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Abstract—The predictions of the conditional quadrature methods of moments, conventional
Lagrangian, and fully Lagrangian (FLA) approaches to the calculation of particle number
densities in hyperbolic and Lamb vortex flows are compared. All these methods predict similar
distributions of particle number densities at low Stokes numbers. For single-fold particle
trajectory crossings (PTC) at high Stokes numbers in the hyperbolic flow, the two-point
quadrature approximation is shown to be in good agreement with both Lagrangian approaches,
while the three-point approximation of the VDF leads to worse prediction than the two-point
approximation. Thus, the number of nodes in the approximation has to be chosen based on
the characteristics of the flow. The predictions of the FLA are shown to agree with those of
the conventional Lagrangian approach when sufficiently large numbers of particles are used in
calculations. The FLA is shown to be the most CPU efficient method among those considered
in our analysis.
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1. INTRODUCTION
Mathematical modelling of dilute gas-particle flows has been used in many applications, including

those of mechanical and chemical engineering [9, 10]. Particles are commonly assumed to be fine,
with velocities equal to that of the gas phase so that their trajectories follow the streamlines of the
carrier phase. This approximation is not valid for heavy particles whose velocities might differ from
local gas velocities (e.g. fuel droplets during pulse injections in internal combustion engines [9] and
aerosol sampling [16]). In this case the particle Stokes number may not be small, and the particles
need to be considered as inertial. When particles are inertial and free transport of particles prevails
over collisions between them the particle trajectory crossing (PTC) can occur. The PTCs are
characterised by the presence of particles with different velocities in the same point of space. One
can distinguish between a homo-PTC problem, which considers trajectory crossings of particles of
the same size, and a hetero-PTC problem, dealing with trajectory crossings of particles of different
sizes [7]. A number of Eulerian-Eulerian and Eulerian-Lagrangian approaches have been developed
for the analysis of these problems [3, 12, 13].

Within the traditional Lagrangian approach the particle number density is calculated based
on direct counting of particles in individual cells, which requires an excessively large number of
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trajectories to be considered [3]. A more efficient approach to its calculation was suggested by
Osiptsov [23, 24]. The latter approach is based on the continuity equation for particles in the
Lagrangian form, and the Jacobi matrix of the Eulerian-Lagrangian transformation for calculating
particle number density along trajectories. This is commonly known as the fully Lagrangian
approach (FLA). Benefits of the FLA were demonstrated by Healy and Young [17], Zaripov et
al. [29], Papoutsakis [25] and Li [21].

An alternative Eulerian approach to modelling gas-particle flows is based on solving transport
equations for dispersed and continuous phases and the coupling between them, taking into account
the polydispersity of particles in the general case. One possible simplification of this approach is
based on the assumption that particles are of the same size (monodisperse) and have the same
velocity (monokinetic) at a given point in space (possible contributions of folds are not taken into
account). In this case, the dispersed phase is modelled as a fluid with an equilibrium velocity,
and pressureless gas dynamic-like equations are solved. This approach cannot consider particle
trajectory crossings as these crossings produce delta-shocks in regions with PTC [4, 5, 8]. To
account for the polydispersity of particles, the multifluid model was introduced [19]. In this model,
the range of particle sizes is split into sections, and transport equations for particles are solved
under the assumption that each section is characterised by its own particle number density and
momentum. This approach allows us to study hetero-PTC, but not homo-PTC.

For treating the homo-PTC problems a number of approaches were developed based on
the solution the Boltzmann-Williams kinetic equation [26] by quadrature methods of moments
(QMOM) [6, 11, 22, 27]. In such approaches the kinetic equation written for a number density
function (NDF), with respect to sizes and velocities of particles, is transformed to the transport
equation for NDF moments using the NDF representation in the form of weighted sum of various
kernel functions (the Dirac delta functions in the original QMOM). In [6], the two-node QMOM
was applied to the analysis of a velocity distribution function (VDF), and it was shown that
using a two-node quadrature in the VDF representation allows one to resolve homo-PTC. The
version of the quadrature method of moments developed by Fox [11] complemented the multifluid
approach [4, 5, 18]. It was used to simulate evaporating sprays and both homo- and hetero-PTCs.
The conditional quadrature method of moments (CQMOM) was proposed in [27] to describe the
dynamic of a multivariate NDF using arbitrary numbers of quadrature nodes. Gilfanov et al. [15]
modified the moment inversion algorithm on the QMOM and CQMOM in order to guarantee
bounded particle velocities in the VDF representation that increased stability of the method.

Laurent et al. [20] reviewed state-of-the-art Eulerian approaches to simulate flows with PTC.
The CQMOM was compared to the multi-Gaussian (MG) approach [1], in which the NDF is
approximated using the Gaussian function instead of the Dirac delta function. It was shown that,
for homogeneous isotropic turbulence, predictions of the MG are in better agreement with those
of the Lagrangian approach than with those of the CQMOM. The extended quadrature methods
of moments (EQMOM) [28] were developed based on the CQMOM and MG approaches. In these
methods, continuous kernel functions with a different kind of support were used. A generalisation
of EQMOM with Gaussian kernel functions was developed by Chalons et al. [2]. In methods of
moments with continuous approximation, however, discrete representation of the NDF is lost. This
perpetuates interest in the development of methods with a discrete form of the NDF, such as
CQMOM. The promising approach known as the conditional hyperbolic quadrature method of
moments (CHyQMOM) was proposed by Fox et al. [14]. CHyQMOM uses a lower number of
moments, fixing the highest moment, so that the system of moment advection equations becomes
hyperbolic.

In this work we compare predictions of previously proposed modification of CQMOM [15] with
those of the traditional Lagrangian (box counting) and fully Lagrangian approaches for the analysis
of particle number densities in hyperbolic and Lamb vortex flows (two-dimensional fluid flow fields
with possible PTC). The adequacy of the PTC representation produced by the CQMOM with
different numbers of quadrature nodes in the NDF approximation is assessed.
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2. LAGRANGIAN APPROACHES
2.1. The conventional Lagrangian approach (box counting)

In the two-dimensional case, the motion of a single particle in a gas flow, taking into account
Stokes’ law of aerodynamic drag, is described by the following equations for the dimensionless
coordinates (x, y) and dimensionless velocity components (u, v) of a particle,

du

dt
=
ug − u
Stk

,
dv

dt
=
vg − v
Stk

,
dx

dt
= u,

dy

dt
= v, (1)

where (ug, vg) is the gas velocity, and Stk is the Stokes number.
For the calculation of particle number densities on a uniform Eulerian computational grid,

including many rectangular cells, Np particles are initially placed in each cell and their trajectories
are tracked. At each time step, the normalised particle number density in each cell is estimated
along with the ratio of the number of particles in the cell to Np. The accuracy of the method
depends on grid resolution and the value of Np. Hereafter, we will refer to this method as box
counting [25] and the relevant particle number density is referred to as nBC . Box counting will
be used as the reference solution. The predictions of other methods will be assessed against the
predictions of the method based on box counting.

2.2. The fully Lagrangian approach (FLA)

The fully Lagrangian approach (FLA) [23, 24] allows us to compute the particle number density
n along a particle trajectory. The continuity equation in the Lagrangian form is written as

n(x0, y0, t)|det ‖J‖ | = n(x0, y0, 0), (2)

where (x0, y0) is the initial position of a particle, J is the Jacobi matrix of the Eulerian-Lagrangian
coordinate transformation. In the two-dimensional case, the components of the Jacobi matrix are
defined as

J11 =
dx

dx0
, J12 =

dx

dy0
, J21 =

dy

dx0
, J22 =

dy

dy0
.

To calculate the values of the components of J , the following system of ordinary differential equations
for Jij and auxiliary variables ωij is solved along each trajectory:

dJ11
dt

= ω11,
dJ12
dt

= ω12,
dJ21
dt

= ω21,
dJ22
dt

= ω22,

ω11

dt
=

1

Stk

(
J11

∂ug
∂x

+ J21
∂ug
∂y
− ω11

)
,
ω12

dt
=

1

Stk

(
J12

∂ug
∂x

+ J22
∂ug
∂y
− ω12

)
,

ω21

dt
=

1

Stk

(
J11

∂vg
∂x

+ J21
∂vg
∂y
− ω21

)
,
ω22

dt
=

1

Stk

(
J12

∂vg
∂x

+ J22
∂vg
∂y
− ω22

)
.

The initial conditions for the Jacobian components are set as J11 = 1, J12 = 0, J21 = 0, J22 = 1 (at
the starting point, Lagrangian and Eulerian coordinates are the same). Assuming that all particles
start with the same initial velocity, the initial values of ωij are set to zero. When the values of the
components of the Jacobian are found, the particle number density can be calculated from Eq. (2).

In the FLA, PTC can be detected by following a single trajectory: the value of the determinant of
the Jacobi matrix crosses zero (changes sign) when PTC occurs. Due to this fact, a special treatment
is required to translate the particle number density, calculated along the particle trajectory using
the FLA, to the Eulerian grid. Consider a set of particles representing a single cloud, continuous
in space at the initial time instant. If no PTC has occurred, the particle number density in cell
nFLA at a given time instant is equal to the particle number densities averaged over all particles in
the cell. If PTC has occurred only for some particles in the cell (possibly more than once), then
particles are grouped by the number of times the determinant of their Jacobi matrixes has crossed
zero (the number of folds). In this case, nFLA in the cell is calculated as a sum of particle number
densities, averaged over each group.
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3. METHOD OF MOMENTS
In the Eulerian framework to model particle transport the conditional quadrature method of

moments (CQMOM) is used. This method is based on the kinetic equation which in the two-
dimensional case has the following form

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+
∂(Axf)

∂u
+
∂(Ayf)

∂v
= 0, (3)

where f(t, x, y, u, v) is the bivariate velocity distribution function, (Ax, Ay) are the components of
the Stokes drag force (the first two equations in Eq. (1)).

The moments of f(t, x, y, u, v) are defined as

Mm,n(t, x, y) =

∫ ∞
−∞

∫ ∞
−∞

umvnf(t, x, y, u, v)dudv. (4)

Integrating Eq. (3) over velocity space and using (4) leads to the system of moment transport
equations

∂Mm,n

∂t
+
∂Mm+1,n

∂x
+
∂Mm,n+1

∂y
=
ugMm−1,n −Mm,n

Stk
mθ(m) +

vgMm,n−1 −Mm,n

Stk
nθ(n), (5)

where

θ(x) =

{
0, x ≤ 0

1, x > 0
.

To close flux term in (5) we use the CQMOM approximation for VDF at time t and point (x, y)
in the following form

f(u, v) =

N1∑
i=1

N2∑
j=1

wijδ(u− ui)δ(v − vij), (6)

where N1 and N2 are numbers of quadrature points in u- and v-velocity spaces, respectively, wij are
the weights of nodes, ui are abscissas in the u-velocity space, and vij are abscissas in the v-velocity
space for given ui. Such an approximation leads to an arbitrary moment

Mm,n =

N1∑
i=1

N2∑
j=1

wiju
m
i v

n
ij .

The number of moments in (5) is inferred from the number of quadrature points in each direction:
N1 and N2. As in [15] three cases are considered:

1. N1 = 1, N2 = 1: 1 node, 3 moments;

2. N1 = 2, N2 = 2: 4 nodes, 10 moments;

3. N1 = 3, N2 = 3: 9 nodes, 21 moments.

Zeroth moment M00 corresponds to the particle number density. Cases a, b, c are referred to as
the one-point (MOM-1), two-point (MOM-2) and three-point (MOM-3) quadrature approximations,
respectively. Hereafter, notations nMOM−1, nMOM−2 and nMOM−3 are used for number density
obtained for these cases.

To solve system of Eqs. (5) the previously proposed computational scheme is used [15]. This
scheme applies the moment inversion algorithm with controlling boundedness of abscissas in the
VDF representation (6). A source term is accounted for during a separate step using the operator-
splitting technique. For example, the drag force for particles is accounted for using the analytical
solution for particle velocities (see Eq. (1)), as in [6]. Assuming constant gas velocity during the
time step [t, t+ ∆t], the expression for u-velocity is presented as:

u(t+ ∆t) = ug − (ug − u(t)) exp(−∆t/Stk).
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4. NUMERICAL RESULTS
4.1. Hyperbolic flow

In the general case, PTC can occur inside a single cloud due to the inertial behaviour of particles
when the velocity of the carrier phase changes its direction. Consider an analytical model of colliding
jets: a hyperbolic flow with the velocity components ug = x, vg = −y. The streamlines of the fluid
flow in the computational domain (−1 < x < 0,−1 < y < 1) are shown in Fig. 1. Particles with
Stk = 0.25 and Stk = 1 are injected with a dimensionless y-component of velocity equal to 1 at the
bottom boundary y = −1 at −0.1 < x < −0.01.

Figure 1. Streamlines of a hyperbolic flow.

CQMOM calculations (MOM-1, MOM-2, MOM-3) were performed on a uniform rectangular grid
of 512× 1024 points using an explicit first order scheme and a quasi-second order scheme in the
physical space. In the cells where particles are injected, their number density and velocity were set
equal to 1. At all other boundary cells, particle number density and velocity were set equal to zero.
On the right boundary (see Fig. 1), a zero flux condition was used. Boundary conditions for the
moments were calculated using the values of particle number density and velocity.

For Lagrangian calculations (box counting, FLA), particles were initialised in the same injection
cells that were used for the CQMOM. In the case of Lagrangian box counting, each injection cell
was uniformly populated with 16384 (128× 128) particles (1.5× 109 particles overall). In the case
of the FLA, 1024 particles were placed in the injection region. The number densities predicted by
these methods were projected to the Eulerian grid.

The distributions of number densities of low inertia particles with Stk = 0.25, obtained using
Lagrangian box counting, the FLA, and three versions of the CQMOM are shown in Fig. 2. As
follows from this figure, the clouds do not cross the line y = 0 and no PTC occurs. In the absence of
PTC, all methods predict qualitatively similar results: number densities grow in the accumulation
region near the line y = 0.

The particle number density distributions along the vertical lines x = −0.4, x = −0.2 and
x = −0.1, predicted by these approaches, are shown in Fig. 3. All three versions of the CQMOM
predict non-zero concentration above the line y = 0, while both Lagrangian methods predict that no
particles cross this line. The CQMOM approaches underestimate the maxima of particle number
density compared to the Lagrangian approaches. Predictions by the FLA and box counting are
almost identical until the particle number densities reach their maxima. The one-point quadrature
approximation (MOM-1) predicts the maximum particle number density that is closest to the
one inferred from the Lagrangian approach. The highest values of particle number density are
nFLA = 13.55, nBC = 10.6, nMOM−1 = 7.4, nMOM−2 = 6.8, nMOM−3 = 6.9.

The distributions of number densities of high inertia particles with Stk = 1, calculated using
Lagrangian box counting, FLA and three versions of the CQMOM, are shown in Fig. 4. As follows
from this figure, the particles cross axis y = 0, but due to the reverse fluid flow their trajectories
turn back near the line y = 0.3. This leads to formation of a wide region with particle trajectory
crossings.

LOBACHEVSKII JOURNAL OF MATHEMATICS
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Figure 2. The distribution of the number density of particles with Stk = 0.25 in a hyperbolic flow. The
number density was calculated using MOM-1 (A), MOM-2 (B), MOM-3 (C), box counting (D) and FLA (E).

Figure 3. The number density of particles with Stk = 0.25 in the hyperbolic flow along lines x = −0.4 (A),
x = −0.2 (B) and x = −0.1 (C).

The particle number densities along lines x = −0.4, x = −0.2 and x = −0.1 are shown in Fig. 5.
As follows from this figure, the predictions of both Lagrangian approaches are rather similar. For
example, a step-like increase in calculated number density due to the contribution of a reversed
particle flow at y = 0.17 (Fig. 5(B)) and y = 0.1 (Fig. 5(C)) can be clearly seen. Note, however, that
at y greater than 0.3 the particle number density predicted by box counting reaches its maximum
value and drops sharply after that, while the density predicted by the FLA tends to infinity at these
values of y.

As follows from Figs. 4 and 5, the one-point quadrature approximation predicts the collapse of
the cloud at the PTC region and consequent growth of particle number densities to much higher
values than predicted by MOM-2, MOM-3 and even box counting. Note that calculations based on
the two-point quadrature approximation (MOM-2) show the best agreement with those based on
both Lagrangian approaches. These calculations predict similar particle clouds and similar locations
for the maxima of these densities at the trajectory-turning region (Fig. 4 (B), Fig. 5 (B, C)). Note,
however, that MOM-2 has an unphysical jump in particle number density at y = 0.14 where the
cloud meets its returning front.

Calculations based on the three-point quadrature approximation (MOM-3) and those based on
the Lagrangian approaches predict similar locations where the cloud meets its returning front, and
similar values for the particle number densities at these locations (Fig. 5 (B, C)). The predicted
distribution of nMOM−3, however, has many local unphysical jumps in particle number density
(Fig. 4 (C)). The locations of nMOM-3 maxima are close to those of nMOM−1, which can be
attributed to the fact that the weight of the central quadrature node is high.
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Figure 4. The distributions of number densities of particles with Stk = 1 in the hyperbolic flow, calculated
using MOM-1 (A), MOM-2 (B), MOM-3 (C), box counting (D) and the FLA (E).

Figure 5. The number densities of particles with Stk = 1 in the hyperbolic flow along lines x = −0.4 (A),
x = −0.2 (B) and x = −0.1 (C).

Note that, for Stk = 1, the conventional MOM calculations cannot be completed without ensuring
that abscissas are in the physically allowable range. This is because very high value abscissas cause
a significant reduction in time step. The numerical scheme using the new criterion was free from
such time step related issues.

Calculations using the above-mentioned approaches were performed on an eight-core personal
computer in parallel mode. The three-point quadrature approximation (MOM-3) required much
more calculation time than MOM-1 and MOM-2. In the case of a single hyperbolic flow, calculations
for 4 seconds of simulation time took about 20 minutes when MOM-1 was used. The MOM-2
calculations required about 2.5 hours for the same case (this involved the time-consuming moment
inversion algorithm). The MOM-3 calculations took about a day for the same problem. In the
latter case, many more scalars were transported (21 moments), and the moment inversion algorithm
was more complex than that of MOM-2. The computational time for the traditional Lagrangian
approach was about 4 hours. This is much less than the time required for MOM-3 and comparable
to that for MOM-2. The most efficient method for this case was the fully Lagrangian approach
when the same calculations took just several minutes. This is attributed to the fact that only one
particle in each cell was needed to calculate particle number density in it using the fully Lagrangian
approach.

4.2. Lamb vortex flow
The Lamb vortex is a model of a vortex flow that has a motionless core and diffuses into its

surroundings. The model is described by the exact analytical solution to the transient Navier–
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Stokes equations:

(ug, vg) =
(−y, x)

2πr2

(
1− exp(−Re

r2

4t
)

)
,

where Re is the Reynolds number and r =
√
x2 + y2.

We considered the Lamb vortex flow with Re = 100 in domain −1 < x < 1,−1 < y < 1. A
uniform rectangular computational grid of 1024× 1024 points was used for the CQMOM simulations
based on an explicit first order scheme and a quasi-second order scheme in the physical space.
The zero-flux condition was used for the moments at all boundaries of the computational domain.
Particle number densities predicted by the Lagrangian box counting and FLA simulations were
calculated on the same Eulerian grid. Particles with zero velocity were initialised inside the ring
0.01 < r < 0.1. The domain r < 0.01 inside the ring was left empty due to the infinite gas velocity
at the ring centre.

Initially motionless particles were entrained by the surrounding carrier phase spiral flow. Carrier
phase velocity decreased both in time and along the radius leading to formation of the particle
accumulation zone at the outer surface of the ring; no PTCs occurred for this flow. Average radial
profiles of particle number density, obtained using both Lagrangian methods and CQMOM at
different time instants, are shown in Figs. 6 and 7 for Stk = 0.25 and 1, respectively.

For Stk = 0.25, FLA and Lagrangian box counting led to predictions of two accumulation zones
at an early stage (two peaks in Fig. 6 (A), t = 0.4). This can be attributed to the fact that particles
starting closer to the interior boundary of the initial ring reach higher velocities and catch up with
particles at the outer surface of the ring. Eventually, these accumulation zones merge into one,
leading to the formation of a narrow ring (Fig. 6(B, C), t = 0.8, 1.2). This effect was not captured
by any of the CQMOMs.

 

Figure 6. Averaged radial particle number density profiles for Stk = 0.25 in a Lamb vortex flow at time
instants t = 0.4 (A), t = 0.8 (B), t = 1.2 (C).

 

Figure 7. Averaged radial particle number density profiles for Stk = 1 in a Lamb vortex flow at time
instants t = 0.4 (A), t = 0.6 (B), t = 0.8 (C).

For Stk = 1, the cloud expands more slowly than in the case of Stk = 0.25. For Lagrangian
calculations, the formation of two accumulation zones was not observed, although the number
density around x = 0.12 tends to flatten (see Fig. 7(A)). As in the case of Stk = 0.25, both
Lagrangian approaches predict narrowing of the cloud with time with a very sharp drop in the
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number density at the outer edge. For both Stk = 0.25 and Stk = 1, all CQMOMs predict wider
rings with lower values of number density maxima, compared with those inferred from calculations
based on the Lagrangian approaches. Also, these particle number density maxima, predicted
based on the CQMOMs, decreased with time in contrast to those predicted using both Lagrangian
approaches.

In the absence of PTC, we can see no benefit in using the VDF approximation with high numbers
of nodes. As in the case of a hyperbolic flow with low inertia particles, two- and three-point
approximations (MOM-2, MOM-3) lead to prediction of number densities lower than those inferred
from the one-point VDF (MOM-1) approximation.

5. CONCLUSIONS
The predictions of particle number density by modified versions of the CQMOM, conventional

Lagrangian and fully Lagrangian approaches (FLAs) in hyperbolic and Lamb vortex flows are
compared. For small Stokes numbers, no particle trajectory crossings (PTCs) occur in the hyperbolic
flow and all methods predict qualitatively similar results. In the case of high Stokes numbers, single-
fold PTC is observed in the flow region and the two-point quadrature approximation leads to the
best agreement with both Lagrangian approaches. The three-point approximation of the VDF
leads to a worse prediction than the two-point approximation. Hence, the order of approximation
has to be chosen based on the characteristics of the flow. In the absence of PTC, there are no
benefits to using VDF approximations with high numbers of quadrature nodes compared with the
one-point approximation for Lamb vortex flow calculations. In contrast to the conventional and
fully Lagrangian approaches, the CQMOM results do not capture some features of particle number
density fields, including double accumulation zones in the case of Lamb vortex flow. The results
predicted by the FLA are shown to be in the best agreement with the results predicted by the
conventional Lagrangian approach for sufficiently large numbers of particles. Also, the FLA is
shown to be the most computationally efficient approach for the cases considered in the paper.
Acknowledgments. This paper has been supported by the Kazan Federal University Strategic
Academic Leadership Program ("PRIORITY-2030"), and UKRI (Grant MR/T043326/1).
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