
This is the peer reviewed version of the following article: Song, W, Liu, M, Baker, T, Zhang, Q,
Tan, Y. A group key exchange and secure data sharing based on privacy protection for federated
learning in edge-cloud collaborative computing environment. Int J Network Mgmt. 2023;e2225.
doi:10.1002/nem.2225, which has been published in final form at https://doi.org/10.1002/
nem.2225. This article may be used for non-commercial purposes in accordance with Wiley Terms
and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or
otherwise transformed into a derivative work, without express permission from Wiley or by
statutory rights under applicable legislation. Copyright notices must not be removed, obscured or
modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any
embedding, framing or otherwise making available the article or pages thereof by third parties
from platforms, services and websites other than Wiley Online Library must be prohibited.

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

A group key exchange and secure data sharing based on privacy
protection for federated learning in edge-cloud collaborative
computing environment

Wenjun Song1 | Mengqi Liu1 | Thar Baker2 | Qikun Zhang1 | Yu-an Tan*3

1School of Computer and Communication
Engineering, Zhengzhou University of
Light Industry, Zhengzhou, China

2School of Architecture, Technology and
Engineering, The University of Brighton,
Brighton BN2 4GJ, UK

3School of Computer Science and
Technology, Beijing Institute of
Technology, Beijing, China

Correspondence
Yu-an Tan, School of Computer Science and
Technology, Beijing Institute of Technology,
No. 5 Zhongguancun South Street, Haidian
District, Beijing, China. Email:
tan2008@bit.edu.cn

Summary

Federated Learning (FL) is widely used in IoT scenarios such as health research, au-
tomotive autopilot, and smart home systems. In the process of model training of FL,
each round of model training requires rigorous decryption training and encryption
uploading steps. The efficiency of FL is seriously affected by frequent encryption
and decryption operations. A scheme of key computation and key management with
high efficiency is urgently needed. Therefore, we propose a group key agreement
technique to keep private information and confidential data from being leaked, which
is used to encrypt and decrypt the transmitted data among IoT terminals. The key
agreement scheme includes hidden attribute authentication, multi-policy access, and
ciphertext storage. Key agreement is designed with edge-cloud collaborative net-
work architecture. Firstly, the terminal generates its own public and private keys
through the key algorithm; then confirms the authenticity and mapping relation-
ship of its private and public keys to the cloud server. Secondly, IoT terminals can
confirm their cryptographic attributes to the cloud and obtain the permissions cor-
responding to each attribute by encrypting the attributes. The terminal uses these
permissions to encrypt the FLmodel parameters and uploads the secret parameters to
the edge server. Through the storage of the edge server, these ciphertext decryption
parameters are shared with the other terminal models of FL. Finally, other terminal
models are trained by downloading and decrypting the shared model parameters for
the purpose of FL. The performance analysis shows that this model has a better per-
formance in computational complexity and computational time compared with the
cited literature.

KEYWORDS:
IoT, Edge-cloud collaborative, Federated learning, Group key agreement, Privacy protection

1 INTRODUCTION

With the development of the industrial level, the original industrial service capacity is more and more limited 1 , and the cur-
rent stage of industrial development has put forward higher requirements for the implementation period 2 . Therefore, edge-cloud

2

collaborative network is widely used in smart transportation 3 , smart agriculture, manufacturing of industrial IoT, etc. The appli-
cation of these scenarios requires that the terminals in the systemwork together to accomplish specific tasks through collaborative
computing, collaborative operations, and resource sharing 4 . In collaborative computing, the group session key is generated by
the requester. The requester uses this group session key to encrypt the data into ciphertext and then broadcasts the secret mes-
sage to the group. Legitimate service providers can calculate the group session key and decrypt the ciphertext data. After the
data is processed by the service provider, the data is again encrypted by the group session key. The processed ciphertext data is
returned to the requester. Terminals are concerned about the leakage of secret data in the process of data sharing and collabo-
rative computing. However, the performance and efficiency of the whole system collaborative computing will be affected if the
data is not shared with other terminals. And Federated Learning (FL) is an emerging technology underlying artificial intelli-
gence. The goal is to carry out efficient machine learning among multiple participants or multiple computing nodes to guarantee
information security when exchanging big data, protect terminal data and personal data privacy, and ensure compliance with le-
gal regulations 5 . Due to the excellent characteristics of FL for the confidentiality of shared data and the efficiency of execution,
some intelligent application areas of machine learning can be combined with it, giving the conditions for intelligent computing
and intelligent operation in edge cloud collaborative application scenarios.
Secure data sharing and privacy protection issues are involved in the process of federated machine learning 6 . For example,

by using encryption-based user sample alignment techniques, the system unites users’ characteristics for modeling without
exposing the shared users of the two models that do not disclose their respective data and without exposing users that do not
overlap with each other. After the participants have trained the original model, the local model parameters will be encrypted
and transmitted to the rest of data holders participating in the joint training 7 . Therefore, assuming that there are n participants in
this joint training, each participant needs to transmit the encryption model parameters at least 2(n − 1) times 8 . Considering the
issues of identity confirmation and privacy protection of identity information, key computation and key negotiation for model
parameter encryption, group key agreement and secure data sharing techniques are proposed. The main contributions of the
paper are as follows.
1) Self-confirmation of key generation: Securing the private key is crucial because it is an important basis for determining

the identity of the terminal. Traditional key generation algorithm mainly relies on a trusted third party to generate a private
key based on the user’s identity information and then distribute it to the user. There are many potential risks in this scheme.
For example, the adversary attacks the third party to get the user’s private key and then impersonates the terminal to do illegal
operations. In addition, the terminal private key is vulnerable to eavesdropping and other security threats during the transmission
process. Aiming at these problems, we propose the key self-verification algorithm, i.e., each terminal in IoT calculates its own
public/private key pair by the key generation algorithm itself, and then confirms to the cloud server that the key pair is its own.
The key self-verification algorithm avoids the security risks of traditional schemes because the key is generated by terminal
itself, and the algorithm is used to verify the correspondence between its identity and the key.
2) Authentication with hidden attributes: Identity-based authentication tends to leak the identity information of terminal,

but attribute-based authentication can infer identity information through attributes. Therefore, we propose the hidden attribute
authentication method, where the terminal of IoT firstly encrypts the attributes and then sends the ciphertext attributes to the
cloud server for ciphertext attribute authentication. Hidden attribute authentication is used to avoid the leakage of identity and
attribute information of the terminal during transmission.
3) Ciphertext model parameters sharing: The training model of each IoT terminal encrypts the trained model parameters of its

own, and then stores the ciphertext parameters on the edge server. Other training models can download and decrypt the shared
model training parameters from the edge server, and use them for federated learning to achieve optimal model training. The
security and anti-leakage of shared model data are guaranteed.
4) Self-adaptive model data sharing: In edge-cloud collaborative application scenarios, each terminal may participate in

several different model training tasks, and the parameters of each training model are only limited to be shared in the federation
of a certain task. Therefore, the parameter sharing for multiple training models requires different data sharing permissions. For
different attribute constraint algorithms of data, the terminal self-adaptively combines various access rights according to its own
attribute rights. The data is shared securely by self-adapting to the data permissions.
The other sections of the manuscript are ordered in the following way. Section 2 discusses the Related Work, followed by

Section 3, we introduce the basics used in this article; We describe the system architecture model in Section 4 and introduce
the detailed process of the model in Section 5; In sections 6 and 7 we respectively analyze the security and performance of the
proposed model; Finally, we conclude the paper in Section 8.

3

2 RELATEDWORK

Wireless network data transmission is adopted by most application scenarios of smart internet of things (IoT). This method is
not only vulnerable to cyber attacks, data can be easily intercepted or leaked, and mobile terminals are easily controlled by
adversaries. The security of data sharing and terminal privacy protection is a challenging research project in this application
scenario. In recent years, many scholars have proposed solutions for privacy leakage during information transfer in different
application scenarios.To achieve decentralized file access, Lin et al. 9 added a data access mechanism in Interplanetary File
System (IPFS). At the same time, blockchain is used to store file information and user permissions. File data sharing can be
managed by the improved IPFS according to user permissions. Privacy protection is achieved.Bin et al. 10 proposed distributed
K-means clustering with differential privacy and homomorphic encryption by combining blockchain technology. The scheme
is designed to address the security vulnerability in federal learning, which makes private data more secure.Secure multi-party
computing can achieve privacy protection in multi-party data sharing. However, traditional secure multi-party computing is
inefficient and the computation protocol is complex. Yang et al. 11 propose a blockchain-based secure multi-party computation
architecture, which has excellent properties of decentralization, verifiability and high reliability in the privacy protection process.
Rao et al. 12 proposed a privacy-preserving multi-group data sharing scheme in the cloud with group signatures and broadcast
encryption in the case of multiple groups of shared data. Group signatures and broadcast encryption are used to efficiently revoke
users during anonymous intra-group and cross-group data sharing. Wang et al. 13 propose a verifiable thresholded multi-secret
sharing privacy preservation scheme for scenarios without secure channels. Multiple secrets can be shared among a group of
participants and it is possible to detect if a trader or participant is spoofing. Also works in environments where secure channels
are not available. Piao et al. 14 designed a model to address the characteristics of diverse types and complex attributes of shared
data in government departments. First clustering algorithm is used to reduce the dimensionality of the data. Then k-medoids
clustering algorithm is used to improve data availability. Finally, the clustering results are anonymized using generalization
techniques to ensure data privacy. In addition, Piao et al. 15 proposed an improved Local Difference Privacy (LDP) based scheme.
Data chunking technique and count mean sketch (CMS) algorithm were adopted in this scheme. It overcomes the disadvantage
of requiring strict data size in case of large data fields.
New schemes are proposed in the literature [16-24] for the authentication part of the data sharing process. Xuan et al. 16 pro-

pose an optimized scheme for cross-domain authentication between heterogeneous IoT applications using certificate-less public
key cryptography and smart contract technology. The scheme has better performance in terms of communication volume and
verification computation cost. The capability of cross-domain authentication is improved. Braeken et al. 17 proposed a scheme
to implement terminal self-certified. In the scheme, users share the same private public key pair and use the Canetti-Krawczyk
(CK) secure mutual authentication protocol. To prevent data leakage and data propagation delay, Zhao et al. 18 design a feder-
ated learning collaborative authentication protocol for shared data with low authentication delay. Efficient anonymous mutual
authentication and key negotiation are implemented. Due to the immutability and traceability of blockchain technology, many
literatures use this technique in identity authentication. Fan et al. 19 proposed a secure and efficient authentication and data shar-
ing scheme for IoT based on blockchain technology. While ensuring efficient authentication, the authenticity of participants’
identities can be ensured. Chaitanya et al. 20 also used blockchain technology to achieve bidirectional authentication with bilinear
mapping knowledge in the authentication phase. A scheme is given for the danger of third-party trust centers, which also reduces
the average communication time and cost. Jia et al. 21 propose a scheme that uses edge computing to decentralize authentication
requests. By verifying the identity of IoT devices through blockchain, the overhead caused by the authentication phase is greatly
reduced. Lv et al. 22 proposed a blockchain-based cross-domain authentication scheme. In this scheme, the identity generation,
cryptographic storage, registration, joining and exiting of terminals are controlled by themselves. The authenticity and trust-
worthiness of these identities are ensured by establishing a trusted identity checking mechanism with minimal computational
cost. Through blockchain smart contracts and consensus mechanism, Zhan et al. 23 proposed a blockchain-based distributed CA
identity authentication between subjects. Mutual authentication of transnational identities can be achieved, which is of great sig-
nificance for transnational data sharing and privacy security. Wu et al. 24 combined blockchain with biometrics to form a shared
session key during telemedicine to protect the patient’s privacy. The scheme is highly secure and practical.
In order to achieve fine-grained data access control, attribute-based encryption has become amainstream encryption technique

favored by many scholars. Rohit et al. 25 extended the ciphertext policy attribute based encryption to achieve scalability and
fine-grained access control. The protocol has good scalability and high security. Miguel et al. 26 proposed a scheme that can
solve secure sharing of cloud storage data. Based on attribute-based encryption(ABE), the encrypted data is stored, retrieved
and shared in the cloud. The access control mechanism of encrypted data and information retrieval task is triggered by search

4

access control to secure the data during the sharing process. Nancy et al. 27 combined blockchain technology and proposed a
scheme using encryption based on multi-authority attributes to improve efficiency of data sharing. User attributes are hidden
by pre-encryption technique to ensure data security when it is shared. Arasi et al. 28 proposed an auditable attribute-based data
access control scheme. The scheme combines blockchain and attribute-based access control with traceability. Data integrity
is guaranteed and efficient data sharing is achieved. To address the problems of high computational overhead and dynamic
management, Ge et al. 29 proposed a decentralized attribute-based data sharing scheme. The scheme hides identity information
and supports user revocation and authentication. Secure sharing and data confidentiality is guaranteed. The scheme proposed
by Ye et al. 30 uses searchable attribute-based cryptography. Resource keywords can be updated in the sharing phase and no
interaction with the key generation center is required. It has better resistance to chosen ciphertext attack and chosen keyword
attacks.
Recent researches have made great contributions to the security technology of data sharing, but further improvements and

advances are needed for secure data sharing in new information technologies and their application scenarios. In this paper, we
propose a multi-policy secure ciphertext data sharing model based on hidden attribute authentication. Private key leakage caused
by an illegal party intercepted is avoided during third-party key distribution. Encrypted attribute authentication technology is
not only used to achieve identity authentication, but also effectively protect the terminal’s identity and attribute information
from being leaked. Secure and flexible multiple access policies are used for data access control to ensure the practicality of data
sharing.

3 PRELIMINARIES

3.1 Bilinear mapping
First, the definition of bilinear mapping is given. Let G1 be an additive group and its generator element be g1. Let G2 be a
multiplicative cyclic group, G1 and G2 have the same large prime order q, where q ≥ 2k + 1 (k is the security parameter).
Computing discrete logarithms on G1 and G2 is difficult. Groups G1 and G2 are a pair of bilinear groups, and e is a computable
bilinear mapping function, i.e., e ∶ G1 × G1 → G2. e satisfies the follow properties:
(1) Bilinearty: for any g1, g2 ∈ G1 and a, b ∈ ℤ∗q , there is e(ag1, bg2) = e(g1, g2)

ab.
(2) Non-degeneracy: that is e(g1, g2) ≠ 1.
(3) Computability: there exists a valid algorithm to efficiently compute the value of e(g1, g2) for any g1, g2 ∈ G1.

3.2 Computational hardness assumption
The following assumptions exist in the additive group G1:
(1) Discrete Logarithm Problem (DLP). Suppose g1, g1′ ∈ G1, that solving for an unknown a ∈ ℤ∗q makes g1′ = ag1

computationally difficult.
(2) Computational Diffie-Hellman Problem (CDHP). The generator g1 of groupG1 and elements (ag1, bg1) are known, where

a, b ∈ ℤ∗q , and it is difficult to compute abg1 when a and b are unknown.
(3) Computing Bilinear Diffie-Hellman Problem (CBDHP). Given elements g1, ga1 , g

b
1, g

c
1 ∈ G1, where a, b, c ∈ ℤ∗q , it is

difficult to calculate e(g1, g1)
abc .

(4) Inverse Computing Diffie-Hellman Problem (Inv-CDHP). For any ag1, abg1 ∈ G1, where a, b ∈ ℤ∗q . Knowing
g1, ag1, abg1, it is difficult to compute (ab∕a)g1.
Table 1 illustrates symbols that appear below.

3.3 Access structure of the model
The specific representation of access policy is access structure, and access tree is a very flexible access structure 31 . Access
structure of the model is a multinomial tree that defines logical structure of data access rights, which consists of system-defined
attributes and logical gates.
Access Structure: Let set D = {d1, d2,⋯ , dn} denote the attribute domain, and access structure be denoted by S ⊆

2{d1,d2,⋯,dn} ≠ ∅. If there exist sets B and C , and B ∈ S can be derived from C ∈ B and C ∈ S , then the set S is said to be
monotone. Attribute set that conforms to the access policy is called the authorized set, and attribute set that does not conform
to the access policy is called the unauthorized set.

5

Table 1 Symbol Description.

Symbol Description

G1 Additive groups on elliptic curves
G2 Multiplicative groups on elliptic curves
g1 Generator of G1
e Computable bilinear mapping
H1(⋅),H2(⋅),H3(⋅) Collision-resistant hash functions
∥ Connection symbol
⊕ Exclusive OR
PKA, SKA Public and private key of Cloud
pk, sk Public and private key of terminal

Access Tree: In any non-empty access tree, the structure of access policy is represented by the tree V , x is the node of tree
V , and the subtree with x as the root node is represented by Vx. If x is a non-leaf node, then this node represents a threshold.
numx denotes the number of child nodes of the subtree Vx, kx is the threshold value of node x, where kx ∈ [1, numx].
(1) When kx = 1, node x is represented as an OR gate;
(2) When kx = numx, node x is represented as an AND gate;
(3) When kx < numx, node x is represented as an OF gate and the value of kx is the number of attribute nodes to be satisfied.

For example, n of (∼) means that at least n attributes need to be owned in (∼).

4 SYSTEM STRUCTURE MODEL

A multi-policy data sharing model based on hidden attribute authentication is proposed, which contains three entities: Cloud,
Edge Server (ES) and network terminal (or user). The model is proposed that terminals participating in sharing need to authen-
ticate the attribute information to the Cloud and obtain the authority corresponding to the attribute after authentication. After
the Cloud distributes attribute authority to the terminals, it records relevant information in the table of terminal authentication
information and shares the table with the Edge Server. Data sharer stores encrypted resources in the Edge Server, and the server
updates the corresponding information in the secure data sharing platform. Data viewer verifies the permission with the Edge
Server, and the Edge Server verifies the viewer’s identity according to the secure data sharing platform. After verification by
the Edge Server, viewer can obtain the ciphertext resource, as shown in Figure 1. The components and process of the model are
described below:
1) The Cloud is a reliable and trusted center that is responsible for generating system public parameters and master keys;

then authenticating, registering and distributing attribute keys to terminals; and maintaining the table of user authentication
information, which contains identity information, permission information and public key of the successfully authenticated
terminal.
2) Edge Server has huge storage space and powerful computing power, which are mainly used for storing shared resources.

Information about the resource is registered in the secure data sharing platform. Verify the identity of the resource visitor by
accessing the sharing platform, and return the ciphertext resource to the visitor with successful authentication.
3) Terminals are the participants of data sharing, they can be both the sharers and the demanders of resources. Only users

who have been authenticated by the Cloud and have attribute rights can upload or download resources.
4) The secure data sharing platform records information about shared resources, including the identity of the uploader, public

key, hash value of the shared cryptographic data, cryptographic keywords, cryptographic function coefficients, and access policy
of the resources. Many Edge Servers share one secure data sharing platform.
Step 1©- 2©: After the initialization of the system, all terminals need to register with the Cloud for authentication. After

the Cloud legitimatizes the private key of terminal, it sends corresponding attribute authority secret to the terminal according
to the attributes owned by the terminal. Terminals that join later also need to complete this process. Step 3©- 4©: The Cloud
keeps the identity information of all terminals and records it in the terminal authentication information table, which includes
the valid status, public key and attribute weights of terminals. The information table is shared with the security data sharing
platform, but the platform only has permission to view and cannot modify contents of the table. Step 5©: Terminal that wants to

6

③Record

information

Data

Viewer

Data

Sharer

User

Secure data

sharing

platform

Terminal

authentication

information table

④Share

information

ES

...

⑦Write in

information

...

...

...

CloudCloud

Figure 1 System Model.
share the resource needs to identify the shared object by querying the terminal authentication information table. By analyzing
permissions of shared objects, the corresponding access policy is set. The access policy contains multiple attribute weight
combinations. Each attribute weight has a corresponding attribute key combination value. Step 6©- 8©: The sharer randomly
selects a encryption key and constructs a polynomial using the combined values of attribute keys obtained in Step 5©. The
resources and resource keywords are encrypted and sent to the Edge Server. The cloud server receives the information sent by
the terminal and examines the information. If the authentication passes, the information is written to the secure data sharing
platform, and "Upload successful" is returned to the terminal. If the verification fails, step 7© will not be executed and "Upload
failed" will be returned to the terminal. Step 9©-10©: To download the resources, the requestor first needs to prove legal identity
to the Edge Server. The terminal searches the secure data sharing platform for a ciphertext with matching privileges, and then
calculates the decryption key using the attribute weights and function coefficients. Decrypt and correlate the ciphertext keywords
with this key. (The combination of attribute weights varies from one viewer to another, and the computed key combination is not
the same, but the same decryption key can be derived.) Step 11©-12©: If the keyword is highly relevant to the requested resource,
the data requestor needs to further verify the permission with the Edge Server to download. ES checks attribute rights of the
requestor. If the permission level is equal to or higher than the level of the ciphertext resource, the download link will be sent to
the requesting terminal. At this point, the whole process of data sharing is completed.

5 SECURE RESOURCE SHARING ACCESS CONTROL

5.1 Initialization
Assume that there are n terminals in the protocol, denoted by U = {u1, u2, ..., un}, and the corresponding set of n termi-
nals’ identities is denoted by ID = {idu1 , idu2 , ..., idun}. The Cloud defines an ordered set of network attributes Attr =
{A1, A2, ..., Aj , ..., AR} and orders them according to their weights, where Aj < Aj+1(j < R, j ∈ N∗, R ∈ N∗). R is the num-
ber of network attributes. In addition, attri = {ai,1, ai,2, ..., ai,r}, (1 ≤ r ≤ R) is the ordered set of attributes of the terminals ui
in the network, where ai,r−1 < ai,r, 1 ≤ r ≤ R, r ∈ N∗, attri ⊆ Attr. r is the rth attribute of the terminal ui.
Suppose G1 is an additive group and G2 is a multiplicative group, and they have the same large prime order q. The discrete

logarithms on the additive group G1 and the multiplicative cyclic group G2 are difficult. g1 ∈ G1 is the generating element of
G1. e ∶ G1 × G1 → G2 is a computable bilinear mapping. H1 ∶ {0, 1}

∗ → ℤ∗q ,H2 ∶ G1 → ℤ∗q and H3 ∶ G2 → {0, 1}L are
three hash functions. The system parameters are params = (q, G1, G2, g1, e,H1,H2,H3).

7

5.2 Key self-confirmation algorithm
Let KeyGen(1�) → (sk, pk) be the key generation function, where � is the input security parameter and (sk, pk) is the output
public/private key pair. Terminal ui(1 ≤ i ≤ n) needs to register its identity before entering the system. Assume that the identity
information idui(1 ≤ i ≤ n) of all terminals is known by the Cloud. The steps are as follows:
1) The Cloud runs the key generation algorithmKeyGen(1�) to obtain the public/private key pair (SKA, PKA), whereSKA ∈

ℤ∗q , PKA = SKAg1.
2) Terminal ui ∈ U (1 ≤ i ≤ n) chooses a random positive integer sui ∈ ℤ∗q , and calculates skui = H1(idui)sui ,PKui = suiPKA.

skui is terminal ui’ private key. pkui = g1skui is ui’ public key. ui sends message {PKui , pkui} to the Cloud for authentication of
identity and public key.
3) After the Cloud receives message {PKui , pkui} from ui, it calculates Hui = H1(idui)g1 and Termui = SK−1

A PKui = suig1
according to the identity of ui, and verifies whether the equation e(Termui ,Hui) = e(pkui , g1) is true.
4) The Cloud publishes the public key pkui of ui and completes the key authentication. So far, ui has the legitimate

public/private key pair (skui , pkui), as shown in Figure 2.

...

1u
nu

APK

Send：

Broadcast： APK

{ , }
i iu uPK pk

1 1
{ , }u uPK pk

Verify

1 2
...

nu u upk pk pk， ， ，

1 2
...

nu u upk pk pk， ， ，

Broadcast：

Send：

Broadcast：

Broadcast：

Cloud

Figure 2 Terminal key verification process.

Terminal
Resource Access

Policy

Permission

combination

ju

,1ju

,2ju

...

,j ku

,2,1jTuf

...

,2,jTuf

...

, ,1j kTuf

, ,2j kTuf

...

, ,6j kTuf

Figure 3 Resource access privilege structure.

The Cloud obtains the identity and public key information of all terminals, and constructs an terminal authentication in-
formation table (as shown in Table 2) to record this information. The attribute weight information is added in the subsequent
steps.

Table 2 Authentication information of the terminal.

Terminal u1 u2 . . . un
Validity yes yes . . . yes
Public Key pku1 pku2 . . . pkun
Attribute weight {T1,1, T1,2, T1,3} {T2,1, T2,2, ..., T2,9} . . . {Tn,1, Tn,2, ..., Tn,r}

5.3 Ciphertext attribute authentication and attribute permission acquisition
Suppose the sequence number of the ordered attribute set Attr = {A1, A2, ..., Aj , ..., AR} is Ser = {S1, S2, ..., Sj , ..., SR},
and different attribute weight parameters t1, t2, ..., tR ∈ ℤ∗q are randomly selected for each attribute. ui sends attributes
{ai,5, ai,3, ..., ai,r} to the Cloud secretly, and the Cloud returns the corresponding sequence number ser = {S5, S3, ..., Sr} to the
terminal. After receiving the sequence number, ui compares it with the attributes it owns, and sorts the set of attributes accord-
ing to that sequence. The sequence of attributes after ranking is attri = {ai,1, ai,2, ..., ai,r}. All terminals are required to complete
the process. Then:

8

1) Suppose the ordered attribute set of ui is attri = {ai,1, ai,2, ..., ai,r}(1 ≤ r ≤ R). ui chooses a random number and compute
(�ig1, ai,1�ig1, ai,2�ig1, ..., ai,r�ig1), asui = H2(ai,1�ig1||ai,2�ig1||...||ai,r�ig1) and �i = (ai,1 + ai,2 + ...+ ai,r)sk−1ui �ig1 according
to the set of attributes it has. Then ui sends the message {(�ig1, ai,1�ig1, ai,2�ig1, ..., ai,r�ig1), asui ,�i, pkui} to the Cloud;
2) The Cloud calculates i = ai,1�ig1 + ai,2�ig1 + ... + ai,r�ig1 and as′ui = H2(ai,1�ig1||ai,2�ig1||...||ai,r�ig1) after receiving

the message {(�ig1, ai,1�ig1, ai,2�ig1, ..., ai,r�ig1), asui , �i, pkui} from terminal ui, and then verifies whether the following two
equations hold:

as′ui = asui (1)

e(�i, pkui) = e(i, g1) (2)

The purpose of verifying the equality (1) is to prevent man-in-the-middle attack and the parameters from being tampered with
during transmission. The purpose of verifying the equality (2) is to verify the identity of terminal through signatures.
3) If equations (1) and (2) are verified, the Cloud calculates equation (3) based on the set of system attributes and verifies

equation (4). If equation (4) holds, show that attri ⊆ Attr. (In equation (4), or means ’or’. For example: (⋅) = (V alA1 or V alA2)
means (⋅) = V alA1 or (⋅) = V alA2 .)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

H2(A1�ig1)⊕H2(A2�ig1)⊕H2(A3�ig1)⊕ ... ⊕ H2(AR�ig1) = V alA
H2(A2�ig1)⊕H2(A3�ig1)⊕ ... ⊕ H2(AR�ig1) = V alA1
H2(A1�ig1)⊕H2(A3�ig1)⊕ ... ⊕ H2(AR�ig1) = V alA2

...
H2(A1�ig1)⊕H2(A2�ig1)⊕ ... ⊕ H2(AR−1�ig1) = V alAR

(3)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

H2(ai,1�ig1)⊕ V alA = (V alA1 or V alA2 or ... or V alAR)
H2(ai,2�ig1)⊕ V alA = (V alA1 or V alA2 or ... or V alAR)

...
H2(ai,r�ig1)⊕ V alA = (V alA1 or V alA2 or ... or V alAR)

(4)

4) Suppose H2(ai,l�ig1) ⊕ V alA = V alAj (1 ≤ l ≤ r, 1 ≤ j ≤ R), the Cloud selects the corresponding weight parameter
from the attribute weight parameter t1, t2, ..., tR ∈ ℤ∗q according to ui’ attribute set {ai,1, ai,2, ..., ai,r}, denoted as (ti,1, ti,2, ..., ti,r).
The Cloud calculates the attribute weights {Ti,0 = �ig1, Ti,1 = ti,1Ti,0, Ti,2 = ti,2Ti,0, ..., Ti,r = ti,rTi,0} of ui and classifies the
authority levels according to the number of attributes, calculates the hash value HTi = H2(Ti,1||Ti,2||...||Ti,r) of the attribute
weights and the signature �i,s = SK−1

A (ti,1 + ti,2 + ... + ti,r)g1 of attribute weights parameter. Then the Cloud sends message
{(Ti,1, Ti,2, ..., Ti,r),HTi , �i,s, PKA} to terminal ui. (Note: for any two attributes ai,k and aj,l of different terminal members ui and
uj(i ≠ j), if ai,k = aj,l, then ti,k = tj,l.)
5) After receiving themessage {(Ti,1, Ti,2, ..., Ti,r),HTi , �i,s, PKA} from the Cloud, terminal ui calculates the hash valuesH′Ti =

H2(Ti,1||Ti,2||...||Ti,r) and "i = �−1i Ti1+�
−1
i Ti,2+...+�

−1
i Ti,r = (ti,1+ti,2+...+ti,r)g1. ui verifies that the attribute weights have not

been tampered with during the transfer process by checking whether equationH′Ti = HTi holds. The identity of Cloud is verified
by checking whether the signature e(�i,s, PKA) = e("i, g1) of the Cloud holds. If the verification does not pass, the registration
fails and terminal ui broadcasts that the Cloud is a fake Cloud. If the verification passes, the terminal ui obtains the attribute key
set {Ki,1, Ki,2, ..., Ki,r} by calculating the attribute key Ki,1 = �−1i Ti,1 = ti,1g1, Ki,2 = �−1i Ti,2 = ti,2g1, ..., Ki,r = �−1i Ti,r = ti,rg1
and signature sigui = sk

−1
ui
"i corresponding to each attribute. Then ui sends message {sigui , pkui} to the Cloud.

6) After the Cloud receives the message {sigui , pkui} from ui, it compares the received terminal public key with the public key
in the terminal authentication information table. (The public key in the table is obtained in the key self-certification process.)
If the comparison is successful then the correctness of the terminal ui identity information is further verified by the equation
e(sigui , pkui) = e(PKA, �i,s). When the terminal ui authentication fails, the registration is rejected, and when the authentication
passes, the ui attribute weights and other information are sent to ES.
Steps 1)-6) above are shown in Table 3.

Through the above steps, terminal ui(1 ≤ i ≤ n) is authenticated by the encrypted attributes and receives the attribute weights
for each attribute. The Cloud records the attribute weight information in the terminal authentication information table (Table 2)
and shares the table with ES for querying user’s rights and resource access rights.

9

Table 3 Steps of terminal attribute authentication.

Cloud ui(1 ≤ i ≤ n)

Select: �i ∈ ℤ∗q .
Calculate:
{(�ig1, ai,1�ig1, ai,2�ig1, ..., ai,r�ig1), asui =
H2(ai,1�ig1||ai,2�ig1||...||ai,r�ig1), �i =
(ai,1 + ai,2 + ... + ai,r)sk−1ui �ig1}.

{(�ig1,ai,1�ig1,ai,2�ig1,...,ai,r�ig1),asui ,�i,pkui}
←←←

Calculate: {i = ai,1�ig1 +
ai,2�ig1 + ... + ai,r�ig1, as′ui =
H2(ai,1�ig1||ai,2�ig1||...||ai,r�ig1)}.
Verify:
{as′ui

?
= asui , e(�i, pkui)

?
= e(i, g1)}.

Calculate: equation (3).
Verify: equation (4).
Calculate: {(Ti,0 = �ig1, Ti,1 = ti,1Ti,0,
Ti,2 = ti,2Ti,0, ..., Ti,r = ti,rTi,0),HTi =
H2(Ti,1||Ti,2||...||Ti,r), �i,s =
SK−1

A (ti,1 + ti,2 + ... + ti,r)g1}.
{(Ti,1,Ti,2,...,Ti,r),HTi ,�i,s,PKA}
←←→

Calculate: {H′Ti = H2(Ti,1||Ti,2||...||Ti,r),
"i = �−1i Ti1 + �

−1
i Ti,2 + ... + �

−1
i Ti,r =

(ti,1 + ti,2 + ... + ti,r)g1}.

Verify:{H′Ti
?
= HTi , e(�i,s, PKA)

?
= e("i, g1)}.

Calculate: {(Ki,1 = �−1i Ti,1, Ki,2 =
�−1i Ti,2, ..., Ki,r = �−1i Ti,r = ti,rg1), sigui =
sk−1ui "i}.

{sigui ,pkui}
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

Verify: e(sigui , pkui)
?
= e(PKA, �i,s).

Successful authentication.

5.4 Solution for secure data sharing
5.4.1 Key exchange and data encryption storage
The brief encryption process is as follows.
Encryption: For any endpoint ui that wants to share resources, first determine the scope of the sharing. Suppose ui wants to

share datam to terminals that have attribute combination a1, a2 or a1, a3, then compute the attribute weights v1, v2, corresponding
to these two combinations respectively, and randomly select the encryption key r to encrypt the resource into the ciphertext Cm.
The encryption function is fCm = (x − v1)(x − v2) + r. After expanding the encryption function, the coefficients are uploaded
to the secure data sharing platform.
Each legitimate terminal in the system can store its data on the cloud server for data sharing. Confidential data need to be

encrypted before uploading. The access rights to cryptographic resources are set by the data provider according to the level of
confidentiality. Only members with the same or higher access rights to the resource can download and decrypt the cryptographic
resource.
A user can define multiple access policies. Figure 3 represents that user uj defines access policies Γuj,1,Γuj,2,⋯ ,Γuj,k for

each of owned resources m1,uj , m2,uj ,⋯ , mk,uj in order to satisfy different users with different resources. Only users who match

10

the authorization set can access the resource. Each access policy can contain multiple combinations, and a resource viewer only
needs to satisfy one of the permission combinations to be recognized as a user with that resource’s authorization set.
Suppose that the data provider uj(1 ≤ j ≤ n) wants to share its resource to terminals with specific attributes. uj owns the

set of attributes attrj = (aj,1, aj,2, ..., aj,r) and the corresponding set of attribute authority values {Tj,1, Tj,2, ..., Tj,r}. Before uj
shares its data, it encrypts the shared data, and then uploads the shared ciphertext resources to the Edge Server. The procedure
of calculating the key and storing the ciphertext is shown in Figure 4, and the steps are as follows:

Secure data

sharing

platform

①Query

table Attribute weight
②Define

access policy Access policy

③Calculate attribute

key combination
Attribute key

combination

④Select

Encryption Key

,1 ,2 ,{ , ,..., }j j j rT T T
,j ku

, ,1 , ,2 , ,{ , ,..., }
j k j k jKu Ku Ku kf f f

⑤Construct

polynomial

⑥Encrypt resource

and keyword

⑦Sign Signature

,j musig

⑦Sign Signature

,j musig

⑧Upload ciphertext

resource

⑨Verify and

write to

Encryption key

,j kur
Encryption key

,j kur

Polynomial

cryptographic function

,k u j
Cmf

Polynomial

cryptographic function

,k u j
Cmf

Ciphertext Keywords

, , ,1 , ,{ , , , }
jk u j k j km

Ciphertext Keywords

, , ,1 , ,{ , , , }
jk u j k j km

Data sharer jumData sharer jumData sharer jum

Figure 4 Data storage process.

1) uj queries the terminal authentication information (Table 2) and set the attribute weights for accessing this resource.
Assume that uj sets the attribute weight set for accessing data mk,uj ∈ (is the plaintext space) as {Tj,1, ..., Tj,r}. The set of
keywords corresponding to this data is {wj,k,1, wj,k,2, ..., wj,k,�}. The access control policy Γuj,k has �(1 ≤ � ≤ r) combinations
of attribute weights to access the data. (where k denotes the access policy for the kth shared data of uj .) The combination of
attribute weights is : fT ui,k,1 , fT ui,k,2 , ..., fT ui,k,�. According to the combination of � attribute weights, uj calculates the combination
of attribute keys fKuj,k,1 , fKuj,k,2 , ..., fKuj ,k,� corresponding to each combination of attribute weights respectively.
For example: The attribute permission policy uj set to access data mk,uj is Γuj,k =

(Tj,1 or Tj,2) and Tj,3and (2 of (Tj,4, Tj,5, Tj,6)). According to the access control policy (Figure 5),
there are six attribute weight combinations for accessing this data: (Tj,1 and Tj,3 and Tj,4 and Tj,5),
(Tj,1 and Tj,3 and Tj,4 and Tj,6), (Tj,1 and Tj,3 and Tj,5 and Tj,6), (Tj,2 and Tj,3 and Tj,4 and Tj,5), (Tj,2 and Tj,3 and Tj,4 and Tj,6)
and (Tj,2 and Tj,3 and Tj,5 and Tj,6). The combinations of the six attribute weights are:

fT uj,k,1 = (Tj,1 and Tj,3 and Tj,4 and Tj,5)

= Tj,1 + Tj,3 + Tj,4 + Tj,5
= �jtj,1g1 + �jtj,3g1 + �jtj,4g1 + �jtj,5g1,

fT uj,k,2 = (Tj,1 and Tj,3 and Tj,4 and Tj,6)

= Tj,1 + Tj,3 + Tj,4 + Tj,6
= �jtj,1g1 + �jtj,3g1 + �jtj,4g1 + �jtj,6g1,

⋯

fT uj,k,6 = (Tj,2 and Tj,3 and Tj,5 and Tj,6)

= Tj,2 + Tj,3 + Tj,5 + Tj,6
= �jtj,2g1 + �jtj,3g1 + �jtj,5g1 + �jtj,6g1.

11

The attribute key combination corresponding to the combination of attribute weights is denoted as:

fKuj,k,1 = (Kj,1 and Kj,3 and Kj,4 and Kj,5)

= tj,1g1 + tj,3g1 + tj,4g1 + tj,5g1,

fKuj,k,2 = (Kj,1 and Kj,3 andKj,4 and Kj,6)

= tj,1g1 + tj,3g1 + tj,4g1 + tj,6g1,

⋯

fKuj,k,6 = (Kj,2 and Kj,3 and Kj,5 and Kj,6)

= tj,2g1 + tj,3g1 + tj,5g1 + tj,6g1.

OR

AND

OF
(2,3)

,1jA ,2jA

,3jA

,4jA ,5jA ,6jA

Figure 5 Resource mk,uj access policy tree.

2) uj chooses a random number ruj,k ∈ ℤ∗q , calculates vj,k,1 = H2(fKuj,k,1), vj,k,2 = H2(fKuj,k,2),⋯ , vj,k,� = H2(fKuj,k,�), and
constructs a polynomial encryption function fCmk,uj = (x − vj,k,�)(x − vj,k,�−1)⋯ (x − vj.k.1) + ruj,k . Assume that the expanded
polynomial is fCmk,uj = x� − bj,k,�−1x�−1... − bj,k,1x1 − bj,k,0. uj computes the ciphertext mk,uj = mk,uj ⊕ ruj,k and the set of
ciphertext keywords {j,k,1 = wj,k,1 ⊕ ruj,k ,j,k,2 = wj,k,2 ⊕ rui,k ,⋯ ,j,k,� = wj,k,� ⊕ ruj,k} of the shared data.
3) uj calculates the signature siguj,m = sk−1uj H1(mk,uj ||j,k,1||j,k,2||...|| j,k,� ||bj,k,�−1||bj,k,�−2||...||bj,k,1||bj,k,0||Γuj,k)g1

of the message, and sends the message {mk,uj , (j,k,1,j,k,2, ...,j,k,�), (bj,k,�−1, bj,k,�−2, ..., bj,k,1, bj,k,0),Γuj,k, siguj,m} to ES.
4) After ES receives the message sent by uj , it calculates ℎmuj = H1(mk,uj ||j,k,1||j,k,2||...||j,k,� ||bj,k,�−1||bj,k,�−2||...

||bj,k,1||bj,k,0||Γuj,k)g1. The identity of uj and the messages it sends are verified by equation e(siguj,m , pkuj) = e(ℎmuj , g1). If the
authentication passes, ES returns a successful storage message to the user and writes the information to the data sharing platform
(as shown in Table 4). If the authentication fails, the ES returns "Storage failed".

Table 4 Secure data sharing platform.

Terminal u1 u2 . . . un
Validity yes yes . . . yes
Public Key pku1 pku2 . . . pkun
Shared Ciphertext Data Hash H1(mk,u1) H1(mk,u2) . . . H1(mk,un)
Ciphertext Keyword 1,k,1,1,k,2, ...,1,k,�) 2,k,1,2,k,2, ...,2,k,�) . . . n,k,1,n,k,2, ...,n,k,�)
Encryption function coefficient (b1,k,�−1, b1,k,�−2, ..., b1,k,0) (b2,k,�−1, b2,k,�−2, ..., b2,k,0) . . . (bn,k,�−1, bn,k,�−2, ..., bn,k,0)
Attribute weight {T1,1, T1,2, T1,3} {T2,1, T2,2, ..., T2,9} . . . {Tn,1, Tn,2, ..., Tn,r}
Access Control Policy Γu1,k Γu2,k . . . Γun,k

5.4.2 Download and access to shared resources
The brief decryption process is as follows.
Decryption: The terminal uj that owns the attributes a1, a2 is eligible for resource m access. Based on the owned attributes,

uj can calculate the attribute key combination v1. Then uj constructs the function based on the coefficients of the encryption
function on the secure data sharing platform. The decryption key r is obtained by substituting v1 into the equation.
If any data requestor ui(1 ≤ i ≤ n) in the system needs to search and download the shared data on the cloud platform, the

process required to access the data is shown in Figure 6. The details are as follows:

12

①Verify identity Data item with

access rights

②Constructs

 polynomial function Decryption key

,j kur

Viewer of data mViewer of data m
iuViewer of data m
iuViewer of data m
iu

⑦Decrypt ciphertext

resource
Plaintext

resource

⑦Decrypt ciphertext

resource
Plaintext

resource
, jk um

⑦Decrypt ciphertext

resource
Plaintext

resource
, jk um

Obtained ciphertext

resource

Obtained ciphertext

resource
, jk um

Obtained ciphertext

resource
, jk um

⑤Validate

attribute

④Analyze keyword

relevance
Confirmed download

ciphertext

Confirmed download

ciphertext

, jk um

④Analyze keyword

relevance
Confirmed download

ciphertext

, jk um

③Encrypt requirement

keyword
Ciphertext

requirement keyword

, ,1 , ,2 , ,{ , ,..., }i k i k i k

③Encrypt requirement

keyword
Ciphertext

requirement keyword

, ,1 , ,2 , ,{ , ,..., }i k i k i k

⑥Send download

link of , jk um

⑥Send download

link of , jk um

Figure 6 Data access process.
1) Before obtaining access rights to the data items, ui needs to prove to the ES that it is a legitimate terminal. ui finds data

items with access rights based on the set of attribute weights and access control policies of shared data on the data sharing
platform. The polynomial function is constructed through the cryptographic function coefficients in the data items. With the
access control policy and attribute weights on the platform, the attribute key combination and its hash value can be calculated.
By substituting the hash into the polynomial function, the decryption key of the shared data can be calculated by ui.
For example, ui queries the data sharing platform and finds that it has access to data mk,uj (which was uploaded by uj). ui

constructs a polynomial function fCmk,uj = x� − bj,k,�−1x�−1... − bj,k,1x1 − bj,k,0 based on the encryption function coefficients
(bj,k,�−1, bj,k,�−2, ..., bj,k,1, bj,k,0) of mk,uj . Based on the attribute weight set {Tj,1, ..., Tj,r} of the shared data and the access
control policy Γuj,k, ui can calculate the corresponding attribute key combination fKui,2 = (Ki,1 and Ki,3 and Ki,4 and Ki,6) =
ti,1g1 + ti,3g1 + ti,4g1 + ti,6g1. (Assume that ui only satisfies this access control policy.) The hash values vi,k,2 = H2(fKui,k,2)
and fCmk,uj (vi,k,2) = ruj,k can be computed by ui. (Note: Because Ki,1 = Kj,1, Ki,3 = Kj,3, Ki,4 = Kj,4, Ki,6 = Kj,6, therefore
vi,k,2 = vj,k,2.) That is, ui can calculate the decryption key ruj,k for the shared data.
2) Assume that the set of plaintext keywords for the data demanded by ui is {wi,k,1, wi,k,2, ..., wi,k,�}. By using the decryption

key ruj,k of the shared data, ui calculates the ciphertext keyword {i,k,1 = wi,k,1 ⊕ ruj,k ,i,k,2 = wi,k,2 ⊕ rui,k , ...,i,k,� =
wi,k,�⊕ruj,k} of its searched ciphertext data, and compares it with the keyword (j,k,1,j,k,2, ...,j,k,�) of mk,uj . Data relevance
is divided according to the number of keywords corresponding. If most of the ciphertext keywords are the same, then mk,uj can
be downloaded by ui.
3) The ciphertext resource can only be downloaded by ui after passing the attribute permission check of ES. After calcu-

lating the hash value H′Ti = H2(Ti,1||Ti,2||...||Ti,r) of the attribute weights and its signature sigui,m = sk−1ui H
′
Tig1, the message

{H1(mk,uj), (Ti,1, Ti,2, ..., Ti,r),H
′
Ti , sigui,m , ui, uj} is sent by ui to ES. After ES receives the message, it calculates H′′Ti = H2(Ti,1

||Ti,2||...||Ti,r) based on the attribute weights in the terminal authentication information table, and checks whether H′′Ti and H
′
Ti

are equal. If they are equal, then the identity of ui is verified by computing the equation e(sigui,m , pkui) = e(H
′
Ti , g1). The Cloud

compares the received attribute weight information (Ti,1, Ti,2, ..., Ti,r) with ui’ attribute weights in the data sharing platform. If
the comparison passes, the ciphertext data link is encrypted and sent to ui. According to the link mk,uj can be downloaded
by ui, and the ciphertext hash value can be calculated. If the calculated ciphertext hash is the same as that on the data sharing
platform, mk,uj can be decrypted into plaintext mk,uj = mk,uj ⊕ ruj,k by the ruj,k .

5.4.3 Application cases
End-Edge-Cloud Vehicles, road-side units (RSU), and the Cloud are needed to work together in the Internet of vehicles (IoV)
application scenario. The computational power of vehicles is very limited and cannot load all the computational workload.
RSU is only capable of undertaking a small number of calculations. And the Cloud has many servers that can take up a
larger amount of computing. The distance between vehicles and the Cloud is distant and the communication delay is long. By
converting vehicle-to-cloud communication into vehicle-to-RSU and cloud-to-RSU communication, the communication delay
can be greatly reduced.

13

End-Cloud In networks with End-Cloud architecture, such as Amazon Cloud Services, a large number of calculations
performed at the terminal may take longer to compute due to limited computing power. If the computation is moved to the cloud,
it requires the terminal to communicate with the remote cloud over long distances, which will increase communication latency.
Therefore, we recommend edge-cloud collaborative architecture for such cases. As shown in Figure 7. Terminals can move a lot
of computation to Edge servers closer to them, which will greatly reduce communication latency as well as alleviate the lack of
computing power.

Competition for resources

Longer communication delay

Easily exposed privacy

Distribute reasonable

Shorter communication delay

More secure privacy

Cloud

End

Edeg

Services

End-Cloud End-Edge-Cloud

Figure 7 End-Cloud architecture and End-Edge-Cloud architecture.

6 MODEL SECURITY ANALYSIS

Correctness and security analysis are essential for a full evaluation of the model. In this section, the correctness of the above
scheme is first analyzed, and then the security of the model is explained.

6.1 Correctness analysis
Theorem 1 Any honest terminal uℎonest can be authenticated by the Cloud. If Equation e(Termuℎonest ,Huℎonest) = e(pkuℎonest , g1)
holds, then terminal uℎonest can be recognized by the Cloud as a legitimate user, and its public/private key pair (skuℎonest , pkuℎonest)
will be legitimized.
Proof Let’s assume that Cloud receives the message sent by terminal uℎonest as {PKuℎonest , pkuℎonest}, according to the received

message Termuℎonest = SK
−1
uℎonest

PKA can be calculated. Since the Cloud has the ID information of the terminals in the system, it
can calculate Huℎonest = H1(iduℎonest)g1. By the property of bilinear mapping we have:

e(Termuℎonest ,Huℎonest)
= e(SK−1

uℎonest
PKA,H1(iduℎonest)g1)

= e(suℎonestg1,H1(iduℎonest)g1)
= e(H1(iduℎonest)suℎonestg1, g1)
= e(pkuℎonest , g1)

Therefore, the above equation can be used to verify the identity of the terminal uℎonest and to obtain a mutually agreed
public/private key pair (skuℎonest , pkuℎonest).
Theorem 2 Legitimate user ulegal can verify his attributes attrulegal = {alegal,1, alegal,2, ..., alegal,r}(1 ≤ r ≤ R) with the

Cloud. First, the identity of ulegal needs to be determined by the equation e(�legal, pkulegal) = e(legal, g1). If this equation holds,
the corresponding attribute weights are returned by the Cloud to ulegal. Then ulegal verifies the identity of Cloud in the reverse
direction by equation e(�legal,s, g1) = e("legal, PKA). Finally, if equation e(sigulegal , pkulegal) = e(PKA, �legal,s) holds, the attribute
weights and other information will be saved to the cloud service platform.

14

Proof Because �legal = (alegal,1 + alegal,2 + ... + alegal,r)sk−1ulegal�legalg1 and legal = alegal,1�legalg1 + alegal,2�legalg1 + ... +
alegal,r�legalg1, by the property of bilinear mapping we get:

e(�legal, pkulegal)

= e((alegal,1 + alegal,2 + ... + alegal,r)sk−1ulegal�legalg1, skulegalg1)

= e((alegal,1 + alegal,2 + ... + alegal,r)�legalg1, g1)
sk−1ulegal skulegal

= e(legal, g1)

Because "legal = (tlegal,1 + tlegal,2 + ... + tlegal,r)g1 and �legal,s = SK−1
A (tlegal,1 + tlegal,2 + ... + tlegal,r)g1, by the property of

bilinear mapping we get:

e(�legal,s, PKA)
= e(SK−1

A (tlegal,1 + tlegal,2 + ... + tlegal,r)g1, SKAg1)
= e((tlegal,1 + tlegal,2 + ... + tlegal,r)g1, g1)
= e("legal, g1)

Because sigulegal = sk
−1
ulegal

"legal, by the property of bilinear mapping we get:

e(sigulegal , pkulegal)

= e(sk−1ulegal"legal, skulegalg1)

= e(sk−1ulegal (tlegal,1 + tlegal,2 + ... + tlegal,r)g1, skulegalg1)

= e(PKA, �legal,s)

As a result, legitimate users can be authenticated by the Cloud for the attribute, and receive the corresponding attribute
privileges.
Theorem 3 User usℎarer can upload shared resources to the Cloud Server. ES checks equation e(sigusℎarer,m , pkusℎarer) =

e(ℎmusℎarer , g1). If the equation holds, the resource is shared successfully and stored encrypted in the data sharing platform.
Proof Since sigusℎarer,m = sk

−1
usℎarer

H1(mk,usℎarer ||sℎarer,k,1||sℎarer,k,2|| ...||sℎarer,k,� ||bsℎarer,k,�−1||bsℎarer,k,�−2||...||bsℎarer,k,1
||bsℎarer,k,0||Γusℎarer,k)g1 , ℎmusℎarer = H1(mk,usℎarer ||sℎarer,k,1|| sℎarer,k,2||...||sℎarer,k,� ||bsℎarer,k,�−1||
bsℎarer,k,�−2||...||bsℎarer,k,1||bsℎarer,k,0||Γusℎarer,k)g1, it follows from the properties of bilinear mappings:

e(sigusℎarer,m , pkusℎarer)

=e(sk−1usℎarerH1(mk,usℎarer ||sℎarer,k,1||sℎarer,k,2||...||sℎarer,k,� ||

bsℎarer,k,�−1||bsℎarer,k,�−2||...||bsℎarer,k,1||bsℎarer,k,0||Γusℎarer,k)g1, skusℎarerg1)
= e(H1(mk,usℎarer ||sℎarer,k,1||sℎarer,k,2||...||sℎarer,k,� ||bsℎarer,k,�−1||

bsℎarer,k,�−2||...||bsℎarer,k,1||bsℎarer,k,0||Γusℎarer,k)g1, g1)
= e(ℎmusℎarer , g1)

Therefore, legitimate users can upload shared resources to ES.
Theorem 4 Resources can be downloaded by users who meet the access policy. If the access policy Γuuser,k of resource

mk,uuser is satisfied by uuser, then the user can calculate the decryption key of resource and obtain plaintext resource mk,uuser .
Equation e(siguuser,m , pkuuser) = e(H′

Tuser
, g1) verifies that the user is considered a legitimate user. Then the plaintext resource can

be computed using the decryption key and the downloaded ciphertext resource.
Proof Since siguuser,m = sk−1uuserH

′

Tuser
g1 and H′

Tuser
= H2(Tuser,1||Tuser,2|| ...||Tuser,r), we get from the property of bilinear

mapping:

e(siguuser,m , pkuuser)

= e(sk−1uuserH
′

Tuser
g1, skuuserg1)

= e(H′

Tuser
, g1)

15

Because mk,uuser = mk,uuser ⊕ ruuser,k , then:

mk,uuser ⊕ ruuser,k
=mk,uuser ⊕ ruuser,k ⊕ ruuser,k
=mk,uuser

Therefore, users who have access rights to the resource can download and decrypt the resource.

6.2 Security analysis
Theorem 5 Resources with higher access privileges cannot be accessed by users with lower access privileges. For a resource
mk,uj that requires access permission �j,s, it cannot be accessed if user ui has permission �i,s less than �j,s, where i, j ∈ [1, n].
Proof Assume that access to resource mk,uj requires attribute weights (Tj,1 , Tj,2 , ..., Tj,k) . ui has an attribute with weight

(Ti,1 , Ti,2 , ..., Ti,k−1) and wants to access resource mk,uj .
ui calculates (�ig1, ai,1�ig1, ai,2�ig1, ..., ai,k−1�ig1), asui = H2(ai,1�ig1 ||ai,2 �ig1||...||ai,k−1�ig1) and �i = (ai,1 + ai,2 + ... +

ai,k−1)sk−1ui �ig1. After the properties of ui are verified by the Cloud, their attribute weights are calculated and assigned to authority
levels S. The access policy for mk,uj is Γuj,k (Assuming only this access control policy is available, the corresponding attribute
key is fKuj,k .). Polynomial functions cannot be constructed by ui because the cryptographic function coefficients are not available
from the shared platform. And using the set of attribute weights (Ti,1 , Ti,2 , ..., Ti,k−1) and access control policy Γui,k, fKuj,k
cannot be computed by ui.
Theorem 6 The model is resistant to man-in-the-middle attacks. In the process of passing messages among entities, attacker

maybe intercept the message and send altered message to original recipient. The tampered information can be identified by the
original recipient. Attacker cannot recover private data by stealing the contents of the communication.
Proof Suppose the message {(�ig1, ai,1�ig1, ai,2�ig1, ..., ai,r�ig1), asui , �i, pkui} sent by ui to the Cloud is intercepted by an

attacker, who removes ai,r�ig1 from it and sends the altered message to the Cloud. The Cloud calculates i = ai,1�ig1+ai,2�ig1+
... + ai,r−1�ig1 and as′ui = H2(ai,1�ig1||ai,2�ig1||...|| ai,r−1�ig1) after receiving the message and compares whether as′ui and asui
are equal. Equation e(�i, pkui) = e(i, g1) also needs to be verified. Since asui = H2(ai,1�ig1||ai,2�ig1 ||...||ai,r�ig1) ≠ as′ui , and:

e(�i, pkui)
= e((ai,1 + ai,2 + ... + ai,r)sk−1ui �ig1, skuig1)

= e(g1, g1)
(ai,1+ai,2+...+ai,r)sk−1ui �iskui

= e(g1, g1)
(ai,1+ai,2+...+ai,r)�i

≠ e(i, g1)

Therefore, the tampered information can be recognized by the Cloud and other requests from ui can be denied to achieve
anti-man-in-the-middle attack.
Theorem 7 User ui with attribute {ai,1, ai,2, ..., ai,r}(1 ≤ r ≤ R) can only obtain the attribute key (Ki,1 , Ki,2 , ..., Ki,r)

corresponding to these r attributes. The attribute key corresponding to the attribute that does not have can not be obtained by ui.
Proof Suppose the resource user ud wants to decrypt requires that the attribute ad,k must be present. ud has no attribute ad,k

and user ui has attribute ai,k. (Where ad,k = ai,k.)
(1) If information Ti,k = ti,kTi,0 sent by the Cloud to user ui is successfully intercepted by user ud , where Ti,0 = �ig1. Need

to have �i for the ud to calculate the attribute key Ki,k = �−1i Ti,k. �i is a private parameter of ui (not known to any terminal or
device other than the user itself), so the attribute key corresponding to attribute ad,k cannot be directly calculated by ud . That is,
the decryption key of the data cannot be calculated.
(2) If ud also intercepts the information {�ig1, ai,k�ig1} sent to the Cloud by ui. At this time, it seems that ud can combine �ig1

and Ti,k = ti,kTi,0 to calculate the attribute keyKi,k. Let �ig1 be ag1, and let Ti,k be abg1, soKi,k = �−1i Ti,k=(ab∕a)g1. According
to the assumption of Inv-CDHP, the attribute key Ki,k is difficult to be computed by ud . Therefore, the terminal cannot obtain
the attribute key of unowned attributes and cannot participate in resource sharing with unknown attributes.

7 MODEL PERFORMANCE ANALYSIS
Another important evaluation of a protocol is its performance. In this section, we compare and analyze the scheme proposed in
[32-34] and this paper in terms of computational complexity and computational time overhead.

16

7.1 Computational complexity analysis
Let Tℎ be a hash operation, Tmul be a scalar multiplication operation, Texp be an exponential operation, Tinv be a modulo inverse
operation, Tpa-ecc be an point addition operation over elliptic curve, Tsm−ecc be a point multiplication operation over elliptic curve,
and Tbp be a bilinear pairing operation. Because of the short time required for heterogeneous and additive operations compared
to Texp and Tbp calculations, they are neglected. Let there are n users participating in ciphertext resource sharing. For example,
user ui who uploads ciphertext resources has r attributes and � combinations of attribute weights.
The scheme proposed in this paper requires the computation of skui , PKui and pkui in the registration phase, which consists

of one hash operation, one scalar multiplication and two addition operations on elliptic curves. In the key generation phase, it is
necessary to calculate the intermediate parameters (�ig1, ai,1�ig1, ai,2�ig1, ..., ai,r�ig1), �i and the signature asui . After receiving
the message from the Cloud, H′Ti and "i are computed and equation e(�i,s, PKA)=e("i, g1) is verified. Then (Ki,1, Ki,2, ..., Ki,r)
and signature sigui were calculated. Therefore, this stage uses 2 hash operations, 1 scalar multiplication operation, 2(r+1)modulo
inverse operations, (r+2) point multiplication operations over elliptic curve, and 2 bilinear pairing operations. In the encryption
phase, the polynomial needs to be expanded and the signature siguj,m of the message needs to be computed, which requires 1 hash
operation, (�−1) scalar multiplication operations, 1 modulo inverse operation and 1 point multiplication operation over elliptic
curve. In the decryption phase, the hash value of the attribute key combination is calculated and substituted into a polynomial
function to derive the decryption key for the ciphertext data. H′Ti and signature sigui,m need to be calculated when authenticating
with ES. After the resource is downloaded, the ciphertext hash is calculated again and compared with the value of the data
sharing platform to ensure that the ciphertext has not been tampered with. In this process, 3 hash operations, � exponential
operations, 1 modulo inverse operation and 1 point multiplication operation over elliptic curve are used.

Table 5 Computational complexity of the four schemes.

Registration stage Key generation stage Encryption stage Decryption stage

Li et al. 32 (n + 5)Texp + Tbp (3 + 2r)Texp (n + 3 + 2r)Texp (n+ r)Texp + (n+ 2r+ 2)Tbp
Deng et al. 33 Tpa−ecc + Tbp (3r + 4)Texp (5r + 3)Texp rTexp + (3r + 1)Tbp
Xue et al. 34 (2r + 4)Texp + Tbp 3rTexp + rTbp (4r + 1)Texp + Tbp 3rTbp
Our protocol Tℎ+Tmul+2Tsm−ecc 2Tℎ+Tmul+2(r+1)Tinv+

(r + 2)Tsm−ecc + 2Tbp
Tℎ + (�− 1)Tmul + Tinv +
Tsm−ecc

3Tℎ + �Texp + Tinv + Tsm−ecc

The results of the analysis of the computational complexity of the four scenarios are shown in Table 5, where n denotes the
number of terminals, r denotes the number of network attributes, and � denotes the number of attribute access policies. From an
overall perspective, the sharing scheme proposed in this paper is the least computationally intensive, followed by Li et al. 32 and
Deng et al. 33 . Xue et al. 34 is the most complex. In the registration phase, good performance results are achieved in Xue et al. 34

only when the user’s attributes are sufficiently few,since the computational complexity is proportional to the number of attributes
of the terminal. In the key generation stage, this paper uses a simpler heteroskedastic operation in the Cloud to authenticate the
attributes of the terminal, which greatly reduces the computational complexity. The literature [32-34] continue to use Texp and Tbp
with high computational complexity. In the encryption stage, Deng et al. 33 has the most complicated calculation, where for each
additional attribute, a corresponding increase of 5Texp is applied. Followed by Xue et al.

34 and Li et al. 32 . The scheme proposed
in this paper is the easiest to compute, and the main computational comes from the expansion of the encryption polynomial.
In the decryption phase, the model described in this paper still has the simplest computational degree, followed by Xue et al. 34

and Li et al. 32 . Deng et al. 33 has the most complex computations. It is mainly because Deng et al. 33 contains rTexp as well as
(3r + 1)Tbp, which greatly increases the complexity of the calculation.

7.2 Calculation time overhead analysis
To meet the application of resource-constrained scenarios, we choose to analyze the time overhead of each operation in a
terminal environment with weak computing power. This paper uses the JPBC cryptographic library (JPBC-2.0.0) in the Java
programming language and experiments on the Android terminal. The terminal configuration is described in Table 6. Table 7
shows the experimental data for the seven types of operations consuming longer time.

17

Table 6 Experimental configuration.

Device name : HONOR 60
Android version : 12

Processor : Qualcomm Snapdragon 778G
RAM : 8.0 GB + 2.0 GB (HONOR RAM Turbo)

Internal storage : 256 GB
Kernel version : 5.4.147-qgki-g45a99f875b89

android@localhost #1
Tue Jan 3 20:15:59 CST 2023

Table 7 Time consumption of various operations (unit: ms).

Operation type Time consumption

Tbp Bilinear pairing operation Tbp ≈ 12.0577
Texp Exponential operation Texp ≈ 9.9311
Tsm−ecc Point Multiplication operation over elliptic curve Tsm−ecc ≈ 0.0605
Tpa-ecc Point addition operation over elliptic curve Tpa-ecc ≈ 0.0552
Tinv Modular-inversion operation Tinv ≈ 0.0146
Tmul Scalar multiplication operation Tmul ≈ 0.0009
Tℎ Hash operation Tℎ ≈ 0.0005

The total time spent on each operation is obtained by multiplying the time and number of times used for that operation.
The sum of the time consumed by all operations is the total time consumed by the calculation. For the purpose of analysis,
experiments are conducted for the ordered set of attributes Attr with numbers 2, 4, 8 and 16. The number of attribute access
policies � and terminals n grows linearly with the number of attributes. With the data in Tables 5 and 6, the time overheads of
each of the four phases are compared and analyzed. The total time we show in the manuscript in Figures 8-11.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of attribute

0

50

100

150

200

250

300

350

400
Li et al.

Deng et al.

Xue et al.

Our protocol

Figure 8 Comparison of computational time consumption of
four schemes in the registration phase.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of attribute

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700
Li et al.

Deng et al.

Xue et al.

Our protocol

Figure 9 Comparison of computational time consumption of
four schemes in the key generation phase.

As shown in Figure 8, the proposed scheme consumes the least amount of computation time during the registration phase,
because only 2Tsm−ecc , 1Tmul and 1Tℎ are used in our protocol. Followed by Deng et al. 33 and Li et al. 32 . Since Xue et al. 34

marks the groups of users by different master keys, (2r + 4) Texp and 1 Tbp are consumed in the process. It does not have good
performance in this phase compared to other schemes. And as the number of terminal attributes increases, longer computation
time is required by Xue et al. 34 .
Figure 9 shows the comparison of computation time of the four schemes in the key generation phase. In this phase, our scheme

uses exclusive-OR to authenticate attributes of the terminal. The exclusive-OR operations in cryptography do not generate

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of attribute

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850
Li et al.

Deng et al.

Xue et al.

Our protocol

Figure 10 Comparison of computational time consumption
of four schemes in the encryption phase.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of attribute

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750
Li et al.

Deng et al.

Xue et al.

Our protocol

Figure 11 Comparison of computational time consumption
of four schemes in the decryption phase.

rounding compared to the quadratic operations (addition, subtraction, multiplication and division), and the computations can
be performed in parallel more efficiently among various parts. The received information is confirmed by 2Tbp. Therefore, the
calculation consumes the least amount of time. Li et al. 32 is in the middle of the calculation time compared to other schemes,
requiring a total of (3+2r)Texp.When the number of attributes of the terminal is less than 4, Xue et al. 34 has less time consumption
than Deng et al. 33 . When the number of attributes owned by the terminal is more than or equal to 4, the time consumption of
Deng et al. 33 is better than Xue et al. 34 . The reason is that the number of operations in Xue et al. 34 is related to the number of
attributes r, which requires 3rTexp as well as rTbp.
Computing time of the four schemes in encryption and decryption phases is shown respectively in Figure 10 and Figure 11.

It is easy to see that the computational time overhead of the proposed scheme is the smallest in these two stages. Because we
introduce polynomials in the encryption and decryption algorithms, which are attribute independent and the time consumed
does not increase with the number of attributes. Deng et al. 33 is the largest, because the bilinear pairing operation is used in
encrypting each resource, which requires (5r + 3)Texp. When decrypting resources, a large amount of Tbp is also required, and
these bilinear pairing operations also include exponential operations, which increases the computation time significantly. A total
of (3r + 1)Tbp and rTexp are required. In the encryption phase, (4r + 1)Texp and 1Tbp are required by Xue et al. 34 , while only
(n+ 2r+ 3)Texp is required by Li et al.

32 , so the computational time overhead of Li et al. 32 is less than that of Xue et al. 34 . In the
decryption phase, Xue et al. 34 is more advantageous than Li et al. 32 when the number of attributes is less than 12 because Li et
al. 32 also needs more exp operations.

8 CONCLUSIONS
In edge-cloud collaborative environment, a group key exchange and secure data sharing for federated learning is proposed. The
scheme secures the transmission of model parameters between IoT terminals during the federated learning process. The model
legitimizes public/private key of the terminal through key self-verification algorithm, which greatly guarantees the security
of terminal key. For terminal identity leakage, an attribute-based cryptographic method is given for authentication, that is the
terminal provides ciphertext attributes to the cloud server and obtains access rights corresponding to the attributes. The security
of sharing the parameters of each model in the federated learning process is guaranteed. Terminal self-adaptive is achieved by
defining access structures to meet shared resource access rights. In the condition of satisfying the access authority of model
parameters, each terminal stores and downloads the shared ciphertext model parameters through the edge cloud server for
federated learning. According to the experimental results, this scheme has lower computational complexity and less computation
time. In the future, our team will continue to optimize this model and research deeply in the direction of ciphertext search.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of China under Grant (No. 61971380), and the key technologies
R&D Program of Henan Province (No. 232102211054, 232102211003, 222102210025), and the Key scientific research project

19

plans of higher education institutions in Henan Province (Nos. 23A520012, 22A520047, 21zx014), and Henan Postgraduate
Joint Training Base Project (No. YJS2022JD08).

Financial disclosure
None reported.

Conflict of interest
The authors declare no potential conflict of interests.

References

1. Hazra A, Adhikari M, Amgoth T, Srirama SN. Intelligent service deployment policy for next-generation industrial edge
networks. IEEE Transactions on Network Science and Engineering 2021; 9(5): 3057–3066.

2. Hazra A, Amgoth T. Ceco: Cost-efficient computation offloading of iot applications in green industrial fog networks. IEEE
Transactions on Industrial Informatics 2021; 18(9): 6255–6263.

3. Su T, Shao S, Guo S, Lei M. Blockchain-based internet of vehicles privacy protection system. Wireless Communications
and Mobile Computing 2020; 2020: 1–10.

4. Sun H, Tan Ya, Zhu L, Zhang Q, Li Y, Wu S. A fine-grained and traceable multidomain secure data-sharing model for
intelligent terminals in edge-cloud collaboration scenarios. International Journal of Intelligent Systems 2022; 37(3): 2543–
2566.

5. Zhang Y, Liang Y, Jia B, Wang P, Zhang X. A blockchain-enabled learning model based on distributed deep learning
architecture. International Journal of Intelligent Systems 2022; 37(9): 6577–6604.

6. Pashamokhtari A. PhD forum abstract: Dynamic inference on IoT network traffic using programmable telemetry and
machine learning. In: IEEE. ; 2020: 371–372.

7. Lo SK, Lu Q, Paik HY, Zhu L. FLRA: A reference architecture for federated learning systems. In: Springer. ; 2021: 83–98.

8. Ma J, Naas SA, Sigg S, Lyu X. Privacy-preserving federated learning based on multi-key homomorphic encryption.
International Journal of Intelligent Systems 2022.

9. Lin Y, Zhang C. A Method for Protecting Private Data in IPFS. In: IEEE. ; 2021: 404–409.

10. Jia B, Zhang X, Liu J, Zhang Y, Huang K, Liang Y. Blockchain-enabled federated learning data protection aggregation
scheme with differential privacy and homomorphic encryption in IIoT. IEEE Transactions on Industrial Informatics 2021;
18(6): 4049–4058.

11. Yang Y, Wei L, Wu J, Long C. Block-smpc: A blockchain-based secure multi-party computation for privacy-protected data
sharing. In: ; 2020: 46–51.

12. Rao L, Xie Q, Zhao H. Data Sharing for Multiple Groups with Privacy Preservation in The Cloud. In: IEEE. ; 2020: 1–5.

13. Wang N, Cai Y, Fu J, Chen X. Information privacy protection based on verifiable (t, n)-Threshold multi-secret sharing
scheme. IEEE Access 2020; 8: 20799–20804.

14. Piao C, Liu L, Shi Y, Jiang X, Song N. Clustering-based privacy preserving anonymity approach for table data sharing.
International Journal of System Assurance Engineering and Management 2020; 11(4): 768–773.

15. Piao C, Hao Y, Yan J, Jiang X. Privacy protection in government data sharing: an improved LDP-based approach. Service
Oriented Computing and Applications 2021; 15(4): 309–322.

20

16. Xuan S, Xiao H, Man D, WangW, YangW. A Cross-Domain Authentication Optimization Scheme between Heterogeneous
IoT Applications.. Wireless Communications & Mobile Computing 2021.

17. Braeken A. Pairing free certified common asymmetric group key agreement protocol for data sharing among users with
different access rights. Wireless Personal Communications 2021; 121(1): 307–318.

18. Zhao P, Huang Y, Gao J, Xing L,Wu H,Ma H. Federated Learning-Based Collaborative Authentication Protocol for Shared
Data in Social IoV. IEEE Sensors Journal 2022; 22(7): 7385–7398.

19. Fan Q, Chen J, Deborah LJ, Luo M. A secure and efficient authentication and data sharing scheme for Internet of Things
based on blockchain. Journal of Systems Architecture 2021; 117: 102112.

20. Singh C, Chauhan D, Deshmukh SA, Vishnu SS, Walia R. Medi-Block record: Secure data sharing using block chain
technology. Informatics in Medicine Unlocked 2021; 24: 100624.

21. Jia X, Hu N, Yin S, Zhao Y, Zhang C, Cheng X. A2 chain: a blockchain-based decentralized authentication scheme for
5G-enabled IoT. Mobile Information Systems 2020; 2020.

22. Lv P, Wang Y, Wang Y, Liu C, Zhou Q, Xu Z. A highly reliable cross-domain identity authentication protocol based on
blockchain in edge computing environment. In: IEEE. ; 2022: 1040–1046.

23. Zhan X, Cheng X, GuoW, Yin K, Lu X. An Distributed CA System: Identity authentication system in transnational railway
transportation based on blockchain. In: IEEE. ; 2021: 989–994.

24. Wu S, Peng G, Gao Y, Chen J. An Efficient Anonymous Authentication Scheme for Medical Services Based on Blockchain.
In: IEEE. ; 2021: 1–6.

25. Ahuja R, Mohanty SK. A scalable attribute-based access control scheme with flexible delegation cum sharing of access
privileges for cloud storage. IEEE Transactions on Cloud Computing 2017; 8(1): 32–44.

26. Morales-Sandoval M, Cabello MH, Marin-Castro HM, Compean JLG. Attribute-based encryption approach for storage,
sharing and retrieval of encrypted data in the cloud. IEEE Access 2020; 8: 170101–170116.

27. Kirupanithi DN, Antonidoss A. Efficient Data Sharing using Multi-authority Attribute Based Encryption in Blockchain. In:
IEEE. ; 2021: 642–646.

28. Ezhil Arasi V, Indra Gandhi K, Kulothungan K. Auditable attribute-based data access control using blockchain in cloud
storage. The Journal of Supercomputing 2022; 78(8): 10772–10798.

29. Ye Y, Zhang L, You W, Mu Y. Secure decentralized access control policy for data sharing in smart grid. In: IEEE. ; 2021:
1–6.

30. Ge C, Susilo W, Liu Z, Xia J, Szalachowski P, Fang L. Secure keyword search and data sharing mechanism for cloud
computing. IEEE Transactions on Dependable and Secure Computing 2020; 18(6): 2787–2800.

31. Gafurov D, Hurum AE, Grovan MS. Access control tree for testing and learning. In: IEEE. ; 2021: 1106–1110.

32. Li B, Huang D, Wang Z, Zhu Y. Attribute-based access control for ICN naming scheme. IEEE Transactions on Dependable
and Secure Computing 2016; 15(2): 194–206.

33. Deng H, Qin Z, Wu Q, Guan Z, Zhou Y. Flexible attribute-based proxy re-encryption for efficient data sharing. Information
Sciences 2020; 511: 94–113.

34. Xue Y, Xue K, Gai N, Hong J, Wei DS, Hong P. An attribute-based controlled collaborative access control scheme for public
cloud storage. IEEE Transactions on Information Forensics and Security 2019; 14(11): 2927–2942.

	A group key exchange and secure data sharing based on privacy protection for federated learning in edge-cloud collaborative computing environment
	Abstract
	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	Bilinear mapping
	Computational hardness assumption
	Access structure of the model

	SYSTEM STRUCTURE MODEL
	SECURE RESOURCE SHARING ACCESS CONTROL
	Initialization
	Key self-confirmation algorithm
	Ciphertext attribute authentication and attribute permission acquisition
	Solution for secure data sharing
	Key exchange and data encryption storage
	Download and access to shared resources
	Application cases

	MODEL SECURITY ANALYSIS
	Correctness analysis
	Security analysis

	MODEL PERFORMANCE ANALYSIS
	Computational complexity analysis
	Calculation time overhead analysis

	CONCLUSIONS
	Acknowledgments
	References

	Blank Page

