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Summary
A novel methodology is presented for reconstructing the Eulerian number den-
sity field of dispersed gas-droplet flows modelled using the fully Lagrangian
approach (FLA). In this work, the nonparametric framework of kernel regres-
sion is used to accumulate the FLA number density contributions of individ-
ual droplets in accordance with the spatial structure of the dispersed phase.
The high variation which is observed in the droplet number density field for
unsteady flows is accounted for by using the Eulerian-Lagrangian transforma-
tion tensor, which is central to the FLA, to specify the size and shape of the
kernel associated with each droplet. This procedure enables a high level of
structural detail to be retained, and it is demonstrated that far fewer droplets
have to be tracked in order to reconstruct a faithful Eulerian representation
of the dispersed phase. Furthermore, the kernel regression procedure is eas-
ily extended to higher dimensions, and inclusion of the droplet radius within
the phase space description using the generalised fully Lagrangian approach
(gFLA) additionally enables statistics of the droplet size distribution to be deter-
mined for polydisperse flows. The developed methodology is applied to a range
of one-dimensional and two-dimensional steady-state and transient flows, for
both monodisperse and polydisperse droplets, and it is shown that kernel regres-
sion performs well across this variety of cases. A comparison is made against
conventional direct trajectory methods to determine the saving in computational
expense which can be gained, and it is found that 103 times fewer droplet real-
isations are needed to reconstruct a qualitatively similar representation of the
number density field.
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1 INTRODUCTION

Gas-droplets flows are ubiquitous within science and engineering, and are central to many industrial applications
and environmental phenomena, including facilitating the decarbonisation of propulsion systems for transportation,1
determining the spread of airborne droplets containing a pathogen,2 and modelling droplet condensation within
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atmospheric clouds.3 Of primary interest in the characterisation and description of such systems is the variation of droplet
number density throughout the flows, with this being a key determinant in physical factors such as reaction rates and
probability of infection. The mechanisms that are responsible for the variation in droplet number density have received
much attention, with studies considering both the influence of the carrier flow structures and droplet physics upon the
clustering and dispersion of droplets.

Whilst experimental studies continue to be an important informant of droplet behaviour through the provision of
quantities such as the distribution of droplet velocities and sizes, it is useful to be able to study specific flow configurations
without having to use an experimental setup. Mathematical and numerical modelling is able to fulfil this role with the aid
of computational simulations, and provides a wealth of detailed information that can be difficult to obtain experimentally,
such as knowledge of the instantaneous droplet number density field. Such modelling is able to provide detailed insight
into the physical phenomena which occur in droplet-laden flows, and constitutes a topic of growing research interest.

Within the realm of modelling gas-droplet flows two distinct approaches exist for handling the droplet phase. The first
treats the droplets as a continuum in a similar manner to the gas carrier flow, and solves a set of coupled partial differential
equations which govern the evolution of the droplet phase field variables, specifically the number density, mean velocity,
and kinetic stresses. By its nature, the resolution of this approach is limited by the fidelity of the computational grid upon
which the equations are solved, and consequently the resultant Eulerian description of the droplet phase is restricted in
the level of detail that can be represented.4 In contrast, droplets can instead be treated individually, with the equation
of motion for each droplet being solved along their separate Lagrangian trajectories. This method is able to capture a
considerable level of detail, with the behaviour of droplets in different regions of the flow being accurately accounted for
through their individual treatment, however the drawback to the Lagrangian approach lies in construction of the Eulerian
droplet number density field from the trajectories. In order to obtain statistical convergence of the resulting Eulerian
description, the number of droplets required is often prohibitive, being of the order of (103) in every grid cell for a well
resolved flow.5

A point of contention between the Eulerian and Lagrangian descriptions of the droplet phase is in the capturing of
important physical phenomena such as the crossing trajectories effect,6 in which the non-negligible inertia of droplets
can cause their trajectories to intersect in physical space. This has the consequence of the droplet phase field variables
becoming multi-valued; a consideration that is important to account for in the modelling approach. Such instances of
multi-valuedness can be observed in the structure of the dispersed phase continuum where they manifest as the envelope
of intersecting trajectories, which is referred to as a fold. Eulerian descriptions of the droplet field are by construction
single-valued at a given point in space, and therefore unable to include the full detail of the crossing trajectories effect
in their standard form. To address this, studies have sought to account for this behaviour directly within the Eulerian
representation of the droplet phase field variables by means of developments such as a family of moment methods4 and
multi-fluid models.7 In contrast, the Lagrangian description of droplets along their trajectories is naturally able to handle
the intersection of trajectories, and therefore also the ensuing multi-valued nature of the droplet field, making it an ideal
candidate for the development of further models.

To utilise the detail intrinsic to the Lagrangian description and address the issue of needing to simulate prohibitively
high numbers of droplets, a body of work has been developed upon the assumption that the droplet phase can also be
treated as a continuum with no self-stresses.8 This has been pioneered by Osiptsov,9 and involves tracking the number
density along individual trajectories by utilising the conservation of mass in Lagrangian form, a procedure known as
the fully Lagrangian approach (FLA; some works refer to this as the fully Lagrangian method, or Osiptsov’s method). A
number of subsequent studies have built upon this foundation, including its application to a gas flow through a turbine,5
examination of the moments of droplet number density,10 comparison to experimental spray data,11 applicability to turbu-
lent flows,12 inclusion of momentum coupling effects,13 and most recently, extension to the consideration of polydisperse
flows.14 Despite these advances, the FLA remains a developing concept which presents a variety of challenges within its
use, chief of which is the accurate reconstruction of the droplet number density field from trajectory data.

In this paper, the use of a statistical learning approach is proposed to accumulate the contributions from individual
droplets, and reproduce the Eulerian number density field in a robust manner which is applicable across a range of
different flows. To accomplish this, kernel regression is used, with the averaged nature of this procedure enabling it to
account for the multi-valued nature of the contributions along folds, and thereby construct a single-valued representation
of the number density field. This extends the linear interpolation approach used in a previous study,14 and makes accurate
representation of the dispersed phase-field possible for a wider class of flows. The developed methodology is applied to a
range of one-dimensional and two-dimensional steady-state and transient flows, for both monodisperse and polydisperse
droplets, and it is shown that kernel regression performs well across this variety of cases.
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The remainder of the paper is structured as follows. Section 2 outlines the formulation of the fully Lagrangian
approach, and details the assumptions involved. Section 3 introduces the concept of kernel regression, how it can be
applied to the calculation of number density, and how the information provided by the fully Lagrangian approach
can be used to ensure contributions from trajectories are accumulated in a physically consistent manner. It is further
demonstrated how the procedure can be generalised into a higher-order phase space that includes droplet radius to
enable modelling of polydisperse flows. Additionally, aspects of the computational implementation are detailed. Section 4
describes application of the kernel regression approach to a wide class of flow configurations and presents the numerical
results. Section 5 appraises the observed simulation results, and discusses the potential of the procedure for application
to more complex flows in terms of computational efficiency.

2 THE FULLY LAGRANGIAN APPROACH

2.1 General formulation for polydisperse droplets

Representation of the dispersed phase in a Lagrangian sense is considered through the use of an appropriate governing
equation for individual droplets or particles. Henceforth, in this paper droplets are taken to be liquid and can be subject
to evaporation, whilst particles are assumed to be solid and non-evaporating; the more general case of droplets is usually
focused upon. In this work, droplets are considered to be spherical, within a dilute suspension, and are also assumed
to act as point masses. Under these conditions, droplets with position xd(t), velocity vd(t) and radius rd(t) are modelled
individually along trajectories according to the arbitrary governing laws and initial conditions at time t0

ẍd(t) = f(xd(t), vd(t), rd(t), t), xd(t0) = x0, ẋd(t0) = v0, (1a)

ṙd(t) = 𝜑(xd(t), vd(t), rd(t), t), rd(t0) = r0, (1b)

where the subscript d denotes variables that are sampled along the Lagrangian droplet trajectories, f(x, v, r, t) is the force
per unit mass acting upon a droplet, and 𝜑(x, v, r, t) is the rate of radial change for a droplet with Eulerian position x,
velocity v, and radius r at time t, and droplets have initial position x0, velocity v0, and radius r0 at time t0. Without loss of
generality, both f and 𝜑 are assumed to be dependent upon all of x, v, r, and t, although 𝜑 may also be dependent upon
other thermodynamic parameters which are related to the droplet evaporation.

The FLA is based on the assumption that the dispersed phase can be represented as a continuum,9 with trajectories
characterised by their initial position x0 and time t. Recent work has generalised this concept by extending the phase
space to include the dependence on initial droplet radius r0, referred to as the generalised fully Lagrangian approach
(gFLA).14 Then the dispersed phase probability density p(xd, rd, t) can be interpreted as the number density in this wider
phase space, and is calculated directly along the trajectories of individual droplets by considering the Lagrangian form of
conservation of mass9

p(xd, rd, t) =
p(x0, r0, t0)

| det(J(x0, r0, t))|
, (2)

where the Jacobian tensor J(x0, r0, t) is specified in block matrix form as14

J(x0, r0, t) =

[
Jxx Jxr

Jrx Jrr

]

=
⎡
⎢
⎢
⎣

𝜕xd
𝜕x0

𝜕xd
𝜕r0

𝜕rd
𝜕x0

𝜕rd
𝜕r0

⎤
⎥
⎥
⎦

. (3)

The procedure for deriving Equation (2) directly from the behaviour of individual droplets described by Equation (1) is
outlined in Appendix A, along with the implications of the physical assumptions involved. The physical interpretation
of J is the local elemental deformation along a trajectory with respect to its initial state at (x0, r0, t). This is equivalent
to the Eulerian-Lagrangian transformation that describes the influence of variables transported by droplets on the local
Eulerian field, meaning that J is able to provide information about the phase space deformation of the droplet field. The
blocks of the Jacobian given by Equation (3) represent this deformation in the associated part of phase space; Jxx is the
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spatial deformation given by the standard FLA, Jrr is the deformation in radial space, and the remaining blocks provide
the corresponding cross components. The evolution equations for each block can be obtained by taking partial derivatives
of the governing Equation (1) with respect to (x0, r0), yielding the system

̈Jxx =
𝜕fd

𝜕x
⋅ Jxx +

𝜕fd

𝜕v
⋅ ̇Jxx +

𝜕fd

𝜕r
Jrx
, (4a)

̈Jxr =
𝜕fd

𝜕x
⋅ Jxr +

𝜕fd

𝜕v
⋅ ̇Jxr +

𝜕fd

𝜕r
Jrr
, (4b)

̇Jrx = 𝜕𝜑d

𝜕x
⋅ Jxx + 𝜕𝜑d

𝜕v
⋅ ̇Jxx + 𝜕𝜑d

𝜕r
Jrx
, (4c)

̇Jrr = 𝜕𝜑d

𝜕x
⋅ Jxr + 𝜕𝜑d

𝜕v
⋅ ̇Jxr + 𝜕𝜑d

𝜕r
Jrr
. (4d)

The general form of the initial conditions at time t0 pertaining to Equations (4) are

Jxx(x0, r0, t0) = I, ̇Jxx(x0, r0, t0) = 𝜕v0∕𝜕x0, (5a)

Jxr(x0, r0, t0) = 0, ̇Jxr(x0, r0, t0) = 0, (5b)

Jrx(x0, r0, t0) = 0, (5c)

Jrr(x0, r0, t0) = 1, (5d)

where I is the identity matrix. The system (4) then describes the evolution of the blocks of J whilst accounting for the
coupling that exists between the different blocks. Note that this coupling only occurs between blocks in the same column
of the Jacobian in Equation (3), with the different columns being associated with independent systems of equations. This
formulation can also be extended to provide a more complete description of the droplet thermophysical behaviour by
including temperature and mass as phase space variables instead of only the droplet radius. The initial conditions (5) are
found by applying the Jacobian as defined in Equation (3) to the initial conditions associated with the governing Equations
(1). It is assumed here that the initial droplet position x0 and velocity v0 are independent of radius r0, and further that the
initial droplet radius r0 is also independent of position x0. Following,5 however, it is noted that the initial droplet velocity
v0 varies with position x0 depending upon both the nature of the carrier flow and how droplets are introduced into the
flow, and identification of the correct initial condition for 𝜕v0∕𝜕x0 is crucial to obtaining the correct behaviour for the
evolution of J.

For the standard FLA, in which the droplet radius rd is not considered, the probability density p(x, r, t) reduces to the
number density n(x, t), which is a function of only physical space x. For the monodisperse cases in Section 4.1 the analysis
is accordingly focused upon n(x, t), whilst the polydisperse flows in Section 4.2 consider the more general case of p(x, r, t).

2.2 Formulation for simplified physical models

Whilst the gFLA formulation in Section 2.1 is applicable to general equations of motion and evaporation for spherical
droplets modelled as point masses in a dilute suspension, by further assuming that the carrier flow density is much less
than that of the dispersed phase, the applicability is then restricted to gas-droplet flows. Making the additional assumption
of a low droplet Reynolds number enables the droplet momentum to be modelled using a linear drag law. For a simpli-
fied physical model of evaporation, all heat at the droplet surface is taken to be spent on evaporation, then the droplet
evaporation rate 𝜑 = 𝜑(r, t) is only dependent on the radius r, and independent of position x and velocity v. Under these
conditions, the associated nondimensional forms of f and 𝜑 from Equations (1) are given by

f(x, v, r, t) = 1
St∗0r2 (u(x, t) − v) , (6a)

𝜑(r, t) = − 𝛿

2r
, (6b)
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where St∗0 is a reference Stokes number corresponding to droplets of characteristic radius r∗d0, u(x, t) is the carrier
flow velocity and 𝛿 is the rate of change of the droplet surface area. In this case the equations of evolution for system (4)
simplify to

̈Jxx = 1
St∗0r2

d

𝜕ud

𝜕x
⋅ Jxx − 1

St∗0r2
d

̇Jxx − 2
St∗0r3

d

(ud − ẋd) ⋅ Jrx
, (7a)

̈Jxr = 1
St∗0r2

d

𝜕ud

𝜕x
⋅ Jxr − 1

St∗0r2
d

̇Jxr − 2
St∗0r3

d

(ud − ẋd) Jrr
, (7b)

̇Jrx = 𝛿

2r2
d

Jrx
, (7c)

̇Jrr = 𝛿

2r2
d

Jrr
, (7d)

where ud(t) = u(xd(t), t) and 𝜕ud(t)∕𝜕x = 𝜕u(xd(t), t)∕𝜕x respectively denote that the fluid velocity and fluid velocity gra-
dient are evaluated along the droplet trajectories. The initial conditions for the system (7) remain the same as those given
by Equations (5).

2.3 Computational advantage

The most salient advantage of using the FLA framework to compute the number density field is the increase in compu-
tational efficiency over conventional box-counting methods which can be realised, principally due to effective use of the
information provided by the Eulerian-Lagrangian transformation. This aspect of the method has been focused upon in
several works, and stems from the observation that an accuracy of <0.1% in calculation of the Eulerian number density
field is only achieved using box-counting methods when (104) droplets are present in each Eulerian cell within a simu-
lation.5,12 In contrast, due to the ability of the FLA to provide the number density along trajectories, and the facet of the
Eulerian-Lagrangian transformation that trajectory data can be meaningfully extrapolated onto the local spatial region,
the FLA only requires one trajectory per Eulerian cell to achieve the same level of accuracy.12 This advantage means that
despite the additional computation of the Jacobian as it evolves along each trajectory according to Equations (4), the FLA
is still approximately 20 times more efficient than box-counting methods for two-dimensional simulations.5,11 Another
analysis found that a box-counting approach for number density requires ∼ 106 trajectories to be computed, whereas the
FLA only needs ∼ 103 trajectories to obtain the same level of detail, however this is offset by the additional expense of
calculating the Jacobian along trajectories which entails a fortyfold increase in computational cost for three-dimensional
simulations, and also by linear interpolation of the trajectory number density data onto the Eulerian grid which takes
almost as long as the numerical integration along trajectories.15 Therefore, despite providing a 103 saving on the number
of trajectories computed when compared against the box-counting approach, the overall efficiency improvement of the
FLA for calculation of the Eulerian number density field is reduced to around tenfold. It is also noted that in implementa-
tions of the FLA, neglecting droplet collisions in the dilute phase limit results in the independence of trajectories, which
further enables effective parallelisation and computational efficiency.16

2.4 Numerical considerations

The gFLA formulation in Section 2.1 is valid for the regime of dilute droplet flows, and makes the important assumption
that the droplet field is continuous between trajectories and exhibits smooth spatial variation. Such an assumption is,
however, at odds with the multi-valued nature that characterises the trajectory crossing experienced by inertial droplets.
The strength of the standard FLA formulation is that it is able to retain this detail that is inherent to individual tra-
jectories within its description of the spatial droplet field, however this is manifested in the elemental volume of the
Eulerian-Lagrangian transformation, given by det(Jxx(x0, t)), becoming zero at the point of trajectory crossings.5 By virtue
of Equation (2), the droplet number density is then singular at these points. This phenomenon is in fact necessary to
maintain consistency with the assumption of continuity for the dispersed phase, and is simply how the FLA framework
incorporates the information of crossing trajectories into the concept of a smoothly defined field. It has further been
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demonstrated in previous work that such singularities in number density are integrable,17 meaning that the local Eulerian
number density field within a defined region remains finite.12

Notwithstanding the fact that the FLA presents a theoretically sound approach for number density calculation, in
practice the issue lies in how to accumulate the multi-valued number density contributions along trajectories into an
Eulerian field representation in a physically correct manner. An interpolation procedure is only valid within a region of the
droplet field which is single-valued, meaning that careful treatment of the multi-valued regions is paramount to ensuring
that the calculation of an Eulerian number density field is meaningful. Previous works have addressed this by using the
fact that the sign of the Jacobian determinant J changes every time a droplet crosses the trajectory of another droplet,
effectively providing a means of keeping track of which layer of the droplet field a given trajectory is in. Since each layer
of the droplet field is single-valued with non-intersecting trajectories, interpolation can be used to calculate the Eulerian
number density within each individual layer, and then due to the number density field being additive, the contributions
from each layer at a given point are summed together to obtain the total number density.12,15,18 This requires that droplets
are indexed in such a way that a distinction is made every time a fold is crossed, with the most straightforward means
of doing this being to keep count of the number of times this occurs for each droplet, then all droplets with the same
count index form one layer of the droplet field.18 Such a procedure enables the reproduction of a number density field
which although single-valued, is able to contain the detail of different layers within the droplet field; a feature which is
difficult to replicate in Eulerian-based simulations.4 The drawback of indexing droplets in this manner is that sufficiently
many need to be present within each layer of the droplet field for the interpolation methods to be well defined and able
to work correctly. In practice this is only an issue when trajectories initially cross and there are few droplets within the
newly created layer of the droplet field, however this still presents a situation which requires appropriate treatment to
ensure that the contribution of these droplets is accounted for in the number density calculation. Notwithstanding this,
the physical accuracy which can be achieved through the use of a Lagrangian approach highlights the potential ability of
the FLA to accurately simulate industrially relevant systems.

3 INTERPOLATION OF THE NUMBER DENSITY FIELD

The primary point of contention in developing useful computational tools which make use of the FLA is that the number
density provided by the method is along trajectories, whereas in many numerical methods and applied contexts it is
most often the Eulerian field information which is required. In this sense, the scattered number density data which the
FLA produces requires the use of an appropriate interpolation procedure for accumulation onto an Eulerian grid. It has
been noted that simple linear interpolation is sufficient for a steady-state flow configuration, however for transient flows,
that contain vortices, a more comprehensive accumulation algorithm is required.16 This is a subject which has received
surprisingly little attention to date, yet has the potential to open up the FLA methodology to a wider and more general
class of flows.

3.1 Existing procedures for number density calculation

The classical box-counting approach to calculating the number density field in dispersed multiphase flows simply involves
the accumulation of mass contributions from all the droplets within an Eulerian cell, then weighting them by the cell
volume. This is also referred to as the nearest neighbour method,19 and can be interpreted as reassigning the contribution
from a droplet to act at the centre of the cell in which it is located. Such an approach is associated with a discontinuous
droplet weighting function, since it takes no account of how far a droplet is located from the cell centre, meaning that
this information is lost in the accumulation process, and resulting in the generation of artificial noise. It is this noise
which can cause a high variation in the computed number density field, and necessitates the requirement for such a high
number of droplets using the box-counting approach in order to produce a stable value for the number density.

An improvement to the box-counting approach is achieved by considering a droplet weighting function with C0 con-
tinuity which is able to account for the location of a droplet relative to the Eulerian grid on which the accumulation of
contributions is made. One procedure that utilises such a methodology is the cloud-in-cell (CIC) approach,20 in which
the weighting function takes the form of a triangular-shaped kernel. This is equivalent to assigning contributions from
a droplet to the corner nodes of the Eulerian cell in which it resides by using linear interpolation, which importantly
ensures that the constraints of continuity and momentum conservation are respected by the accumulation procedure,
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whilst also maintaining numerical stability. The CIC approach is a widely adopted method of accumulating contributions
in dispersed multiphase flow simulations due to its simplicity of implementation, and, owing to the fact that the weighting
function retains C0 continuity of the droplet field, requires fewer droplets than the nearest neighbour method to achieve a
stable result for the number density field on an identical Eulerian grid. The domain of influence for the droplet weighting
function for a Cloud-In-Cell approach is, however, naturally limited to the Eulerian cell in which the droplet is located.
This means that many droplets per cell are still required to achieve statistical convergence of the number density field,
and the computational expense associated with this can be prohibitive within simulations of industrial scale processes.

Within the broad class of meshfree methods which exist for interpolation of scattered data, kernel-based methods have
seen a variety of applications, in particular for fluid dynamics in the form of smoothed particle hydrodynamics (SPH).21

Whilst the rationale for SPH is well established, the normalisation condition required of the weighting kernel is such
that a sufficient number of particles must be inside the kernel for the accumulation procedure to remain valid, which
has implications for the simulation of compressible flows in which the spatial distribution of particles is non-uniform.
Although the SPH framework has been extended to handle weakly-compressible multiphase flows through the use of
adaptive spatial resolution, this has only been shown to be accurate in the case where the density ratio between the
two phases is less than 10,22 whilst typical gas-droplet flows have a much higher density ratio. Consequently the ability
to effectively treat the clusters and voids that are characteristic of dispersed multiphase flow using the SPH framework
remains limited.

Previous work has highlighted the ability of Voronoï tessellations to calculate the droplet number density field from
droplet location data, by recognising that the area of the Voronoï cells is the inverse of the local droplet number density.23

Notably, it was demonstrated that it is possible to identify regions of clusters and voids within the droplet field through
categorisation of the area of Voronoï cells. This methodology enables information about the Lagrangian dynamics of
individual droplets to be included within the representation of the Eulerian number density field, meaning that a certain
level of detail about the structures in the droplet field can be retained. However, since the influence of a given droplet is
taken to be uniform over its associated Voronoï cell, the resulting Eulerian number density field is discontinuous along the
Voronoï cell boundaries. In this sense, the construction of the number density field using Voronoï tessellations requires
a sufficiently large number of droplets to obtain a smooth result, an aspect shared with the CIC approach. Despite this,
Voronoï tessellations have been incorporated into a solver as a full hydrodynamics scheme,24 and subsequently developed
into Voronoï particle hydrodynamics (VPH).25 The advantages offered by such a solver are however offset by the additional
complexity of the formulation, and need to generate the tessellation for the entire droplet field at every point in time.

An option which mirrors the thinking behind the use of Voronoï tessellations is that of the Delaunay triangulation,
with these two procedures being closely related as the dual graphs of each other. This is motivated by the use of Delaunay
triangulations in scattered data interpolation, with the triangulation effectively providing a mesh over which commonly
employed interpolation procedures can be used between the known values at data points. The desirable property unique
to the Delaunay triangulation is that it is constructed to satisfy the empty circumcircle criterion, which ensures maximiza-
tion of the internal angles of triangles, with the reasoning that interpolation routines will exhibit greater accuracy and
stability over more uniformly shaped triangles. These aspects have seen the Delaunay triangulation developed as a means
of constructing density fields from scattered data points,26 and extended to a hydrodynamical method with the Delau-
nay tessellation field estimator (DTFE) technique.27 However, the shortcoming of such an approach is that the Delaunay
triangulation necessarily changes discontinuously at certain instants due to the empty circumcircle criterion,25 meaning
that the DTFE is not well suited as the basis of numerical solver.

3.2 Requirements of a suitable interpolation procedure

The immediate advantage offered by the FLA methodology is that the exact value of the droplet number density field
is already known along trajectories before the use of any interpolation procedure, thereby eliminating the noise that is
inherent in procedures such as nearest neighbour or CIC interpolation. The challenge then remains to find an appropriate
means of interpolating these values that will retain sufficient accuracy in describing the structures of the droplet field.
Existing work has demonstrated that linear interpolation between neighbouring trajectories is able to capture the smooth,
and often monotonic, variation of the number density field in steady-state flows well, however the considerably more
complex structure of the droplet field in transient flows, for which folds occur and multiple layers are inherent, means that
such an approach is not applicable.14 To effectively extend the concept of linear interpolation to transient flows requires
the establishment of a more general framework.
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Whilst the ability to extend the Delaunay triangulation to points in n-dimensional space does makes it a possible
method for interpolating number densities obtained using the gFLA onto a mesh that spans both physical and radial space,
using a triangulation-based approach to interpolate FLA data has a number of distinct disadvantages. Principally, the
computational expense of having to construct a triangulation over all droplets within each layer of the droplet field, when
coupled with the subsequent interpolation procedure of the number density data, would likely negate most of the saving
offered by computing the number density along trajectories for the fewer droplets required using the FLA. To compound
this, triangulation of droplets would not be able to distinguish and properly resolve voids in the droplet field when using
linear interpolation within triangles, which would necessitate the use of a higher order interpolation method that is able to
capture the spatial gradient of the number density field, and thereby further increase the computational expense. Finally,
whilst knowledge of the Jacobian tensor provides information about the Eulerian-Lagrangian transformation of trajectory
variables onto the local Eulerian field for each droplet, and thereby detail of the structures within the droplet field, a
triangulation-based procedure is unable to utilise this information in its reconstruction of the number density field.

The potential drawbacks of triangulation-based methods for accumulating the FLA number density data help to elu-
cidate the desirable properties that a suitable interpolation routine should possess. To maintain consistency with the
Lagrangian nature of the FLA methodology, a meshfree method which accumulates contributions without prior knowl-
edge of the spatial relationship between droplets would be most appropriate in terms of numerical efficiency, and realising
the optimal computational saving which can be achieved using the FLA. In this sense, the contribution of a given droplet
should not be dependent on that of other droplets, and the procedure for the accumulation of droplet contributions should
also be valid regardless of the number of droplets that contribute to the Eulerian field at a given point. Such a requirement
is further justified in the context of the FLA by considering that since droplet contributions are first accumulated within
layers of the droplet field, then interpolating between droplets becomes an issue when a layer contains sufficiently low
numbers of droplets, and is not possible in the case when the number of droplets is less than or equal to the dimension-
ality of the simulation. In particular, it is possible that a certain layer may contain only a single droplet, however it is still
desirable that the contribution from this droplet is included in the reconstruction of the Eulerian number density field.

Additionally, an interpolation scheme should be able to account for the fact that the number density field for inertial
droplets within transient flows has defined clusters and voids, and in particular that droplets in voids can be sparse. It
is therefore desirable that the influence of those droplets that are present in voids is able to extend over the surrounding
domain to a greater degree, in order to reflect that there are fewer other droplets in the immediate vicinity from which
contributions to the Eulerian droplet field can be accumulated. The nature of this demand is most appropriately met
through the use of a meshfree method in which a degree of control over the domain of influence that individual droplet
contributions have can be exercised.

3.3 Kernel regression

Within the context of accumulating the number density data obtained from the FLA, the problem of capturing clusters
and voids in the droplet field at a competitive computational cost is addressed here through the means of kernel regression.
The motivation behind this choice is that, as a form of statistical learning, the averaged nature of such an approach enables
it to effectively handle spatial locations at which only a single data point makes a contribution. This is seen by considering
the form of the Nadaraya-Watson estimator19

n(x, t) =
∑N

i=1KH(x, xi
d)n(x

i
d, t)

∑N
j=1KH(x, xj

d)
, (8)

in which n(xi
d, t) is the instantaneous number density along the trajectory xd associated with droplet i at time t as obtained

from the FLA, n(x, t) is the Eulerian number density field, KH(x, xi
d) is a kernel which provides a weighting for the con-

tribution of the droplet xi
d to the accumulation point x, and N is the number of droplets for which the range of support of

the associated kernel includes the point x. In Equation (8), the numerator provides the weighted sum of the Lagrangian
number density contributions n(xi

d, t) at x, whilst the denominator is equal to the sum of the weighting factors given by
the kernels that contribute at x. Consequently, in the accumulation procedure for n(x, t) it is seen that the contributions
from n(xi

d, t) are effectively weighted by weights wi defined by

wi =
KH(x, xi

d)
∑N

j=1KH(x, xj
d)
. (9)
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In this sense, the Nadaraya-Watson estimator (8) can be considered as an expansion in renormalised radial basis functions
wi,19 and it is the appearance of the denominator in Equation (9) which enables a representative value for n(x, t) to be
obtained even in the case when N = 1. This circumvents the requirement for a specific number of droplets to be within
the kernel in order to satisfy its normalisation condition, albeit at the introduction of a statistical error arising due to the
low sample size. Nonetheless, for areas of extreme sparsity in inertial droplet fields, this provides an appropriate means by
which to infer the behaviour of n(x, t)without having to resort to using an exhaustive number of droplets in simulations.

For specification of the kernel, a range of functions including Gaussian, Epanechnikov, and tricube kernels are com-
monly used. In the present work, a Gaussian form is chosen due to its possession of C∞ continuity and convenient
geometrical interpretation. In the one-dimensional case, this is specified by

Kh(x, xi
d) = exp

[

−1
2
||x − xi

d||
2

h2

]

, (10)

where h is the smoothing length of the kernel. In this form only the Euclidean distance between the droplet position xi
d

and accumulation point x is used to determine the relative contribution of droplets, resulting in a spherical kernel. A
more generalised approach can be taken by using the concept of structured kernels, in which distinct smoothing lengths
along arbitrary axes of alignment can be defined.19 For the specific case of a multivariate Gaussian form, such a kernel is
given by

KH(x, xi
d) = exp

[

−1
2
(

x − xi
d

)
⊤

⋅H−1 ⋅
(

x − xi
d

)]

, (11)

where H is the bandwidth matrix that contains information about the smoothing lengths in different directions. The
particular choice of H = h2I corresponds to a spherical kernel, in which case Equation (11) accordingly reduces to
Equation (10).

Control over the kernel in simulations is specified solely by the choice of the smoothing length for spherical kernels,
or the bandwidth matrix for structured kernels, and this is dependent on the specific context in which the method is being
applied. In general, however, it is important that the smoothing length(s) are large enough to create a field representation
which varies smoothly in space, yet not so large that excessive smoothing is applied, in which case detail from the original
data will be lost. Therefore, a crucial aspect in the application of kernel regression is to ensure that care is taken in the
selection of an appropriate smoothing length for a given situation.

3.4 Utilisation of the Eulerian-Lagrangian transformation tensor

The main strength of using kernel regression for accumulation of the FLA number density data lies within the ability to
use information from the FLA to specify the smoothing length h or bandwidth matrix H of the kernels, in order to gain
a finer degree of control over the reconstruction of the number density field than is offered by a constant-sized kernel.
The rationale for this procedure is in alignment with the more general framework of metric learning methods for kernel
regression, in which the kernel is adaptively defined according to the local behaviour of the interpolation data.28,29 In the
case of the standard FLA formulation this can be accomplished by using the Eulerian-Lagrangian transformation tensor
Jxx to specify the kernel size and shape associated with each droplet, which enables the highly varying sparsity that is
observed in the droplet number density field of unsteady flows to be accounted for. Such a procedure is consistent with
the meshfree nature of kernel methods, since it respects the individuality of Lagrangian trajectories by having a distinct
bandwidth matrix for each droplet xi

d rather than each Eulerian position x. Furthermore, using the Eulerian-Lagrangian
transformation to determine the bandwidth matrix is also theoretically sound, as it makes use of the physical interpre-
tation of Jxx in describing how the influence of a given droplet is exerted locally upon the surrounding domain, and
accordingly specifies the range and shape of support for the kernel that is used to accumulate the number density contri-
bution from that droplet to the associated Eulerian field representation. The physical correctness of this can be inferred
directly from the FLA using Equation (2), by considering that if the number density associated with an individual droplet
is high, the domain over which it acts must be reduced to conserve the mass contribution of that droplet along its trajec-
tory. The necessary information about the domain size is seen to be provided by the Jacobian determinant | det(Jxx)|, and
directly associating this with the domain of support of a kernel-based method then naturally incorporates this physical



10 STAFFORD and RYBDYLOVA

information within the numerical accumulation procedure for constructing the Eulerian number density field. Addition-
ally, specifying the kernel using Jxx is equivalent to interpreting the smoothing length(s) as a representative lengthscale(s)
for a given kernel. This is consistent with the introduction of a lengthscale within the definition of number density, a
concept which has been emphasised in previous work as being necessary to provide a meaningful representation of the
number density field.30,31

Using the Eulerian-Lagrangian transformation tensor Jxx to determine the range and shape of support of the kernel
for a droplet also provides a way of mitigating against the occurrence of singularities in the Lagrangian number density
data that the FLA provides. This is because whenever a singularity in number density occurs, the corresponding value of
det(Jxx) passes smoothly through zero, and this is associated with the domain over which the local Eulerian-Lagrangian
transformation applies also reducing to zero. Therefore using Jxx to specify the kernel at this point will result in a kernel
with a zero range of support, that is, mathematically equivalent to the Dirac delta function. Since the Eulerian number
density field is constructed over a discrete grid with finite grid spacing, once the range of support of a kernel becomes
small enough in the case when | det(Jxx)| is sufficiently small, the contribution from the droplet at that point will fall
below the size of an Eulerian cell and no longer extend to cover any grid points, and will therefore not be included in the
Eulerian field representation. Thus specification of the kernel in accordance with Jxx offers a means of effectively filtering
out or limiting the propagation of the non-physical contributions associated with the high number density values that are
inherent to the FLA, and thereby maintaining a more realistic description of the number density field in regions of the
droplet field that contain crossing trajectories.

In practice, such a procedure can be applied in the cases of both spherical and structured kernels. For a spherical
kernel, the smoothing length h is determined by setting the size of the spherical domain of the kernel to be equal to the
elemental volume deformation | det(Jxx)| associated with a droplet along its trajectory. For a flow configuration with a
spatial domain of Rd, this determines the smoothing length for the kernel associated with a droplet at a given time t as

h(x0, t) = h0| det(Jxx(x0, t))|1∕d
, (12)

where h0 is the initial smoothing length associated with the droplet at time t0 and position x0, and d is the number of
spatial dimensions in the system under consideration. Using Equation (12), the smoothing length h(x0, t) is automatically
updated at each timestep, thereby adjusting the size of the kernel directly in accordance with the value of | det(Jxx)| at
that time. This methodology is consistent with the concept of a variable smoothing length in SPH, where the simplest
approach to updating h utilises the number density n(x, t) such that32

h(x, t) = h0

(
n(x0, t0)
n(x, t)

)1∕d

. (13)

For monodisperse droplets, it is seen that substitution of the Lagrangian continuity Equations (2) into (13) demonstrates
the equivalence between Equations (12) and (13) as procedures for adaptively scaling h(x0, t), which highlights the rational
physical basis for Equation (12).

In the case of a structured kernel, a positive semi-definite bandwidth matrix H is constructed by taking

H(x0, t) = h2
0 Jxx(x0, t) ⋅ Jxx⊤(x0, t). (14)

It is appropriate to use the initial one-dimensional smoothing length h0 within the definition of this structured kernel due
to the initial condition on the Eulerian-Lagrangian transformation tensor of Jxx(x0, t0) = I in Equations (5), from which
it follows by Equation (14) that the initial bandwidth matrix H0 = H(x0, t0) = h2

0I, and is therefore a spherical kernel. The
bandwidth matrix H(x0, t) can then subsequently be updated at each timestep using Equation (14), adjusting the size,
shape, and orientation of the kernel directly in accordance with the Eulerian-Lagrangian transformation tensor Jxx along
a trajectory at that time. Specification by means of Equation (14) results in an ellipsoidal kernel which represents the
deformation of the initial spherical kernel at that point along a trajectory, with the lengths of the semi-axes and angles
of rotation from the Cartesian axes determined by the components of Jxx at that point. Importantly, this procedure can
be physically interpreted as specification of the shape and size of the range of support for the kernel associated with
an individual droplet in accordance with the spatial structures of the Eulerian number density field. For instance, in
regions of high droplet number density where droplets cluster in elongated structures, the ellipsoids associated with the
kernels for these droplets will be aligned along these structures, and this ensures that the number density values along
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trajectories are projected only onto the areas of the Eulerian number density field which have similar physical behaviour in
terms of droplet clustering. Therefore using the Eulerian-Lagrangian transformation tensor to specify the kernel provides
a data-driven approach to the accumulation of droplet contributions in a manner which is physically consistent with
the droplet number density field, and requires no further assumptions to be made beyond specification of the initial
smoothing length h0. A demonstration that specification of H by Equation (14) defines a kernel for which the domain
size varies proportionately to | det

(
Jxx) | is provided in Appendix B.

3.5 Extension of the phase space to include droplet radius

The kernel regression procedure can straightforwardly be extended to include the droplet radius rd within the phase space
coordinate vector, enabling the droplet size distribution to be determined for polydisperse flows using the gFLA by means
of Equation (8), where now instead of n(x, t) it is p(x, r, t) that is being reconstructed. In this case, it is inappropriate to
use a spherical kernel, since the scales of the domains for which physical space x and radial space r are relevant will
be different. For the same reason, and also due to the higher dimensionality meaning that the same number of droplets
will be more sparsely distributed in (x, r) space, consideration of the structures in the droplet probability density field
p(x, r, t) is no longer as important, and it is sufficient to vary the kernel size based on just the magnitude of the phase
space Jacobian determinant det(J(x0, r0, t)). In this case a structured kernel of the same form as in Equation (11) is used,
however it is now written in terms of the phase space coordinate 𝝃 = (x, r) and phase space trajectories zd = (xd, rd) as

KH(𝝃, zi
d) =

1
√

det(H)
exp

[

−1
2
(
𝝃 − zi

d

)
⊤

⋅H−1 ⋅
(
𝝃 − zi

d

)]

, (15)

with the bandwidth matrix H now being defined by

H(x0, r0, t) =

[
h2

x0| det(Jxx(x0, t))|2∕dI 0
0 h2

r0|J
rr(r0, t)|2

]

, (16)

where hx0 and hr0 are the initial smoothing lengths in physical and radial space respectively. Whilst the resulting kernel
is still ellipsoidal, it remains aligned with the Cartesian axes rather than rotating to align with any structures in the
droplet number density field. Furthermore, the kernel remains spherical across all spatial dimensions x, with separate
control of hx0 and hr0 then allowing for the range of support for the kernel in physical and radial space to be determined
independently. In this manner the contributions from droplets can be appropriately accumulated to produce the Eulerian
probability density field in (x, r) space, and thereby a description of the droplet size distribution at each point x in space.

3.6 Numerical implementation

In practice, a Gaussian kernel has an infinite range of support with non-zero contributions at every Eulerian grid point in
the domain, although these will quickly become negligible at a certain distance away from a droplet. Since kernel regres-
sion normalises the resultant Eulerian number density field using only those droplets which contribute at a given point,
it is computationally favourable to limit the extent of the range of support for droplets by imposing an artificial range of
compact support. This can be realised in the general case of the structured multivariate Gaussian kernel (15) by using the
Mahalanobis distance associated with a given kernel to determine which Eulerian grid points will receive non-negligible
contributions from that kernel. Specifically, employing the often used 3-sigma rule of the Gaussian distribution, which
states that 99.8% of the contributions from a given droplet lie within three smoothing lengths of its position, the condition
for Eulerian grid points to receive a contribution from that droplet is

√
(

x − xi
d

)
⊤

⋅H−1 ⋅
(

x − xi
d

)
≤ 3. (17)

This procedure then automatically accounts for the shape and orientation of the kernel, and cuts off contributions
beyond the isocontour of the kernel at a distance of three smoothing lengths from the droplet position. The number of
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gridpoints that a given kernel contributes to is then drastically reduced from the full domain, significantly enhancing the
computational economy of the kernel regression process. The same principle can also be applied for the gFLA by replacing
x and xd in Equation (17) with 𝝃 and zd respectively.

Having a compact support for a kernel is advantageous when it comes to accumulating contributions from different
droplets onto the Eulerian field. Since kernel regression is a meshfree method, and the kernel is specified uniquely for
each individual droplet, it is convenient to consider the extent of all the contributions made by a single droplet onto the
Eulerian gridpoints. As the kernel possesses a compact support given by Equation (17), the subset of gridpoints which
receive a non-zero contribution from a given droplet can then be determined. In the case of a uniform Cartesian grid,
it is judicious to use the minimum bounding box which encloses the region defined by the Mahalanobis distance using
Equation (17). This can be realised for the multivariate Gaussian kernel (15), since the maximum extent of the range of
compact support in the kth coordinate direction is given by

smax
k = 3

√
Hkk, (18)

in which summation over k is not implied, and the coefficient of three arises due to invoking the three-sigma rule in
defining the compact support. In this manner, the subset of the domain to which a single droplet makes contributions at
a given point in time can be easily determined from the uniquely defined kernel associated with that particular droplet,
enabling efficient accumulation of these values onto the Eulerian field. This is particularly simple as the use of a droplet
search algorithm is not required, and takes advantage of the Lagrangian nature of kernel regression along with the fact
that the Eulerian gridpoints are uniformly spaced. For more general or dynamically generated grids a further procedure is
needed to determine the gridpoints which lie within the Mahalanobis distance of a droplet, adding to the computational
expense of the interpolation procedure.

Kernel regression is able to construct a representative Eulerian number density field that respects conservation of
droplet phase properties due to the manner in which the accumulation from individual droplets is performed. Specifically,
the weights wi for the Nadaraya-Watson estimator defined by Equation (9) normalise the droplet contributions at a given
gridpoint regardless of the number of droplets which contain that gridpoint within their compact support, meaning that
the influence of a given droplet on the accumulated number density field varies. This is exemplified for droplets with a
sufficiently high number density, in which case the domain of the associated kernel will become correspondingly small
and not extend to any of the neighbouring gridpoints, thus effectively filtering the contribution of that droplet from the
Eulerian field at that instant in time. Despite this, kernel regression is still able to produce a physically consistent Eulerian
field, and in particular is well suited to pairing with FLA number density data as it provides an estimator for the Eulerian
number density field that is independent of the number of sampled trajectories. This is in keeping with the ethos of
the FLA, in that by representing the dispersed phase as a continuum, only a subset of the trajectories required by a
conventional accumulation procedure are needed to build an accurate description of the number density field.

For the case when the full shape and size of the kernel are specified using Jxx by means of Equation (14), an addi-
tional consideration must be made when droplets are in the vicinity of the envelope of folds in the droplet phase and the
number density is almost singular. Due to | det(Jxx)| becoming zero when a trajectory crosses the envelope of folds, the
shape of the local deformation associated with Jxx becomes elongated as the droplet approaches the envelope, and even-
tually collapses in the dimension perpendicular to the envelope so that it is fully aligned at the point where the droplet
crosses the envelope. The consequence of defining the kernel using Equation (14) is then that as the droplet approaches
and moves away from the fold envelope, the kernel becomes excessively elongated far beyond the extent of local struc-
tures in the droplet phase, and makes non-physical contributions to the regression procedure at distant gridpoints. It is
therefore necessary to impose a restriction on the maximum extent to which a kernel can elongate in order to ensure
that the accumulation procedure maintains stability and produces a representative reconstruction of the number density
field. This is performed in the present work by simply restricting the kernel shape such that each of the semi-axes of the
ellipsoidal domain upon which the kernel is defined cannot be greater than three times the value of the smoothing length
h associated with the equivalent spherical kernel at that point, as determined by Equation (12). In practice, this limit on
the elongation factor has been found to represent an acceptable trade off between capturing the anisotropic structures
that are present in the droplet number density field, whilst preserving an accurate physical description that does not con-
tain spurious numerical effects. In the event that it is necessary to limit the length of one of these semi-axes, the others
are accordingly rescaled so that the value of | det(Jxx)| at that point on the given trajectory remains unchanged, thereby
enabling droplets in the vicinity of the fold envelope to contribute to the kernel regression procedure in a manner which
remains representative of the local structures in the droplet phase.
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The important issue of selecting a suitable value for h0 must be made at the beginning of a simulation, and in general
is best specified depending upon the initial spatial distribution of droplets. For a seeding of droplets across an interval over
which the Eulerian number density field can be considered constant, it is convenient to take h0 as the same for all droplets,
and the simplest way of setting this value is then to define it as the average inter-droplet spacing across the interval,
denoted Δxd0. Since h0 is equivalent to the standard deviation in the one-dimensional Gaussian kernel (10), this then
ensures that the compact support defined using the three-sigma rule provides sufficient coverage of the computational
domain for the given droplet seeding. It should be noted that the specification of h0 = Δxd0 is only a guideline however,
and whilst this is used across most of the cases in Section 4, some variation may be required in order to obtain either higher
fidelity or smoothness of the Eulerian number density field as desired. In practice the range of permissible values for the
initial smoothing length of a Gaussian kernel with respect to the average inter-droplet spacing is Δxd0∕3 ≪ h0 ≪ 2Δxd0,
where the lower bound is the minimum size at which kernels with compact support are able to effectively provide coverage
of the computational domain, and the upper bound represents the highest degree of smoothing which might reasonably
be needed. Furthermore, in the case of an expanding spray in which droplets are initially injected through a narrow inlet
but then spread to span a far wider region, the initial spatial distribution of droplets may no longer be an adequate metric
for basing h0 upon, and a larger value will be necessary in order to achieve sufficient coverage of the computational
domain with the given droplet seeding.

In terms of the gFLA, hx0 is defined in the same way as h0, whilst the radial space smoothing length hr0 is specified
in a similar manner in terms of the initial inter-droplet size spacing, denoted Δrd0. The range of validity for the radial
space smoothing length differs compared to hx0 in practice due to the less pronounced occurrence of coherent structures
in the Eulerian droplet probability density field p, and an appropriate set of values is given by 0.5Δrd0 ≪ hr0 ≪ Δrd0 for
a Gaussian kernel with compact support. Analogously to hx0, the lower bound provides greater resolution of the droplet
size distribution in the Eulerian probability density field, whilst the upper bound offers a higher degree of smoothing
across the droplet sizes.

4 NUMERICAL SIMULATIONS

4.1 Monodisperse droplets

It is instructive to first focus upon application of the kernel regression procedure outlined in Section 3 to monodisperse
droplets for which evaporation effects are not considered, and the extension of the droplet distribution into radial space
to account for the droplet size therefore does not have to be included. In the following, a range of flow configurations of
varying dimensionality and complexity are used to illustrate the performance of the methodology.

4.1.1 One-dimensional unsteady droplet motion

To begin with, a one-dimensional case of an unsteady droplet velocity field is considered,17 which operates under the
assumption that droplets are characterised by a large inertia (St ≫ 1). Droplets are initially released with a non-uniform
velocity distribution, and their motion and Jacobian evolve according to the equations

ẍd = 0, xd(t0) ∈ [0, 1], ẋd(t0) = 1 − x2
d(t0), (19a)

̈Jxx = 0, Jxx(t0) = 1, ̇Jxx(t0) = −2xd(t0). (19b)

Equations (19) admit the analytical solution

xd(t) = x0 + (1 − x2
0)t, (20a)

Jxx(t) = 1 − 2x0t. (20b)

The associated number density n(xd, t) evolves according to Equation (2) with initial condition n(x0, t) = n0, and the
corresponding solution in this case is given by

n(xd, t) =
n0

|1 − 2x0t|
. (21)
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From Equation (20a) it follows that a fold is formed at t = 0.5, with the envelope of droplet trajectories along this being

x = t + 1
4t
, t ≥ 0.5. (22)

In this case the Eulerian number density field can also be obtained as

n(x, t) =
⎧
⎪
⎨
⎪
⎩

n0

/√
1 − 4tx + 4t2 t < x < 1 or 1 < x < t,

2n0

/√
1 − 4tx + 4t2 0.5 < t < x and x > 1,

(23)

where n0 = n(x0, t0), and in which it is assumed that droplets moving towards the envelope of the trajectories form a
separate layer of the fold to those droplets moving away from the envelope, and that these layers belong to different
non-interacting continua. The total number density in the region is simply double that in the remainder of the x–t domain
which is occupied by droplets, resulting in the piecewise nature of Equation (23). Along the fold envelope (22) the droplet
number density becomes infinitely high, however this singularity remains integrable.17 The analytical solution (23) is
graphically depicted in x–t space in Figure 1A, and features a discontinuity along the internal boundary of the multi-valued
region given by the second sub-function of Equation (23). The region of the domain occupied by the droplet phase is
reconstructed on a grid at time intervals ofΔt = 0.01 with 100 uniformly spaced points of separationΔx at each time, and
uses an initial seeding of 101 droplets positioned uniformly on the interval x0 ∈ [0, 1], corresponding to an initial average
inter-droplet spacing of Δxd0 = 0.01.

To assess the efficacy of the kernel regression procedure in Section 3, the Eulerian number density field is recon-
structed from the Lagrangian number density (21) using the Nadaraya-Watson estimator in Equation (8). Since this case
is one-dimensional, the kernel given in Equation (10) is utilised, with the smoothing length h specified by Equation (12).
This produces the result shown in Figure 1B. For comparison purposes, it is appropriate to consider the relative error

(A) (B)

(C) (D)

F I G U R E 1 (A) Analytical solution for n∕n0 as given in Equation (23); (B) n∕n0 obtained from kernel regression; (C) Relative error in
n∕n0 between figures (A) and (B); (D) Comparison of kernel regression (symbols) with analytical solution (lines) for profiles of n∕n0 at
selected instants in time: [ ] t = 0.5, [ ] t = 1.0, [ ] t = 1.5, [ ] t = 2.0. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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between kernel regression and the analytical solution, and this is presented in Figure 1C. It is seen that the relative
error in the kernel regression is generally below 10−2 throughout the x–t domain, except at the fold envelope (22) and
along the boundary of the multi-valued region. This more marked error arises due to the smoothing property of ker-
nels, in that the influence of a given droplet is distributed over a small region of the domain, with the consequence that
representation of steep gradients and discontinuities in the number density field cannot be exactly captured using this
procedure. Therefore it is expected that some additional error will result from the use of kernel regression in reconstruct-
ing the number density field, however an appropriate choice of initial smoothing length h0 can mitigate against this,21

with a smaller kernel generally being preferable subject to n remaining smooth. In this case, the smoothing length is
set proportional to the variable grid spacing at each point in time, with the initial value of h0 = Δxd0∕3 being chosen
in order to achieve a high degree of fidelity in the reconstructed Eulerian number density field. The overall accuracy
of the kernel regression is seen to be good, as can be inferred from examination of the spatial profiles of n at selected
instances in time, depicted in Figure 1D. The only discernible loss of accuracy is in the vicinity of the discontinuity
between the single-valued and multi-valued regions of Equation (23) for t ≥ 1, as can be seen in the jump in the pro-
files for y = 1.5 and y = 2. Moreover, it is seen that whilst n remains finite in the vicinity of the fold envelope (22), kernel
regression is able to capture the increase in number density well, with the error only becoming greater than 10−2 along the
fold itself.

4.1.2 Two-dimensional fan spray injection in cross-flow

Consider a vertical injection of droplets with velocity magnitude v∗ into a horizontal cross flow with constant velocity
u = (1, 0). Taking the case of St = 1, the droplet and Jacobian equations of evolution, given by Equations (1a) and (4a)
respectively, are

ẍd = u − ẋd, (24a)

̈Jxx = −𝛽 ̇Jxx
, (24b)

where the initial conditions for xd in Equation (24a) are given by

xd,1(t0) ∈ [−𝜖, 𝜖], ẋd,1(t0) = v∗ sin
(
𝜋

4
xd,1(t0)
𝜖

)

,

xd,2(t0) = 0, ẋd,2(t0) = v∗ cos
(
𝜋

4
xd,1(t0)
𝜖

)

, (25)

and the initial conditions for Jxx in Equation (24b) are given by

Jxx(t0) = I,

̇Jxx
11(t0) =

1
𝜖

𝜋

4
v∗ cos

(
𝜋

4
xd,1(t0)
𝜖

)

,

̇Jxx
12(t0) = −

1
𝜖

𝜋

4
v∗ sin

(
𝜋

4
xd,1(t0)
𝜖

)

+
1 − ẋd,1(t0)

ẋd,2(t0)
,

̇Jxx
21(t0) = −

1
𝜖

𝜋

4
v∗ sin

(
𝜋

4
xd,1(t0)
𝜖

)

,

̇Jxx
22(t0) =

1
𝜖

𝜋

4
v∗sin2

(
𝜋

4
xd,1(t0)
𝜖

)/

cos
(
𝜋

4
xd,1(t0)
𝜖

)

− 1, (26)

in which the expressions for ̇Jxx
12(t0) and ̇Jxx

22(t0) are derived from Reference 5

𝜕

𝜕x0,2
= −

ẋd,1(t0)
ẋd,2(t0)

𝜕

𝜕x0,1
+ 1

ẋd,2(t0)
𝜕

𝜕t
. (27)
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The system (24) with initial conditions (25) and (26) admits the analytical solution

xd,1(t) = xd,1(t0) + (1 − ẋd,1(t0)) exp(−t),
xd,2(t) = xd,2(t0)(1 − exp(−t)),
ẋd,1(t) = 1 − (1 − ẋd,1(t0)) exp(−t),
ẋd,2(t) = ẋd,2(t0) exp(−t),

Jxx(t) = I + ̇Jxx(t0)(1 − exp(−t)),
̇Jxx(t) = ̇Jxx(t0) exp(−t). (28)

From Equation (28), it follows that the associated number density n(xd, t) with initial condition n(x0, t) = n0 evolving
according to Equation (2) is given by

n(xd, t) =
n0

|1 + (1 − exp(−t))( ̇Jxx
11(t0) + ̇Jxx

22(t0)) + (1 − exp(−t))2( ̇Jxx
11(t0) ̇J

xx
22(t0) − ̇Jxx

12(t0) ̇J
xx
21(t0))|

. (29)

It is then possible to numerically evaluate the Eulerian number density field in this case using Equation (29) and the
parametric solutions given in Equation (28). The droplet field includes a multi-valued region containing separate lay-
ers of a fold, with the envelope of this fold occurring along the top edge of the spray, and the other boundary of the
multi-valued region presenting an internal discontinuity within the spray. The analytical solution from Equations (28)
to (29) is graphically depicted as a steady-state distribution in x–y space in Figure 2A, where the droplet number den-
sity field is reconstructed on a uniform Cartesian grid with spacing of Δx = Δy = 0.0025. In this example the value of the
parameter 𝜖 used to define the interval in which droplets are injected in Equation (25) is taken to be 𝜖 = 0.05, with a total
of 101 droplets being injected uniformly over x ∈ ([−𝜖, 𝜖], 0) at the start of the simulation, giving a value of Δxd0 = 0.001.

Numerical reconstruction of the steady-state droplet field from the Lagrangian number density (29) using the
Nadaraya-Watson estimator (8) is shown in Figure 2B. The structured kernel in Equation (11) is used for this

(A) (B)

(C) (D)

F I G U R E 2 (A) Analytical solution for n∕n0 obtained from Equations (28) and (29); (B) n∕n0 obtained from kernel regression; (C)
Relative error in n∕n0 between figures (A) and (B); (D) Comparison of kernel regression (symbols) with analytical solution (lines) for profiles
of n∕n0 at selected y locations: [ ] y = 0, [ ] y = 0.1, [ ] y = 0.2, [ ] y = 0.3, [ ] y = 0.4, [ ] y = 0.5. [Colour figure can be
viewed at wileyonlinelibrary.com]
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multidimensional case, with the bandwidth matrix H being specified by Equation (14). The relative error of kernel
regression is shown in Figure 2C, and as with the one-dimensional case in Section 4.1.1 generally remains below 10−2

except in the vicinity of the fold envelope, along the discontinuity between the multi-valued and single-valued regions of
the spray, and along the edges of the spray. Again, it is the perceptible size of the kernel which causes these more marked
errors to arise, and this is especially apparent along the edges of the spray where the kernel extends beyond the region
occupied by droplets into the surrounding area. This effect is balanced against the need to keep the kernel large enough
to produce a smooth number density field from the sample of trajectories used in the simulation, once again requiring
careful choice of the initial smoothing length h0. In this instance, the default value of h0 = Δxd0 is used to achieve this.
Notwithstanding this, the overall accuracy of kernel regression can be observed from the profiles of n at selected y values
in Figure 2D, and is seen to generally be good with the exception of the discontinuity along the edge of the multi-valued
region in the spray. This is observed in the profile for y = 0.5, where kernel regression does not capture the exact location
of the discontinuity as a result. Aside from this, the physical behaviour and increases in number density near the fold
envelope are well captured.

4.1.3 Flow around a cylinder: Steady-state case (Re = 20)

To determine the capabilities of the kernel regression procedure in a context which is more representative of a general
engineering flow, the case of a two-dimensional gas-droplet flow around a cylinder is considered. This is a prototypi-
cal problem, and exhibits distinct flow regimes depending upon the flow Reynolds number Re; specifically a symmetric
steady-state flow at low Re, and a periodic von Kármán vortex street beyond the critical value of Re at which the transition
to unsteadiness occurs.

The evolution of the carrier flow is described using the Navier-Stokes equations for an incompressible fluid

𝛁 ⋅ u = 0, (30a)

𝜕u
𝜕t
+ (u ⋅ 𝛁)u = −𝛁p + 1

Re
∇2u. (30b)

The cylinder is taken to have radius R which is used as the representative lengthscale, and the uniform free-stream velocity
at which fluid enters the inlet of the domain is chosen as the associated velocity scale U. The Reynolds number is then
defined in this work as Re = UR∕𝜈, in contrast to much of the existing literature in which the cylinder diameter is chosen
as the characteristic lengthscale. In this context, the critical Reynolds number at which the transition to unsteadiness
occurs is Rec = 23.5.

To investigate droplet behaviour in the steady-state regime, the case of Re = 20 is considered. Since the underlying
carrier flow is symmetrical about the cylinder in the direction normal to the flow, the droplet distribution also exhibits
this symmetry. Droplets are injected at x∕R = −5 over the interval y∕R ∈ [−4, 4]with the free-stream carrier flow velocity
u∕U = (1, 0). In the steady-state cases, a total of 101 droplets are injected over this interval in a square-law profile at
the start of the simulation to give an average inter-droplet spacing of Δxd0 = 0.08, with the droplet seeding increasing
towards the centreline y∕R = 0. Interaction of the droplets with the cylinder is not included within the simulation, and
any droplets which do come into contact with the cylinder are subsequently omitted from the calculation of the number
density field at later times.

The droplet trajectories evolve according to a linear drag law, which for the case of monodisperse non-evaporating
droplets determines the equations for motion and Jacobian evolution from Equations (1a) to (4a) as

ẍd =
1
St
(u(xd(t), t) − ẋd) , (31a)

̈Jxx = 1
St
𝜕u
𝜕x
(xd(t), t) ⋅ Jxx − 1

St
̇Jxx
. (31b)

The associated initial conditions are given by

xd(t0) = (−5, [−4, 4]), ẋd(t0) = (1, 0), (32a)

Jxx(x0, t0) = I, ̇Jxx(x0, t0) = 0, (32b)
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where the initial condition on ̇Jxx is due to the uniformity of the droplet phase at the point of injection. The Lagrangian
number density n(xd, t) associated with a droplet is then calculated using Equation (2) without the appearance of the
droplet radius rd as a parameter.

Equations (31) are solved using a customisation of the Lagrangian particle tracking library in OpenFOAM, and can
be coupled to the required solver for the carrier flow; in this case pimpleFoam has been used to solve Equations (30). The
domain size for the simulations is −20 ≤ x∕R ≤ 30 and −20 ≤ y∕R ≤ 20 in a Cartesian coordinate system centred on the
cylinder. Further details of the numerical setup, mesh independence, and validation can be found in Reference 14.

In order to reconstruct the Eulerian droplet number density field using the Nadaraya-Watson estimator (8) in the
general multidimensional case, the structured kernel in Equation (11) is used with the bandwidth matrix H speci-
fied by Equation (14). The reconstruction is done on a uniform Cartesian grid with a spacing of Δx∕R = Δy∕R = 0.04.
This is considered for three different droplet sizes which correspond to St = 0.1, 1, and 10, and the number density
field n reconstructed using kernel regression is displayed in Figure 3A,C,E respectively for each of these cases. The
profiles of the number density field at selected values of x are also displayed in Figure 3B,D,F for these respective
values of St.

Both the extent and number density distribution of the droplet field is seen to vary markedly with St, with the
common feature to all cases being the wake behind the cylinder which is devoid of droplets. For St = 0.1 the droplets
follow the flow relatively closely, and the two regions of the droplet field formed by droplets travelling above and below
the cylinder meet downstream of the cylinder after a distance of ∼ 8R. In contrast, the droplet field at the higher val-
ues of St remains separated into two distinct regions beyond x = 25R. The other key difference between the cases lies
within the rate of variation in number density of the droplet field. For St = 0.1 the droplet field is largely uniform
away from the cylinder, and only experiences rapid variation along the edges of the cylinder wake, whilst St = 1.0
and St = 10 display a larger region of variation in the number density field, but with the change being progressively
more gradual.

The profiles in Figure 3B,D,F provide a means of assessing the efficacy of kernel regression against the exact val-
ues of number density obtained from the FLA. This is possible since in the case of a steady-state flow it is permissible
to interpolate the values of number density along trajectories between time points,14 and therefore obtain an accurate

(A) (B)

(C) (D)

(E) (F)

F I G U R E 3 Reconstruction of n∕n0 using kernel regression in monodisperse steady-state flow around a cylinder at Re = 20 for: (A)
St = 0.1; (C) St = 1; (E) St = 10; Profiles of n∕n0 obtained using kernel regression (symbols) at selected locations [ ] x∕R = 3, [ ] x∕R = 6,
[ ] x∕R = 9, [ ] x∕R = 12, [ ] x∕R = 15 compared against linear interpolation (lines) of FLA number density data for: (B) St = 0.1; (D)
St = 1; (F) St = 10. [Colour figure can be viewed at wileyonlinelibrary.com]
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descriptor of the number density field along given cross-section profiles independently of kernel regression. Owing to
the steady-state behaviour of the flow, the number density varies smoothly without the presence of folds and also largely
monotonically, and these characteristics essentially mean that linear interpolation of the number density values along
trajectories onto a chosen profile provides an exact solution against which kernel regression can be compared. Of partic-
ular note is the case for St = 0.1, in which the kernel regression performs well across a large part of the flow, but loses
accuracy in the region of rapid variation along the edge of the cylinder wake, as depicted in Figure 3B. This is due to
the perceptible size of the kernel causing the regression procedure to introduce a certain level of smoothing into the
result, and therefore limiting the level of variation in number density which can be accurately captured. However, this
is balanced against the kernel needing to be large enough to provide a smooth representation of the number density
field for a given initial droplet seeding within a simulation, and as with the previous examples emphasises the impor-
tance of judicious selection of the initial smoothing length h0. In these cases the default value of h0 = Δxd0 is selected
to provide a reasonable coverage of the computational domain for the chosen initial seeding of 101 droplets which is
used. Increasing the initial droplet seeding would enable a smaller value of h0 to smoothly reconstruct the number den-
sity field, which would in turn provide greater accuracy in the regions of rapid variation at lower St. Nonetheless, at
higher St the more gradual variation in number density for the different x profiles is successfully accounted for by kernel
regression across the entire droplet phase, and the procedure provides a high level of accuracy as demonstrated
in Figure 3D,F.

An illustration of the computational efficiency afforded by kernel regression can be made for this steady state approach
by comparing to the number density field obtained using direct trajectory methods. In this instance, the Cloud-In-Cell
approach that was outlined in Section 3.1 is used, with the accumulation made upon the same Eulerian grid as used for
kernel regression. Since the number density is calculated directly in the CIC approach, a sufficient number of droplets
are required in each grid cell to produce a stable result, and this is achieved by a higher initial seeding of droplets across
the injection interval y∕R ∈ [−4, 4]. In contrast to the FLA which uses 101 droplets within this range, the CIC approach
requires 10,001 uniformly spaced droplets across the interval for the resultant Eulerian number density field to sufficiently
converge, and furthermore the injection rate of the droplets also has to be increased by a factor of 10. Thus overall the
number of droplet realisations required by the CIC approach is found to be 103 times more than that by the FLA, consistent
with previous works. The number density fields produced by this procedure are displayed in Figure 4A,C,E for each of
St = 0.1, 1, and 10 respectively, and it can be observed that the number density distribution is largely similar to that
obtained from the FLA in the corresponding cases shown in Figure 3A,C,E. The much higher seeding of trajectories
needed for the CIC approach does, however, result in some differences to the profile of the wake behind the cylinder,
and this is best seen through a direct comparison of the two procedures as illustrated in Figure 4B,D,F. This depicts
the relative error between the number density fields produced by the kernel regression and CIC approaches, and it is
seen that this is largest along the edge of the wake, where the error can exceed 10−1. Away from the wake however,
the error generally varies between 10−2 and 10−1, which is indicative of the level of accuracy that kernel regression of
FLA data is able to achieve using 103 times fewer droplet realisations, and the associated computational speedup that
comes with this.

4.1.4 Flow around a cylinder: Transient case (Re = 100)

For consideration of droplet behaviour in the transient regime, the case of Re = 100 is used. The underlying carrier flow
becomes periodic at this level of unsteadiness, and forms the well-known phenomenon of a von Kármán vortex street.
The configuration is identical to that in Section 4.1.3 except that the value of Re is higher and the initial droplet seeding
consists of 81 droplets that are injected over the interval y∕R ∈ [−4, 4]with uniform spacing at each timestep. This corre-
sponds to an initial average inter-droplet spacing of Δxd0 = 0.1, however the initial smoothing length is kept as h0 = 0.08
as for the steady-state case, in order to achieve better resolution of the transient structures in the droplet number den-
sity field. In practice, this value of h0 = 0.8Δxd0 also represents the lower size limit of initial smoothing length that will
result in a smooth number density field for transient configurations, and as such has been found to be the optimum
value for achieving this trade-off in these cases. As before, the carrier flow evolves according to Equations (30) and the
droplets and Jacobian are governed by Equations (31). The three distinct droplet sizes corresponding to St = 0.1, 1, and
10 are again considered, with the number density field n reconstructed using kernel regression at t = 40 displayed in
Figure 5A,C,E respectively for each case, and the associated profiles of the number density field at selected values of x
given in Figure 5B,D,F.
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(A) (B)

(C) (D)

(E) (F)

F I G U R E 4 Reconstruction of n∕n0 using cloud-in-cell accumulation in monodisperse steady-state flow around a cylinder at Re = 20
for: (A) St = 0.1; (C) St = 1; (E) St = 10; Relative error in n∕n0 between kernel regression and cloud-in-cell accumulation for: (B) St = 0.1
(from Figures 3A and 4A); (D) St = 1 (from Figures 3C and 4C); (F) St = 10 (from Figures 3E and 4E). [Colour figure can be viewed at
wileyonlinelibrary.com]

The droplet behaviour is seen to reflect that of the carrier flow, with clear build-ups and voids in the number density
field that are directly influenced by the structure of the vortices that form in the wake of the cylinder. The crucial feature
of the dispersed phase behaviour is the effect of different levels of droplet inertia on the number density field at the
different values of St. For St = 0.1 the voids in the droplet number density field are closely aligned with the location of
vortices in the carrier flow due to the relatively low droplet inertia, as observed in Figure 5A. This is consistent with
Maxey’s centrifuging mechanism,33 which argues that low inertia droplets are ejected from areas of high vorticity. Of
greater interest are the areas of higher droplet number density, which form along distinct curves between the vortices.
The representation of this in Figure 5A is a demonstration that kernel regression is able to capture this level of detail
accurately in the reconstructed number density field, and successfully account for the complex behaviour of the droplet
field in transient flows. At higher St, the voids of low droplet number density that occur around vortices become much
larger, in addition to the appearance of a wake downstream of the cylinder in which no droplets are present, as seen in
Figure 5C,E. For St = 1 in (5c), the droplet field evolves as alternating regions in which droplets occur followed by voids
that contain no droplets, with the region in which droplets are present characterised by a fold line of high number density
along the leading edge and an area of lower number density along the trailing edge. For St = 10 this behaviour is also
observed, with the fold lines exhibiting a higher number density than for St = 1, and the trailing edge of the droplet field
containing both regions of lower number density and distinct layers of folds as observed from the discontinuities in the
droplet field in Figure 5E. The successful capturing of these fold layers shows that kernel regression is able to retain this
level of detail from the FLA number density data, and account for this phenomenon at a far lower computational cost
than direct trajectory methods.15

The x profiles of the number density field in Figure 5B,D,F exhibit the different levels of variation in number density
that the kernel regression procedure is able to reproduce. For intervals where there is no data for a given profile, the
number density is zero as there are no droplets present at that point. It can be seen that as St increases, the maximum
number density within the flow becomes higher, and the maximum spatial gradient of the number density also increases.
In particular, for St = 1 and St = 10 the profiles in the vicinity of fold lines display rapid variation in number density,
however kernel regression is capable of providing a smooth representation of this behaviour, which serves to illustrate
the flexibility of this procedure for use in complex flow configurations.

http://wileyonlinelibrary.com


STAFFORD and RYBDYLOVA 21

(A) (B)

(C) (D)

(E) (F)

F I G U R E 5 Reconstruction of n∕n0 using kernel regression in monodisperse transient flow around a cylinder at Re = 100 and time
t = 40 for: (A) St = 0.1; (C) St = 1; (E) St = 10; Profiles of n∕n0 obtained using kernel regression at selected locations [ ] x∕R = 3, [ ] x∕R = 6,
[ ] x∕R = 9, [ ] x∕R = 12, [ ] x∕R = 15 for: (B) St = 0.1; (D) St = 1; (F) St = 10. [Colour figure can be viewed at wileyonlinelibrary.com]

4.2 Polydisperse droplets

Generalisation to the case of polydisperse droplets enables investigation of the droplet size distribution within a flow.
Extension of the kernel regression framework into radial space is outlined in Section 3.5, and in the following some of
the flow configurations from the monodisperse cases in Section 4.1 are used to illustrate the efficacy of this procedure.

To specify the different droplet sizes within simulations, an appropriate probability distribution is defined at the outset
as a function of the initial droplet radius r0 = rd(t0). Following previous work,14 a log-normal distribution that is the same
at all initial locations x0 = xd(t0) is assumed,

p(x0, r0, t0) =
1
r0

1
√

2𝜋𝜎
exp

[

−(ln(r0) − 𝜇)2

2𝜎2

]

, (33)

in which the mean and standard deviation parameters are chosen to be 𝜇 = 0.16 and 𝜎 = 0.4 respectively. The droplet
size r0 in Equation (33) is nondimensionalised by r∗d0, which is a reference droplet radius corresponding to the peak of
the distribution. Whilst a log-normal distribution is representative of the spread of droplet sizes in some applications,34

an alternative distribution, for instance Rosin-Rammler, can easily be specified if it is more physically appropriate.
Of interest in polydisperse droplet flows is not only the distribution of droplet sizes, but also the spatial distribution

and average size statistics across all sizes of droplet. These can be determined by considering the moments of p, which
utilises its interpretation as a probability density field. Specifically, the number density n, average radius r, and radius
variance r′r′ can be obtained using the definitions

n(x, t) =
∫r

p(x, r, t)dr, (34a)

r(x, t) = 1
n(x, t) ∫r

rp(x, r, t)dr, (34b)

r′r′(x, t) = 1
n(x, t) ∫r

(r − r)(r − r)p(x, r, t)dr. (34c)
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The averaged field variables in Equations (34) are evaluated within simulations by numerically integrating the probability
density p obtained from the kernel regression procedure across all droplet sizes in accordance with the various radius
weightings used. Here attention is restricted to just the moments of p given in Equations (34), however it is possible
to define further higher-order statistics of the droplet size distribution as required by the case under consideration, for
instance the skewness and kurtosis may be of interest in transient flows. It is also possible to obtain relevant statistics for
industrial spray systems, for instance the Sauter mean diameter, from p using a similar procedure.

4.2.1 One-dimensional quiescent flow with evaporating droplets

To illustrate the behaviour of evaporating droplets in a simple case, a one-dimensional flow of droplets in quiescent air
with uniform temperature is considered, as previously used in Reference 14. Droplets are initially located at x0 = 0, with
velocity v0 = 1, radius r0 ∈ [0, 4] and the probability density p(xd(t0), rd(t0), t0) as specified by Equation (33). For the case
of St∗0 = 1, the droplet motion and evaporation governed by Equations (1) become

ẍd = −
1
r2

d

ẋd, xd(t0) = 0, ẋd(t0) = 1, (35a)

ṙd = −
𝛿

2rd
, rd(t0) ∈ [0, 4], (35b)

and the corresponding Jacobian evolution given in Equations (4) becomes

̈Jxx = − 1
r2

d

̇Jxx + 2
r3

d

ẋdJrx
, (36a)

̈Jxr = − 1
r2

d

̇Jxr + 2
r3

d

ẋdJrr
, (36b)

̇Jrx = 𝛿

2r2
d

Jrx
, (36c)

̇Jrr = 𝛿

2r2
d

Jrr
, (36d)

with the initial conditions as given in Equations (5) along with ̇Jxx(x0, r0, t0) = 0. The systems (35) and (36) admit ana-
lytical solutions along trajectories as detailed in Reference 14. The probability density along trajectories is calculated
using Equation (2), however to reconstruct the probability density field it is necessary to use multidimensional kernel
regression as outlined in Section 3.5, with the corresponding phase space for this case being 𝝃 = (x, r). For this case,
the droplet evaporation rate is specified by 𝛿 = 1, and a total of 100 droplet sizes defined uniformly over the range
r0 ∈ [0, 4] are injected at the start of the simulation, giving an initial inter-droplet size spacing of Δrd0∕r∗d0 = 0.04. The
initial radial space smoothing length is set as hr0 = 0.5Δrd0 to achieve a good resolution over the droplet size distribu-
tion, whilst as all droplets are started from the same location at x = 0 and Δxd0 is consequently not defined in this case,
the initial physical space smoothing length is also taken to be hx0 = hr0∕r∗d0 = 0.5Δrd0∕r∗d0 for consistency. The instanta-
neous phase space probability density field p is reconstructed on a uniform Cartesian grid with spacing Δx = 0.04 and
Δr∕r∗d0 = 0.04

The complete Eulerian probability density field in (x, r) space is depicted in Figure 6A, and it is seen that kernel
regression is able to reproduce a smoothly varying distribution across both physical space and radial space, enabling the
full behaviour of the evaporation process to be examined. In Figure 6B, the droplet size distribution profiles at selected
x locations are shown. The profile at x = 0 is the initial probability density distribution specified in Equation (33), with
the profiles at subsequent locations reflecting the decrease in probability density as droplets evaporate whilst they travel
through the domain. Figure 6C depicts the droplet spatial distribution profiles at selected droplet sizes, with the peak prob-
ability occurring for r = 1 as also determined by Equation (33). The averaged field variables obtained from the moments
of p using Equations (34) are given in Figure 6D. The number density n initially shows a minor increase at small x,
before droplets begin to fully evaporate and n subsequently decreases exponentially. In contrast, the average radius r ini-
tially decreases at small x, before gradually growing and reaching its peak value at x ≈ 5.5. This is indicative of the small
droplets which form the peak of the distribution (33) evaporating more quickly than larger droplets, causing the
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(A) (B)

(C) (D)

F I G U R E 6 (A) Reconstruction of the probability density field p using kernel regression for a one-dimensional quiescent flow with
evaporating droplets; (B) Profiles of p at selected x locations; (C) Profiles of p at selected values of r∕r∗d0; (D) Averaged field variables: [ ]
n∕n0, [ ] r∕r∗d0, [ ] r′r′∕r∗d0

2. [Colour figure can be viewed at wileyonlinelibrary.com]

average size to increase during this period. Following this, r decreases as the larger droplets evaporate. Finally, the variance
in droplet radius r′r′ slowly increases as droplets travel across the domain, reaching a peak value at x ≈ 4. This reflects
the increased spread of the profiles displayed in Figure 6B at successive locations, before r′r′ slowly decreases across the
remainder of the domain. Although a simple example, this case serves to demonstrate the wealth of information that
kernel regression is able to efficiently extract from the trajectory data in polydisperse flows.

4.2.2 Two-dimensional fan spray injection in cross-flow

This case is an extension of the configuration that was considered in Section 4.1.2 to polydisperse evaporating
droplets, and has also been previously studied in Reference 14. For the case of St∗0 = 1, droplet motion and evaporation
are governed by

ẍd =
1
r2

d

(u − ẋd) , (37a)

ṙd = −
𝛿

2rd
, rd(t0) ∈ [0, 4], (37b)

where u = (1, 0) as before, and the initial conditions for xd and ẋd are identical to those in Equation (25). The
corresponding Jacobian components evolve according to

̈Jxx = − 1
r2

d

̇Jxx − 2
r3

d

(u − ẋd) ⋅ Jrx
, (38a)

̈Jxr = − 1
r2

d

̇Jxr − 2
r3

d

(u − ẋd) Jrr
, (38b)

̇Jrx = 𝛿

2r2
d

Jrx
, (38c)

̇Jrr = 𝛿

2r2
d

Jrr
, (38d)
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(A) (B)

(C) (D)

(E) (F)

F I G U R E 7 Slices of the probability density field p obtained using kernel regression for a two-dimensional fan spray injection in
cross-flow at selected y locations: (A) y = 0; (B) y = 1; (C) y = 2; (D) y = 3; (E) y = 4; (F) y = 5. [Colour figure can be viewed at
wileyonlinelibrary.com]

where the initial conditions are as in Equations (5), and those for ̇Jxx being the same as in Equation (26). As in the
monodisperse case, the systems (37) and (38) admit analytical solutions along trajectories, and these are given in
Reference 14. Equation (2) is used to calculate the probability density along trajectories, with multidimensional kernel
regression subsequently used to reconstruct the probability density field over the phase space 𝝃 = (x, y, r) through the
use of Equations (15) and (16). In this configuration, the phase space probability density field p is reconstructed on a
uniform Cartesian grid with spacing Δx = Δy = 0.01 and Δr∕r∗d0 = 0.04, with the droplet evaporation rate being
determined by 𝛿 = 1. As in the monodisperse case, 𝜖 = 0.05 is used to define the interval for droplet injection, and in this
case at the start of the simulation 100 droplet sizes defined uniformly over the range r0 ∈ [0, 4] are injected at each of 101
locations uniformly spread over the interval x0 ∈ ([−𝜖, 𝜖], 0). This yields initial inter-droplet spacings ofΔxd0 = 0.001 and
Δrd0∕r∗d0 = 0.04 in position and size respectively, however due to the expanding nature of the spray in the spatial domain
a larger initial physical space smoothing length of hx0 = 5Δxd0 is required to achieve adequate coverage of the droplet
field, whilst the default initial radial space smoothing length of hr0 = Δrd0 is used.

For the case of a multidimensional polydisperse droplet flow this enables the collection of a wealth of information
about the steady-state droplet distribution across the spatial dimensions and range of droplet sizes, and Figures 7 and 8
are used to illustrate this, with the variation in droplet size distribution in one spatial direction (x and y) depicted as slices
in the other spatial direction (y and x respectively). This shows both how the spatial distribution of droplets varies as
they travel away from the injection interval, and the range of droplet sizes which are present at a given location, but also
importantly the distribution of droplet sizes within that range. It is seen that as droplets travel away from the injection
interval in both the x and y directions, the range of droplet sizes decreases as the larger droplets evaporate, and the droplets
become more dispersed in an asymmetrical profile which is reflective of the cross-flow configuration for the case. Of
note is Figure 8A for the profile at x = −1, which illustrates the droplets that initially travel against the flow in the x
direction from the injection interval. It is observed that only sufficiently large droplets appear at this location, which is a
consequence of them having enough inertia to maintain their initial momentum, in contrast to smaller droplets which
are more responsive to the flow and do not reach x = −1. This highlights the ability of the kernel regression procedure to
provide detailed insight into the evolution of polydisperse droplet flows.

Of particular interest within polydisperse droplet flows is the number density n obtained using Equation (34a). This is
depicted for this case in Figure 9A, and shows the full extent of the droplet spatial distribution across all droplet sizes, with
the number density decreasing as droplets move away from the injection interval and evaporate. Profiles of n at selected
y locations are shown in Figure 9B, and illustrate the rapid decrease in number density close to the injection interval.
The distribution for the average droplet radius r calculated using Equation (34b) is shown in Figure 9C, and it is observed
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(A) (B)

(C) (D)

(E) (F)

F I G U R E 8 Slices of the probability density field p obtained using kernel regression for a two-dimensional fan spray injection in
cross-flow at selected x locations: (A) x = −1; (B) x = 0; (C) x = 1; (D) x = 2; (E) x = 3; (F) x = 4. [Colour figure can be viewed at
wileyonlinelibrary.com]

that this decreases across the flow with increasing x position. This is consistent with the observation from Figure 8A, in
which only the largest droplets are able to travel against the carrier flow from the injection interval to reach the profile at
x = −1. The profiles of r in Figure 9D reflect the fact that at increasing y locations, the droplet field fills a wider part of the
domain in the x direction, whilst both the peak value and rate of decrease in r are reduced. The droplet radius variance
distribution r′r′ in Figure 9E is obtained from Equation (34c) and illustrates that the highest spread in droplet size is
found in the centre region of the droplet field, with less variation found along the lower and upper edges of the spray,
where in accordance with Figure 9C smaller and larger droplets are respectively more dominant. The profiles of r′r′ in
Figure 9F show that the highest droplet variance occurs at y ≈ 3, whilst the spread of variance in the x direction increases
with greater values of y position. Together this collection of information exemplifies how kernel regression is able to
produce stable distributions for the averaged field variables from trajectory data provided by the gFLA, and highlights its
suitability for application to more general gas-droplet flows.

4.2.3 Flow around a cylinder: Steady-state case (Re = 20)

For investigation into the behaviour of polydisperse droplets in a more general flow, the example of two-dimensional
gas-droplet flow around a cylinder that was described in Sections 4.1.3 and 4.1.4 is returned to. The carrier flow is gov-
erned by Equations (30) as previously, and now 41 different droplet sizes within the range St ∈ [0.1, 10] are introduced
at each of 101 injection points across the interval y∕R ∈ [−4, 4]. The probability density is initialised in accordance with
the distribution (33). In the following the focus is on the ability of kernel regression to reconstruct the droplet size dis-
tribution within the flow, and therefore the use of non-evaporating droplets is maintained. To achieve this, the droplet
motion and Jacobian evolution are described as in the monodisperse case by Equations (31), and supplemented with the
droplet evaporation rate 𝜑 = 0 and equations and associated initial conditions for the other blocks in Equations (4) and
(5) respectively to yield Jxr = 0, Jrx = 0 and Jrr = 1.

As with the previous polydisperse droplet examples, reconstruction of the droplet probability density field p follows
the procedure outlined in Section 3.5, with the structured kernel defined as in Equation (15) and the bandwidth matrix H
given by Equation (16). The probability density field is accumulated onto a uniform Cartesian grid with a spatial spacing of
Δx∕R = Δy∕R = 0.04 as in Section 4.1.3, and radial spacing Δr∕r∗d0 = 0.133. The initial inter-droplet spacings in location
and size are given by Δxd0∕R = 0.08 and Δrd0∕r∗d0 = 0.1 respectively, and the initial smoothing lengths set as hx0 = Δxd0
and hr0 = 0.667Δrd0 accordingly.
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F I G U R E 9 Reconstruction of the averaged field variables using kernel regression for a two-dimensional fan spray injection in
cross-flow: (A) Number density n∕n0; (C) Average radius r∕r∗d0; (E) Radius variance r′r′∕r∗d0

2; Profiles of the averaged field variables at
selected y locations: (B) n∕n0; (D) r∕r∗d0; (F) r′r′∕r∗d0

2. [Colour figure can be viewed at wileyonlinelibrary.com]

The kernel regression procedure again enables the detail of the droplet distribution across the spatial dimensions and
range of droplet sizes to be obtained, and in this case the variation in droplet size distribution in the y direction is shown
in Figure 10 as slices in the y direction to demonstrate this. Since the flow is steady-state, the distribution behaviour that is
observed across the slices varies in a straightforward manner, with the width of the wake behind the cylinder decreasing
as the distance from the cylinder at x∕R = 0 is increased. In terms of the droplet size distribution, it can clearly be seen
that at a given distance from the cylinder, the width of the wake is less for smaller droplets, agreeing with the behaviour
previously observed in Figure 7 for monodisperse droplets at selected values of St. Indeed, it is possible to extract the spatial
number density field at a given droplet radius from the reconstructed field p, and choosing the values of r corresponding
to St = 0.1, 1, and 10 reproduces the distributions displayed in Figure 3A,C,E respectively. Furthermore, at any point in
the domain, it can be seen in Figure 10 that there is a clear distribution across the range of droplet sizes, which is reflective
of the initial size distribution specified by Equation (33).

The number density n is displayed in Figure 11A, and shows the behaviour of the droplet spatial distribution across
all droplet sizes. It is seen that the wake region behind the cylinder with no droplets present corresponds to that obtained
in Figure 3A for the smallest droplet size of St = 0.1. Additionally, the number density varies smoothly and in general
gradually when moving from the centreline y∕R = 0 to the edges of the domain. This can be seen in the profiles of n at
selected y locations displayed in Figure 11B, and shows the variation in number density at different distances behind the
cylinder. The average radius distribution r shown in Figure 11C illustrates that larger droplets accumulate as the droplet
field splits into two distinct regions when moving past the cylinder, whilst the region of the droplet field that is downstream
of the cylinder wake only contains the smallest droplets. The profiles of r in Figure 11D show that at these selected x
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(E) (F)

F I G U R E 10 Slices of the probability density field p obtained using kernel regression for polydisperse steady-state flow around a
cylinder at Re = 20 for selected x locations: (A) x∕R = 3; (B) x∕R = 6; (C) x∕R = 9; (D) x∕R = 12; (E) x∕R = 15; (F) x∕R = 18. [Colour figure
can be viewed at wileyonlinelibrary.com]

locations the average droplet size does not vary much within the range of droplet sizes, and is uniformly lower towards
the centreline y∕R = 0. Both the distribution and profiles of variance in droplet radius r′r′, as depicted in Figure 11E,F
respectively, are qualitatively similar to the behaviour of r, with the highest variance observed at the point where the
droplet field parts to pass around the cylinder.

4.2.4 Flow around a cylinder: Transient case (Re = 100)

For the transient regime of polydisperse droplet flow around a cylinder, Re = 100 is used as before in Section 4.1.4, and
otherwise the configuration is identical to that in Section 4.2.3. In terms of the kernel regression procedure, the probability
density field is accumulated onto a uniform Cartesian grid with a spatial spacing of Δx∕R = Δy∕R = 0.04 and radial
spacing Δr∕r∗d0 = 0.133 as before, with the initial smoothing lengths again specified as hx0 = Δxd0 and hr0 = 0.667Δrd0.

Again it is primarily the droplet spatial distribution which is of interest, and following the previous section the vari-
ation in droplet size distribution in the y direction is shown in Figure 12 as slices in the y direction at t = 30. Whilst the
probability density distribution in Figure 12A displays only minor deviations from being symmetrical at a distance of
x∕R = 3 behind the cylinder, at increasing distances this symmetry breaks down as the vortex street becomes established.
At a sufficient distance, the probability density distribution at a given slice then exhibits regions with either no droplets or
a high probability density depending where in the periodic cycle of the flow the slice is located, for example at x∕R = 15
as displayed in Figure 12E. Due to the transient nature of the flow, the effect of specifying the initial probability density
using Equation (33) is less apparent than in the previous steady-state example, however the highest probability density
values are still found among the smaller droplet sizes, with fewer larger droplets occurring. A wake is seen to persist for
some distance behind the cylinder for only the largest droplets, but eventually ceases to exist once the periodic flow has
become fully established. As with the steady-state case, the spatial number density field at a given droplet radius can be
extracted from the reconstructed field p, whereby selecting the values of r corresponding to St = 0.1, 1, and 10 retrieves
the distributions in Figure 8A,C,E respectively.

Figure 13A displays the number density n at t = 30, exhibiting the cumulative effect of all droplet sizes on the droplet
spatial distribution. It is observed that all droplet sizes are ejected from the vortices by virtue of their inertia, with cluster-
ing occurring along curves which are distinct for different droplet sizes. This is clearly an accumulation of the behaviour
previously displayed in Figure 8A,C,E for different droplet sizes in the monodisperse case, and exemplifies the ability of
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F I G U R E 11 Reconstruction of the averaged field variables using kernel regression for steady-state polydisperse droplet flow around a
cylinder at Re = 20: (A) Number density n∕n0; (C) Average radius r∕r∗d0; (E) Radius variance r′r′∕r∗d0

2; Profiles of the averaged field variables
at selected x locations: [ ] x∕R = 3, [ ] x∕R = 6, [ ] x∕R = 9, [ ] x∕R = 12, [ ] x∕R = 15; (B) n∕n0; (D) r∕r∗d0; (F) r′r′∕r∗d0

2. [Colour figure can
be viewed at wileyonlinelibrary.com]

(A) (B)

(C) (D)

(E) (F)

F I G U R E 12 Slices of the probability density field p obtained using kernel regression for polydisperse transient flow around a cylinder
at Re = 100 and time t = 30 for selected x locations: (A) x∕R = 3; (B) x∕R = 6; (C) x∕R = 9; (D) x∕R = 12; (E) x∕R = 15; (F) x∕R = 18. [Colour
figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 13 Reconstruction of the averaged field variables using kernel regression for transient polydisperse droplet flow around a
cylinder at Re = 100 and time t = 30: (A) Number density n∕n0; (C) Average radius r∕r∗d0; (E) Radius variance r′r′∕r∗d0

2; Profiles of the
averaged field variables at selected x locations: [ ] x∕R = 3, [ ] x∕R = 6, [ ] x∕R = 9, [ ] x∕R = 12, [ ] x∕R = 15; (B) n∕n0; (D) r∕r∗d0; (F)
r′r′∕r∗d0

2. [Colour figure can be viewed at wileyonlinelibrary.com]

kernel regression to account for this range of behaviour in the process of reconstructing the number density field. The
variation in number density at different x profiles is displayed in Figure 13B, and it is seen that the behaviour of a given
profile depends largely on its location with respect to the periodic cycle of the flow. For example, the number density at
x∕R = 9 is largely uniform for this cross-section of the droplet field, however the profile closer to the cylinder at x∕R = 3
shows much higher variation as it passes through one of the vortices at this particular snapshot in time. The distribution
and profiles of the average droplet radius r at t = 30 are shown in Figure 13C,D respectively, and evidence that larger
droplets accumulate along the distinct curves between the vortices, with only smaller droplets existing in the vicinity of
the vortices. As with the steady-state case in Figure 11, the distribution and profiles of variance in droplet radius r′r′ at
t = 30 and illustrated in Figure 13E,F respectively are qualitatively similar to the behaviour of r in this case.

5 CONCLUSIONS

This paper has presented a novel methodology for reconstructing the droplet number density field using the probability
density along trajectories calculated by the generalised fully Lagrangian approach (gFLA; the fully Lagrangian approach
taking into account the effect of droplet evaporation), and the technique of kernel regression to accumulate the contribu-
tions from individual droplets onto an Eulerian grid. This has been applied to a range of steady-state and transient flow
configurations for both monodisperse and polydisperse droplets, and it has been demonstrated that the kernel regression
procedure can reliably produce a smooth representation of the droplet probability density field and average field variables
both in space and across the range of droplet sizes.

This approach has several advantages. The strongest benefit of kernel regression is making use of the meshfree nature
of the method to define the kernel using the Jacobian tensor from the gFLA, so that individual droplet contributions
are extrapolated to the surrounding Eulerian region in accordance with the local structure of the droplet number den-
sity field. This results in a consistent procedure that enables the retention of a high level of detail in the number density
field from a relatively small sample of droplets, in contrast to a conventional cloud-in-cell approach which employs ele-
mentary averaging and therefore requires both more trajectories and a more frequent injection rate to reliably reproduce
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the number density field. It is demonstrated that kernel regression yields a stable result with 103 times fewer droplet
realisations than the CIC approach, and is therefore able to achieve the potential reduction in the computational cost
required to obtain a smooth yet qualitatively accurate continuum representation for inertial droplet field variables. The
informed use of data in such a way is becoming increasingly important, as the storage of datasets becomes impractical
for highly resolved simulations due to the amount of information involved. Another consequence of being a meshfree
method is that discontinuities in the droplet field are automatically dealt with by kernel regression, such as at the edge of
the droplet region, and in this manner arbitrarily complex flows can be treated without requiring prior knowledge of the
extent of the domain which is occupied by droplets.

Additionally, varying the size of the kernel in this way means that areas of sparse droplet number density can be
effectively dealt with. Particle-based methods such as smoothed particle hydrodynamics require a minimum number of
particles to satisfy the normalisation condition of the kernel, limiting their use to weakly compressible flows in which
the number density of particles is roughly constant. In contrast, kernel regression satisfies the normalisation condition
of the kernel regardless of how many particles are within the compact support, making the approach applicable to voids
in which there are relatively few particles. Furthermore, specification of the kernel using the Jacobian provides a means
of obtaining a smooth representation for regions containing few droplets, as the low number density associated with
droplets in these regions results in the compact support of the kernel being proportionately large, and extending to cover
the areas between sparsely distributed droplets.

Computationally, the procedure can be implemented by considering the contributions a given droplet makes to grid-
points within its compact support, rather than having to identify all the droplets which contribute at a given gridpoint.
When the reconstruction is performed upon a Cartesian grid this avoids the need for a droplet search algorithm, and is
therefore relatively efficient. It is also conceptually trivial to extend the kernel regression procedure to account for the
droplet size distribution by extending the dimensionality of the kernel, and reconstructing the probability density field
on a higher-dimensional grid.

The representation of the number density field produced by kernel regression is, however, a locally constant estimator,
and is unable to predictively extrapolate beyond the range of number densities which are sampled along trajectories.
This is a shortcoming that is also inherent in linear interpolation, and means that in areas of rapid variation in number
density, kernel regression will not return the exact value of the maximum or minimum local number density unless there
is a droplet at that point. Furthermore, by its nature kernel regression is a statistical procedure, and is able to achieve a
smooth representation of the droplet field only at the expense of some loss of absolute accuracy. This generally also occurs
in regions of rapid variation in number density, with the smoothing characteristic of kernel regression meaning that for a
given smoothing length and number of droplets only a certain level of variation can be captured. In practice this is most
restrictive at a low droplet inertia, as has been observed in this work for low St, whilst the accuracy remains good for
higher values of St. In general, kernel regression requires far fewer droplets than conventional direct trajectory methods
to achieve a smooth Eulerian representation of the droplet phase at a reasonable level of accuracy, however increasing
the number of droplet trajectories that are sampled will improve the accuracy if needed.

The stability of kernel regression and its versatility across a variety of flow configurations clearly demonstrate the
efficacy of this procedure, and its suitability for upscaling and application to more general spray systems. In particular, the
ability to accurately determine the complete droplet size distribution and its associated statistics at any spatial location
within the droplet field make this methodology relevant to the simulation of many industrial and environmental systems,
in which detailed knowledge of the droplet behaviour is paramount to the control and optimisation of such processes.
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APPENDIX A. VERIFICATION OF THE LAGRANGIAN DROPLET PHASE CONTINUITY
EQUATION FOR EVAPORATING DROPLETS

Consider droplets with position xd(t), velocity vd(t) and radius rd(t) for which the evolution of trajectories and evaporation
are governed by Equations (1). The general continuum representation of the droplet phase can then be described in terms
of the one-particle distribution function w(x, v, r, t) by the collisionless kinetic equation9

𝜕w
𝜕t

= − 𝜕

𝜕x
⋅ [vw] − 𝜕

𝜕v
⋅
[
fw
]
− 𝜕

𝜕r
[𝜑w] . (A1)

To obtain the droplet phase continuity equation in the subset of phase space given by 𝝃 = (x, r), the droplet mean field vari-
ables defined as the velocity-averaged moments of w(x, v, r, t) are considered. Specifically, the probability density p(x, r, t)
and average velocity v(x, r, t) are defined as

p(x, r, t) =
∫v

w(x, v, r, t)dv, (A2a)

v(x, r, t) = 1
p(x, r, t) ∫v

vw(x, v, r, t)dv. (A2b)

Then integrating the kinetic Equation (A1) over v yields

𝜕p
𝜕t
= − 𝜕

𝜕x
⋅
[
vp
]
− 𝜕

𝜕r
[
𝜑p

]
, (A3)

where the velocity derivative term in Equation (A1) vanishes as it is assumed that w → 0 as v → ±∞, and the
velocity-averaged evaporation rate 𝜑(x, r, t) is defined as

𝜑(x, r, t) = 1
p(x, r, t) ∫v

𝜑(x, v, r, t)w(x, v, r, t)dv. (A4)

Equation (A3) is the Eulerian form of the droplet phase continuity equation that governs the transport of p(x, r, t). To
proceed to the Lagrangian form of Equation (A3), it is appropriate to consider the phase space trajectories zd = (xd, rd) in
𝝃 that evolve according to the average velocity v and velocity-averaged evaporation rate 𝜑

ẋd = v(xd, rd, t), xd(t0) = x0, (A5a)

ṙd = 𝜑(xd, rd, t), rd(t0) = r0. (A5b)

The corresponding system form of Equations (A5) is then given by

żd = S(zd, t), zd(t0) = 𝝃0, (A6)

http://info:doi/10.1017/S0022112087000193
http://info:doi/10.1103/PhysRevX.8.031019
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where S(𝝃, t) =
(

v(x, r, t), 𝜑(x, r, t)
)
. Thus Equation (A3) can be written in the phase space 𝝃 as

𝜕

𝜕t
p(𝝃, t) = − 𝜕

𝜕𝝃
⋅
[

S(𝝃, t)p(𝝃, t)
]

. (A7)

The appropriate form of the Lagrangian derivative corresponding to motion along the phase space trajectories zd is
given by

D
Dt

∶= 𝜕

𝜕t
+ S(𝝃, t) ⋅ 𝜕

𝜕𝝃
, (A8)

whereupon Equation (A7) can now be interpreted along the phase space trajectory zd and written as

D
Dt

p(zd, t) = −p(zd, t)
𝜕

𝜕𝝃
⋅ S(zd, t). (A9)

Equation (A9) can be formally solved along the phase space trajectory zd, and along with the initial condition p(zd(t0), t0) =
p(𝝃0, t0) yields the solution

p(zd, t) = p(𝝃0, t0) exp
[

−
∫

t

t0

𝜕

𝜕𝝃
⋅ S(z′d, t

′)dt′
]

, (A10)

where z′d = zd(t′), and it is assumed that p(𝝃0, t0) > 0 in accordance with the probability density p(𝝃, t) being interpreted
as a strictly positive quantity. Re-introducing the interpretations 𝝃 = (x, r), S = (v, 𝜑) leads to the solution in the familiar
physical variables

p(xd, rd, t) = p(x0, r0, t0) exp
[

−
∫

t

t0

𝜕

𝜕x
⋅ v(x′d, r

′
d, t

′) + 𝜕

𝜕r
⋅ 𝜑(x′d, r

′
d, t

′)dt′
]

, (A11)

where x′d = xd(t′) and r′d = rd(t′). Equation (A11) is the solution for the probability density p(xd, rd, t) as it evolves along
trajectories. However, this assumes that droplet trajectories are governed by the velocity averaged Equations (A5) through
the velocity field v(x, r, t) and evaporation rate 𝜑(x, r, t). Now consider the Jacobian tensor defined by

J(𝝃0, t) =
𝜕zd(t)
𝜕𝝃0

. (A12)

Then taking the partial derivative 𝜕∕𝜕𝝃0 of the phase space trajectory zd described by Equation (A6), the evolution of
J(𝝃0, t) is determined by

̇J(𝝃0, t) =
𝜕S
𝜕𝝃
(zd, t) ⋅ J(𝝃0, t). (A13)

Consider also the Jacobian determinant det
(

J(𝝃0, t)
)
. Then Jacobi’s formula from linear algebra states that

d
dt

det
(

J(𝝃0, t)
)
= det

(
J(𝝃0, t)

)
tr
(

J−1(𝝃0, t) ⋅ ̇J(𝝃0, t)
)
. (A14)

Utilising the evolution Equation (A13) for J(𝝃0, t) therefore leads to

d
dt

det
(

J(𝝃0, t)
)

= tr
(

J−1(𝝃0, t) ⋅
𝜕S
𝜕𝝃
(zd, t) ⋅ J(𝝃0, t)

)

det
(

J(𝝃0, t)
)
,

= tr
(

J(𝝃0, t) ⋅ J−1(𝝃0, t) ⋅
𝜕S
𝜕𝝃
(zd, t)

)

det
(

J(𝝃0, t)
)
,

= tr
(
𝜕S
𝜕𝝃
(zd, t)

)

det
(

J(𝝃0, t)
)
,

= 𝜕

𝜕𝝃
⋅ S(zd, t) det

(
J(𝝃0, t)

)
, (A15)
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where the third line follows since the trace operator is invariant under cyclic permutations of products of arguments, and
the final line is due to the trace of the gradient being equivalent to the divergence. Equation (A15) can be formally solved
along the phase space trajectory zd, which presents the general solution

| det
(

J(𝝃0, t)
)
| = |C| exp

[

∫

t

t0

𝜕

𝜕𝝃
⋅ S(z′d, t

′)dt′
]

, (A16)

in which no restriction is made upon the sign of the arbitrary constant C. Since C is determined from the initial condition
on det

(
J(𝝃0, t)

)
, this allows for the case where det

(
J(𝝃0, t)

)
is negative to be accounted for in the description provided

by Equation (A16). Applying the general initial condition of det(J(𝝃, t0)) = 1 (which follows from the definition of J in
Equation (A12) and the initial condition upon zd in Equation (A6) at time t0) then yields

| det
(

J(𝝃0, t)
)
| = exp

[

∫

t

t0

𝜕

𝜕𝝃
⋅ S(z′d, t

′)dt′
]

. (A17)

Re-introducing the interpretations 𝜉 = (x, r), S = (v, 𝜑) leads to the equivalent form in physical variables

| det(J(x0, r0, t)) | = exp
[

∫

t

t0

𝜕

𝜕x
⋅ v(x′d, r

′
d, t

′) + 𝜕

𝜕r
⋅ 𝜑(x′d, r

′
d, t

′)dt′
]

. (A18)

Comparing the solutions for p(xd, rd, t) and det(J(x0, r0, t)) in Equations (A11) and (A18) respectively, it is seen that
conservation of mass along trajectories in (x, r) space can be expressed as

p(xd, rd, t)
p(x0, r0, t0)

= 1
| det(J(x0, r0, t)) |

, (A19)

from which the Lagrangian form of the continuity equation expressed in Equation (2) immediately follows.
Note that since this formulation hinges upon use of droplet trajectories described by the velocity field v(x, r, t),

the resultant continuum description inherently assumes the invertibility of J(x0, r0, t) at a given point in time, that is
det(J(x0, r0, t)) ≠ 0. Physically this corresponds to the single-valuedness of droplet velocities at a given point x, which
in reality is only representative of fluid tracer droplets in the limit St → 0. Consequently, this description is unable to
qualitatively account for the crossing trajectories effect of sufficiently inertial droplets at finite St, for which occurrences
of det(J(x0, r0, t)) = 0 are observed along the envelope of folds in the droplet velocity field, and the probability density
p(xd, rd, t) becomes singular. Similarly, det(J(x0, r0, t)) becomes negative once the associated trajectory crosses the enve-
lope of a fold. However, these phenomena do not violate the physical correctness of Equation (2) as a conservation law,
and indeed do not preclude using values of det(J(x0, r0, t)) calculated from simulation data of inertial droplet trajectories.
This can be understood by considering the geometric meaning of det(J(x0, r0, t)) as the volume scaling factor of the linear
transformation described by the Jacobian J(x0, r0, t), with the associated sign simply showing whether the transforma-
tion preserves or reverses orientation. In the context of calculating p(xd, rd, t) the orientation of the elemental volume is
not relevant, and therefore using | det(J(x0, r0, t)) | to evaluate the probability density by means of Equation (2) remains
physically consistent in the case that det(J(x0, r0, t)) < 0.

APPENDIX B. DEMONSTRATION OF THE KERNEL DOMAIN SIZE VARYING
PROPORTIONATELY TO THE JACOBIAN DETERMINANT

In order to account for the high degree of variation in the number density field for inertial droplets, it is desired that recon-
struction using a kernel-based method is able to vary the size of the kernel domain of support according to the local droplet
number density. Within the FLA methodology, the physical interpretation of the Jacobian Jxx as the Eulerian-Lagrangian
transformation provides the necessary information regarding the extent of the local Eulerian droplet field over which the
influence of an individual droplet acts. It is therefore necessary to specify the kernel such that its domain of support is
proportionate to | det

(
Jxx) |.

For the specific choice of the multivariate Gaussian kernel in Equation (11), it can be shown that the domain size
for a compact support is proportional to

√
det(H). Then for the positive semi-definite specification of H = h2

0Jxx ⋅ Jxx⊤ in
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Equation (14), we have that

√
det(H) =

√

det
(

h2
0Jxx ⋅ Jxx⊤

)

=
√

h2d
0 det

(
Jxx) det

(

Jxx⊤
)

= hd
0

√

det
(

Jxx) det
(

Jxx) = hd
0| det

(
Jxx) |. (B1)

Thus the domain of support for the kernel is proportionate to | det
(

Jxx) | as required, meaning that the kernel is able
to adaptively scale in accordance with the local Eulerian-Lagrangian transformation so that the spatial structures of the
droplet field, which accompany the variation in number density, are captured.
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