve "2"), t = 1 ms (curve "3"), t = 2 ms (curve "4"),

and t = 3 ms (curve "5").
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FIG. 4. Plots of normalised liquid and gas temperature versus ξ =
R/Rd for the input parameters presented in Table I but for Rd0 = 3

mm and Tg = 1200 K at t = 0 s (curve "1"), t = 20 s (curve "2"),

t = 40 s (curve "3"), t = 60 s (curve "4"), and t = 80 s (curve "5").

V. MODEL PREDICTIONS VERSUS EXPERIMENTAL

DATA

This section focuses on the comparison of the predictions

of the new model with experimental results obtained at the

Heat and Mass Transfer Laboratory of the National Research

Tomsk Polytechnic University. In the experiments, droplets

were heated in a Nabertherm R 50/250/13 tubular muffle fur-

nace (temperature range 300 K to 3000 K). Suspended n-

decane droplets were introduced into the registration area us-

ing a motorized manipulator, at the end of which there was a

solder of a low-inertial type K thermocouple with a diameter

of 0.2 mm.

Figure 5 shows a schematic, and an actual image, of a

droplet on a thermocouple holder. The thermocouple junc-

tion was located at the centre of the droplet, and, according to

FIG. 5. A schematic (a) and actual image (b) of a droplet mounted

on a low-inertia type K thermocouple holder of diameter 0.2 mm.

video frame analysis, the maximum displacement of that junc-

tion from the centre did not exceed 20%. These displacements

contributed to random measurement errors.

The n-decane droplets were generated using an electronic

Finnpipette Novus dispenser with fluid intake functions 5

to 50 µl (with a step of 0.1 µl). The initial diameter of

the n-decane droplets in the three series of experiments was

0.85± 0.05 mm, 0.95± 0.05 mm, and 1.05± 0.05 mm, re-

spectively. Five to ten experiments were performed for each

case. Gas temperature in the furnace (Ta) and average droplet

temperature (Td) were measured using a National Instruments

data acquisition complex and K-type low-inertia thermocou-

ples. Systematic errors of temperature measurements based

on the manufacturer’s specification were ±3 K, while system-

atic errors of time registration were ±0.1 s. The initial droplet

temperature was monitored by a thermocouple and was in the

range 298−318 K. The ambient atmospheric pressure was as-

sumed to be equal to 101325 Pa. Gas temperature was mon-

itored using a thermocouple and maintained at the level of

760±10 K.

The registration area was illuminated using a MultiLed QT

projector (GS Vitec GmbH, Germany) to improve the image

contrast of the droplets. The droplet evaporation process was

recorded using a high-speed Phantom Miro M310 video cam-

era. The images were recorded with a frequency of 1000 fps,

resolution of 512 × 512 pixel, and exposure time of 1 µs.

Video recording started when droplets reached the registra-

tion area. Air velocity relative to the droplet was 0.2± 0.05

m/s. It was measured by a Testo 425 thermal anemometer.

The time required for the droplet to reach the registration area

(2.5 s) was considered in the analysis of recorded dependence

of droplet radii on time. The video frames were processed us-

ing specially developed MatLab code. The systematic errors

of measured droplet initial radii were less than ±0.044 mm

(±2 pixels). The total errors (sum of systematic and random

errors) of the measurements were less than ±0.05 mm (see

Ref.15 for more details).

An example of video images of an evaporating droplet sup-

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
5
8
6
6
1



Accepted to Phys. Fluids 10.1063/5.0158661

5

FIG. 6. An example of video images of an evaporating droplet sup-

ported by a thermocouple for Tg = 760±10 K, T0 = 300±10 K and

Rd0 = 0.85±0.05 mm.
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FIG. 7. Experimental and modelling results for time evolution of

radii (a) and average temperature (b) of n-decane droplets for Tg =
760± 10 K and T0 = 300± 10 K and Rd0 = 0.85± 0.05 mm (1),

Rd0 = 0.95±0.05 mm (2), and Rd0 = 1.05±0.05 mm (3).

ported by a thermocouple at three time instants is presented in

Figure 6.

The predicted and observed values of Rd and Td versus time

for heated and evaporated n-decane droplets are compared in

Figure 7. Three initial values of droplet radii and temperatures

were used. Gas temperature was 760 K. As can be seen from

this figure, modelling results agree with observations within

experimental error margins in most cases. The deviation be-

tween the predicted and observed results at the final stage of

droplet evaporation (up to 7% and 10% for droplet radii and

temperatures, respectively) is linked to several limitations of
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FIG. 8. Experimental and modelling results for time evolution of

radii of n-decane droplets for Tg = 760±10 K and T0 = 300±10 K

and Rd0 = 1.0± 0.05 mm (1), Rd0 = 1.5± 0.05 mm (2), and Rd0 =
3.0±0.05 mm (3).
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FIG. 9. Experimental and modelling results for time evolution of

average temperatures of n-decane droplets for Rd0 = 1.5±0.05 mm,

T0 = 300± 10 K, and Tg = 700± 10 K (1), Tg = 900± 10 K (2),

Tg = 1100±10 K (3).

the model used in the analysis. These include the assumptions

that droplets are spherical and that the effects of the droplet

support are small13.

The same images as shown in Figure 7a but for initial

droplet radii in the range 1 to 3 mm are presented in Figure 8.

As follows from this figure, when droplet radii are increased

from 1 to 3 mm the agreement between the experimental and

modelling results is poorer. For droplets with initial radii 1

mm, the observed and predicted times required for complete

evaporation differ by no more than 1.5%, while for droplets

with initial radii 3 mm, they differ by up to 6%. This is related

to the fact that large droplets tend to become non-spherical. In

such cases, use of the model described in this paper to model

them is less reliable.

The same images as shown in Figure 7b but for initial

droplet radii 1.5±0.05 mm and gas temperatures in the range

700 K to 1100 K are shown in Figure 9. As follows from Fig-

ure 9, in all cases, the deviation between experimental data

and predictions of the model does not exceed the errors of

experimental measurements, although the observed average
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droplet temperatures tend to be higher than the predicted ones.

VI. CONCLUSIONS

A new model for mono-component droplet heating and

evaporation was developed, tested, and applied to the anal-

ysis of experimental data. The main idea of the new model

lies in linking the previously developed liquid phase model

described in9 and gas phase model described in10. The liquid

phase model uses the analytical solution to the heat transfer

equation in a spherically symmetric droplet with the Robin

boundary condition at its surface. This analytical solution

is incorporated into the numerical code and applied at each

timestep of the calculations. The gas phase model uses the

solution to the equations of the conservation of mass, momen-

tum and energy leading to the explicit expression for the Nus-

selt number and implicit expression for droplet evaporation

rate. The latter expressions were used as boundary conditions

for the liquid phase model.

The effects of liquid motion inside the droplet were consid-

ered using the Effective Thermal Conductivity (ETC) model.

The corrections to the convective heat transfer coefficient and

evaporation rate due to droplet movement were taken into ac-

count using Correlations (2) and (3). The effect of droplet sup-

port was considered using the model developed in13, based on

the assumption that heat supplied from a droplet support is in-

stantaneously and homogeneously distributed throughout the

droplet volume.

The new model was verified using a comparison between its

predictions of the droplet radii and temperatures for very large

liquid thermal conductivity (1000 W/(m·K) and those of the

model described in10, using the assumption that liquid ther-

mal conductivity is infinitely large. The closeness between

both predictions (the deviation was less than 1%) supports the

reliability of both models.

The experimental and modelling results referring to time

evolution of radii and average temperatures of n-decane

droplets for gas temperature Tg = 760 K and initial droplet

temperatures and radii in the ranges 298− 318 K and 0.84−
1.05 mm, respectively, were shown to be close (the deviation

between them was within experimental error margins). The

deviation between the observed and predicted results at the fi-

nal stage of droplet evaporation can be attributed to several

limitations of the model used in the analysis. These include

the assumptions that droplets are spherical and the effects of

the droplet support are small.

It was shown that when droplet radii increased from 1 to

3 mm the agreement between experimental and modelled re-

sults becomes less convincing. This is related to the observa-

tion that large droplets tend to be non-spherical, and in such

cases the reliability of the model described in this paper is

questionable. It was shown that the maximal deviation be-

tween experimentally observed average droplet temperatures

and predictions of the model is comparable with the errors of

experimental measurements for gas temperatures in the range

700 to 1100 K. The observed average droplet temperatures,

however, tended to be higher than the predicted ones.

APPENDICES

A. Liquid phase model

Assuming that the processes are spherically symmetric, the

heat transfer in the droplet is described using the Eq. (1).

The model uses the solution to Equation (1) (R ≤ Rd) with

the Robin boundary condition at the droplet surface:

kl

∂T

∂R

∣

∣

∣

∣

R=Rd−0

= h(Teff −Ts), (4)

Teff = Tg +
ρlLṘd

h
, (5)

where Tg ambient gas temperature, Ṙd = dRd/dt, L the spe-

cific heat of evaporation, h the constant convection heat trans-

fer coefficient, and the initial condition

T (t = 0) = Td0(R). (6)

T = T (R, t) is assumed to be a twice continuously differen-

tiable function at R ≤ Rd .

The solution to (1) in this case is presented as3:

T (R, t) =
Rd

R

∞

∑
n=1

{

qn exp
[

−κRλ 2
n t
]

−
sinλn

|| vn ||2 λ 2
n

µ0(0)exp
[

−κRλ 2
n t
]

−
sinλn

|| vn ||2 λ 2
n

×
∫ t

0

dµ0(τ)

dτ
exp

{

−κRλ 2
n [t − τ]

}

dτ

}

×sin

{

λn

(

R

Rd

)}

+Tg(t), (7)

λn are solutions to the following equation:

h0 sinλ +λ cosλ = 0, (8)

h0 =
hRd

kl)
−1,

T̃0(R) =
RTd0(R)

Rd

,

qn = R−1
d || vn ||

−2
∫ Rd

0
T̃0(R)sin

[

λn

(

R

Rd

)]

dR,

|| vn ||
2=

1

2

(

1+
h0

h2
0 +λ 2

n

)

=
1

2

(

1−
sin2λn

2λn

)

,
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κR =
kl

clρlR
2
d

,

µ0(t) =
hTg(t)Rd

kl

,

ρl , kl , and cl are the liquid density, thermal conductivity, and

specific heat capacity, respectively.

The solution to Eq. (8) leads to a set of positive eigenvalues

λn (n = 1,2, ...) numbered in ascending order. The values of h

and Ṙd are inferred from the gas phase model (see Appendix

B).

B. Gas phase model

Following5,10, the investigation of the processes in the gas

phase surrounding a droplet uses the steady-state mass, mo-

mentum and energy balance equations for the vapour and gas

(air) mixture:

d

dR

{

R2ρvU −R2Dvρtotal

dYv

dR

}

= 0, (9)

d

dR

{

R2ρaU −R2Dvρtotal

dYa

dR

}

= 0, (10)

ρtotalU
dU

dR
=

dptotal

dR
+µmix

{

d2U

dR2
+

2

R

dU

dR

}

, (11)

ρtotalUcp,mix

dT

dR
= kmix

{

d2T

dR2
+

2

R

dT

dR

}

, (12)

where U is the Stefan flow velocity3 and R≥Rd is the distance

from the droplet centre. Thermophysical properties refer to

the mixture of vapour (v) and air (a). They are assumed to be

uniform, with the exception of the density. An extension of

the model considering the dependence on temperature of all

the thermophysical properties was presented in16). ρtotal and

T depend on R. Partial (pv and pa) and total (ptotal) pressures

are inferred from the Dalton and ideal gas laws.

Equations (9)-(12) were solved using the following bound-

ary conditions:

T (R = ∞) = Ta,∞, T (R = Rd) = Ts,

pv(R = Rd) = pvs(Ts), Yv(R = ∞) = Yv,∞.

The following equation for the conservation of mass fol-

lows from (9)-(10):

ρtotalU =
|ṁev|

4πR2
, (13)

where ṁev is the droplet evaporation rate.

Eq. (13) allows us to decouple (12) from the other equa-

tions. The solution to (12) can be presented as:

T = (1−ATC(R))Ts +Ta,∞ATC(R), (14)

where

ATC(R) =
exp

(

− m̂evRd
LeR

)

− exp
(

− m̂ev
Le

)

1− exp
(

− m̂ev
Le

) , (15)

m̂ev = |ṁev|/(4πRdDvρa,∞)
Le = kmix/(Dvρa,∞cp,mix).
New variables

G = ln(Ya) = ln(1−Yv), ζ = Rd/R, T̃ = T/Ta,∞

lead to the following equation for G:

−Gζ ζ +Gζ

Gζ θeGT̃ +
(

1+θeG
)

T̃ζ + ε2ζ 3G2
ζ

[

(1+θeG) T̃ − εζ 4G2
ζ

]

= ε
ζ 2G2

ζ (ζ
2Gζ ζ ζ +4ζ Gζ ζ +2Gζ )

[

εζ 4G2
ζ
− (1+θeG) T̃

]

m̂ev
Sc

(16)

where

m̂ev =−
dG

dζ
ρ̃, (17)

ε =
MvD2

v

RuTa,∞R2
d

. (18)

θ = (Mv−Ma)/Ma, Ma and Mv are the molar masses of ambi-

ent gas and vapour, respectively, ρ̃ = ρtotal(R)/ρtotal(R = ∞),
Sc is the Schmidt number.

The assumption that ε = 0 (its validity was justified in11)

leads to the following equation for m̂ev:

m̂ev +





m̂ev

1− exp
(

− m̂ev
Le

) −Le





(

T̃s −1
)

= G , (19)

where

G =−p̂v,cr ln

{

p̂v,cr − p̂vs

p̂v,cr −Yv∞

}

,

p̂vs =
pvsMv

RuTa∞ρa∞

, p̂v,cr = 1+θ(1−Yv∞),

Ru the universal gas constant, pvs(Ts) the saturation vapour

pressure.

h was inferred from the Nusselt number Nu. Following10,

for stationary droplets the latter was estimated as:

Nu = 2





m̂ev

Le

exp
(

− m̂ev
Le

)

1− exp
(

− m̂ev
Le

)



 . (20)

The temperature gradient at the droplet surface is calculated

from Expression (14). Nu predicted by Expression (20) is

close to 2 when m̂ev is small (the Stefan flow can be ignored).
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TABLE II. The approximations of transport and thermodynamic properties of n-hexadecane: subscript l shows the liquid phase, while subscript

v shows the vapour phase.

Parameter Approximation Unit

psat
19 exp

(

156.06− 15015
Ts

−18.941 · log10(Ts)+681.72 ·T 2
s

)

Pa

Dv
20 1.975T 1.75

ref

92902Pgas
m2/s

kl
21 0.189−1.2226 ·10−4 ·T −1.3059 ·10−7 ·T 2 W/(m· K)

cl
19 370.35+0.23147·T+0.00068632·T 2

Mv
kJ/(kg·K)

ρl
19 268.07Mv

0.25287
1+(1− T

723 )
0.31143 kg/m3

L19 10.156 ·104 · (1− (Ts/Tcr))
0.45726 ·M−1

v J/kg

TABLE III. The approximations of transport and thermodynamic properties of n-decane: subscript l shows the liquid phase, while subscript v

shows the vapour phase.

Parameter Approximation Unit

psat
22 133.322×10

26.512− 3358.4
Ts

−6.1174·log(Ts)−3.3225·10−10·Ts+4.8554·10−7·T 2
s Pa

Dv
21

(

−0.03116+1.707510−4 ·Tref +3.793 ·10−7 ·T 2
ref

)

·10−4 m2/s

kv
21 −1.13 ·10−3 +8.1090 ·10−6 ·T +9.6092 ·10−8 ·T 2 W/(m· K)

cpv
22

(

31.78+0.74489 ·T −1.0945 ·10−4 ·T 2 −2.267 ·10−7 ·T 3 +9.3458 ·10−11 ·T 4
)

/Mv J/(kg·K)

kl
21 0.186−1.183 ·10−4 ·T −1.9797 ·10−7 ·T 2 W/(m· K)

cl
22 79.741+1.6926·T−4.5287·10−3·T 2+4.9769·10−6·T 3

Mv
kJ/(kg·K)

ρl
22 232.8 ·0.2524

−(1− T
Tcr
)

0.2857

kg/m3

L22 71428 ·
(

1− (Ts/Tcr))
0.451

)

·M−1
v J/kg

C. Thermophysical properties

Tables II and III show the correlation used to calculate the

thermophysical properties of n-hexadecane and n-decane, re-

spectively. The gas mixture thermal conductivity is calculated

according to the Wassiljewa relation17:

kmix =
kaxa

xa +Aavxv

+
kvxv

xv +Avaxa

(21)

where the coefficients Aav and Ava are obtained from the Lind-

say and Bromley relationship18 and ka is calculated as in Ta-

ble IV. The gas mixture specific heat capacity is calculated as

mass averaged specific heat capacity of vapour and air, where

the specific heat capacity of air cpa is calculated using the for-

mulae shown in Table IV.

TABLE IV. Thermal conductivity and specific heat capacity of air.

Parameter Approximation Unit

ka
21 1.024 ·10−2 −8.21 ·10−6 ·T +1.41 ·10−7 ·T 2 −4.51 ·10−11 ·T 3 W/(m· K)

cpa
22 29.643−5.1373·10−3·T+1.3106·10−5·T 2−4.8325·10−9·T 3

Ma
J/(kg·K)
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