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Abstract

According to the Sustainable Development Agenda 2030 of the World Health Or-
ganization, maintaining physical activities have multiple societal privileges for
healthier cities and societies. The amalgamation of the Internet of Things (IoT)
and pervasive smartphones has become of paramount importance to produce a
significant breakthrough in various domains of smart cities, including healthcare,
fitness, skill assessment, and personal assistants, to support independent living.
The IoT-supported devices capacitate, embedded with sensors, enabled numerous
context-aware applications to recognize physical activities. There are some activ-
ity recognition applications; however, they are still deficient in recognizing activ-
ities accurately. In this paper, a novel framework for Human Activity Recognition
(HAR) is proposed using raw readings from a combination of fused smartphone
sensors: accelerometer, gyroscope, magnetometer, and Google Fit activity track-
ing module. The proposed framework applies Deep Recurrent Neural Network
(DRNN) to an extensive training dataset. The latter consists of five activity classes
from twelve individuals using a Deep Recurrent Neural Network (DRNN). An ex-
tensive training dataset is used consisting of five activity classes from a group of
twelve individuals. The designed android application (runs in the background)
collects data from the smartphone’s embedded sensors fused with the Google Fit
API to validate the results proposed framework. The proposed framework shows
promising results in recognizing human activities compared to other similar stud-
ies and achieves an accuracy of 99.43% for activity recognition using DRNN.

Keywords: Human activity recognition, Pervasive computing, Smartphones,
Sensors, Deep recurrent neural network
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1. Introduction

As reported by the population division of the United Nations [1], by the year
2050, 66% of the world population will move to cities. Due to this rapid increase
in urban population, a smart city’s concept has become essential to improve urban
life by endorsing and supporting sustainability and healthier urban environments.
While smart technology is already transforming a city’s critical infrastructures,
lifestyle, and services (e.g., education, transportation, and public safety), citizens
have now recognized its potential to tackle the challenges of health and environ-
ment [2, 3, 4, 5]. Moreover, the need to reduce healthcare costs and sustain a
healthier life is an important driving factor for governments to invest in smart
cities [6, 7]. IoT is about anytime, anywhere, service provisioning to end-users,
thanks to a plethora of static and mobile devices, such as actuators, sensors, and
controllers [8]. The intense communications between all these devices, some are
smart (i.e., embedded with cognitive capabilities), have allowed IoT to penetrate
every domain from home automation to the industry 4.0 revolution.

Human Activity Recognition (HAR) using sensors are imperative in meet-
ing the needs of the urban population in terms of healthcare-related services [9,
10, 11, 12, 13]. Care providers (i.e., Doctors, physicians, nurses, gym trainers,
etc.) can assess an individual’s health conditions based on their daily life activi-
ties [14] to maintain economic growth while creating sustainable cities and so-
cieties [15, 16]. Many studies use sensing frameworks as benchmarks to extract
and analyze people’s daily life routines and behavior [17, 9]. Also, citizens have
become more health-conscious in the modern era, and they care more about living
healthy lifestyles [18]. Many diseases can be detected by analyzing physical ac-
tivities, such as Parkinson’s [19, 20], and Dementia [21]. Several other pervasive
techniques help analyze individuals’ health and functional ability living in smart
homes [21, 15]. A smart home, embedded with sensors, provides readings against
a smart home resident’s activities being performed. These readings can later be
analyzed to detect the functional ability of an individual. Privacy is a primary
concern of smart cities as most of the data in smart cities is being collected from
vision-based devices [22]. Vision-based activity recognition can be used to ana-
lyze the health status, but due to privacy measures, it is not widely applied [23].
Advancement in ubiquitous computing brings Wi-Fi signal-based activity recog-
nition, but it can only operate in a defined area [24]. Another technique used for
recognizing activities activity recognition technology is based on wearable sen-
sors. However, due to their obtrusive nature, it is not widely used [25].

Since most users carry a smartphone activity as an inveterate while perform-
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ing their daily routines (i.e., browsing, banking, measuring, chatting, etc.), it has
proven to be the best daily physical activity observer [26]. Many authors have
surveyed HAR using smartphone sensors in recent studies, such as in [27, 28, 29,
30, 31, 32, 33]. Most of the previous work focused on walking, running, standing,
sitting, moving upstairs, and moving downstairs.

Studies have used deep learning and conventional machine learning models.
For example, [34] and [35] used deep learning techniques to recognize human ac-
tivities. However, these methods are fully connected without capturing the local
dependency of the sensor data. Similarly, conventional machine learning models
have been used in different studies (e.g., in [9, 36, 17]). However, they show less
proficiency in providing promising results. They also lack in recognizing the ac-
tivities accurately as they focus more on routine activities. In our case, we choose
complex activities, such as ”In a vehicle, tilting, Still, On Foot, and Walking”.
Thus, a novel framework is proposed for the recognition of physical activities
using a self-collected dataset. The dataset contains fused readings of multiple sen-
sors: accelerometer, gyroscope, and magnetometer with Google Fit API readings
by applying a Deep Recurrent Neural Network (DRNN). We apply machine learn-
ing algorithms and evaluate the proposed framework using F-score, Recall, Accu-
racy, and Area Under the Curve (AUC). We focus on tracking complex activities
that are also being recognized by Google Fit [26].

This paper makes the following contributions:

1. Presents a study of hardware sensors’ utilization, fused with Google Fit
activity monitoring API for HAR.

2. Presents the deployment of DRNN, along with the evaluation of its advan-
tages in comparison with state-of-the-art methods.

3. Investigates various DRNN’s parameters to explore the factors that affect
the performance.

4. Provides a systematic and functional framework to monitor daily life activ-
ities continuously.

The rest of the paper is organized as follows: Section 2 discusses the related work
and recent developments in activity recognition. Section 3 gives a background
of Google Fit API and deep recurrent neural network. Furthermore, Section 4
presents the proposed methodology for HAR, and Section 5 describes the detailed
evaluation and results of our proposed framework. Lastly, Section 6 gives conclu-
sions of our research and gives direction for future work.
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2. Related Work

This section confers the most befitting state-of-the-art and discusses related
research studies to sustainable health monitoring through HAR. A sustainable
healthcare monitoring system is accomplished by conveying excellent public well-
being without debilitating natural assets or causing extreme ecological harm [37].
It is essential for smart cities and society to guarantee people’s well-being and
prosperity for sustainable development and is feasible just through powerful and
ceaseless health monitoring services [38]. Many smart devices are being used to
monitor to recognize daily life activity and other critical diseases. Activity recog-
nition is the subdomain of healthcare monitoring which is directly related to public
well-being in a society. The worldwide smart wearable healthcare (SWH) device
market is required to ascend at a Compound Annual Growth Rate (CAGR) of
5.6%, and by 2020 it is relied upon to arrive at 25 Billion [39]. The developing
trends of the way of life ailments, sedentary lifestyles, busy work routines, inno-
vative progressions in healthcare monitoring devices, and expanded utilization of
smart devices seem to be a portion of the significant elements fuelling this devel-
opment [39].

The authors in [9] uses a novel system of smart, collaborative healthcare to
enhance an individual’s lives using smartphone sensors and machine learning al-
gorithms. The data statistics generate a report, which the professionals are exam-
ining. [36] proposed a system that uses the smartphone 2-axes accelerometer sen-
sor to recognize user activities. [40] thoroughly reviews the current robust studies
based on deep learning, which uses sensors for recognizing human activities. [41]
proposed a novel deep learning architecture for multiple sensor-based HAR. Their
system processes time-series data as an image and uses computer vision methods
for activity classification. [8] enhanced HAR by embedding a deep learning algo-
rithm in a sensor-based wearable. This wearable tracks the sensor data, and thus,
a deep learning algorithm classifies human activities. They used Convolutional
Neural Network (CNN) for classification. The authors in [42] present a compari-
son for data traffic scheduling techniques to increase mobile networks’ quality.

The authors in [43] discuss the differences and advantages of 5G in the health-
care domain with preceding generations. The authors highlighted the impact of
5G-based systems in delivering care, diagnosis, imaging, and medication to im-
prove living standards and health. Similarly, Latif et al. [44] feature 5G bounties
and some other technologies in healthcare applications. They also discussed the
use of machine learning algorithms in mitigating healthcare anomalies. Chen et
al. [45] propound a 5G-Smart diabetes system for diabetic patients using sensors
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and analysis of the patients’ vitals. They proposed a personalized data sharing and
analysis system for their proposed 5G-Smart Diabetes model. [17] proposes a ma-
chine learning approach, which uses the clustering of data and uses machine learn-
ing classifiers for human activity classification. Lloret et al. [46] present a novel
5G-based smart eHealth monitor architecture for chronic patients. To carry out
diagnosis and data collection, they used wearable devices. They also use smart-
phones at the patient’s end to process and analyze the received data (i.e., sensed
from wearable devices).

In recent studies, many HAR systems have been surveyed [27, 28, 29, 31, 32].
The authors worked on several methods for several activities in distinguished
application domains [47]. Several activities include walking, standing, sitting,
running, upstairs, downstairs, cooking, toileting, eating, sleeping, exercising, etc.
Some of these can be recognized using time duration-based analysis, some activ-
ities can be recognized using binary state sensors, and some can be recognized
using motion sensors. Activities can be further broken down into two classes
based on the activities’ duration and complexity: simple activities and complex
activities. The simple activities consist of repetitive behavior activities like sit-
ting, standing, running, walking, etc. The latter combines basic activities while
interacting with other objects, such as toileting, cleaning, chores, cycling, driving,
etc.

As afore-mentioned, the HAR has been studied and explored well [48]. These
studies sometimes vary on the used sensors and some time on the proposed method-
ology. Sensors include motion, pressure, proximity, microphone, video sensors,
reed switches, analog and binary sensors, etc. Besides, they may help recognize
different activities, such as walking, sleeping. In the early stages of activity recog-
nition, several researchers produce different approaches for activity recognition.
The authors in [49] provide results of activity recognition back in 2004. Their
results show that sensors placed at different body locations can be used to track
physical activities. They show that the thigh sensor shows an efficient activity
recognition rate than all other places. Later on, authors in [50] recognize activities
using smartphone sensors. They collected accelerometer sensor data. They report
that J48 and MLP perform well in comparison with other techniques. Shoaib et
al. [51] demonstrated a combination of sensors used in recognizing the activities.
Their work shows that a combination of accelerometer, gyroscope, and magne-
tometer could enhance the recognition rate.

There is not much research is done on deep learning-based techniques for
HAR. Among the primitive works are [34, 35]. [34] uses Restricted Boltzmann
Machines (RBM) for feature extraction from the time-series sensor data automat-
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ically. The disadvantage of the technique mentioned above is that these methods
are fully connected, and there is no capturing of the local dependency of sensor
data [52]. The authors in [53] use convolutional neural networks (convnets) with
accelerometer and gyroscope sensor readings for recognizing gestures. They show
that convnet provides promising results compared to previous activity recognition
methods, including Dynamic Time Wrapping (DTM) and Hidden Markov Model
(HMM). Table 1 provides an accuracy of existing studies focusing on HAR. The
highest accuracy achieved by [36] is 95.7% for standing, 95.0% by [54] for sitting
and 98.5% by [55] for walking. All of the studies in Table 1 have not focused
on complex activities such as In-Vehicle and tilting, which are considered in this
paper.

Table 1: Summary of the Sensor, Activities and Results (Precision) used in Existing Studies

Studies Sensors Standing (On Foot) Sitting (Still) Walking
[55] Accelerometer 93.3 82.6 98.5
[36] Accelerometer 95.7 94.0 96.5
[54] Accelerometer 94.9 93.9 86.3
[50] Accelerometer 91.9 95.0 91.7

[51]
Accelerometer, Gyroscope
and Magnetometer - 91.0 88.9

3. Preliminaries

An overview of the Google Fit and Deep Recurrent neural network (DRNN)
is presented in this section.

3.1. Google Fit Overview
Google Fit application is capable of tracking human physical activity [26].

Background service is executed for data collection. The data is collected based
on five daily physical activities: walking, running, still, on a bicycle, and cycling.
Individuals can monitor their step counter, activity duration, and countdown, etc.
An estimate of burned calories, while an activity, can also be made. Some lim-
itations that are also addressed in [26] are activity recognition inaccuracy and
inefficiency. Besides, high accuracy mode (distance) reduces battery life. These
are the two main limitations that we are addressing in this work.
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It will be true to assume that deep learning will dominate other techniques for
activity recognition soon. This paper aims to provide promising activity recogni-
tion performance using Deep Recurrent Neural Network DRNN while using our
fused methodology.

3.2. Deep Recurrent Neural Network Model
Figure 1 shows the DeepDRNN consisting of L number of layers. DRNN net-

work is a network embedded with LSTM units on the internal layers [56]. Here,
xt represents the input vector, and yt represents the output vector at time t. The
output of the lth internal layer at time t is shown as RNNl,t. A unit generates each
element of the output vector. The amount of units in each layer depends upon
the dimension of each layer. The proposed DeepDRNN model comprises an er-
ror function, gradient descent, an LSTM layer, over-fitting, and hyper-parameter
tuning.

Figure 1: Representation of the Deep RNN

• Error Function: is an essential part of calculating each participating neu-
ron’s output. After error analysis, the weight of the neurons is updated to
improve the output. While solving a multi-class problem, the output is clas-
sified into C1, C2, . . . , Cns, based on the softmax function. The nth unit out-
put may be illustrated using Equation 1.

yn ≡ z(L)n =
exp(un)∑n
q=1=p(Cn|x)

(1)

The probability of each unit belonging to class Cn is represented by yn.
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Here x is the input that is classified into the majority instance class.

E(w) = −
I∑
i=1

H∑
n=1

dihlogyi(xn;w) (2)

Error is calculated by Cross entropy, as shown in Equation 2. The above
equation describes the error function. The di represents ith vector and the
dih shows hth elements of di.

• Mini Batch Stochastic Gradient Descent: is used for minimizing the error
rate. Let e be the number of elements of w; following Equation 3 represents
the gradient of the error function.

∇E =
∂E(w)

∂(w)
=

[
∂E(w)

∂w1

. . .
∂E(w)

∂we

]T
(3)

To reduce the error rate, the local minimum value is searched in the neigh-
borhood w by the gradient descent. If gradient descent is going in a negative
direction, it changes the gradient descent value by a small amount to go in
the right direction.

Et(w) =
1

||Bt||
∑
nεBt

En(w) (4)

In Equation 4, the learning rate of ε is updated in each repetition to find
the local minimum of the error function. With quite a higher learning rate,
it oscillates around the local minimum. To control this, ADaptive moment
estimation (Adam) based adjustment methods are adopted.

• Long Short Term Memory (LSTM): is a type of Neural Network model
for time sequence data. LSTM is used to solve the problem of vanishing gra-
dient and is more efficient than RNN [57]. LSTM consists of three gates:
forget gate, input gate, output gate, and one cell state. Each gate has a dif-
ferent set of weights.

• Over-fitting: Deep learning is more efficient than long-established neural
networks. However, there are still some disadvantages: time consumption
and over-fitting. Over-fitting shows high variance and low bias. It might
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happen when a model faces too many similar characteristics of the train-
ing data characteristics and does not fit on the unseen test data. There are
multiple ways to prevent over-fitting. Regularization is used to prevent over-
fitting. Moreover, the dropout procedure is often adopted to overcome the
over-fitting by selecting the layers at a constant rate of p. There are some
other scenarios by which a model gets over-fit: Over-fitting might occur
if there is not enough data to train it. It can be due to training neural net-
works on too many epochs on iterations. It can also occur due to more minor
variations in the dataset. Most of the training samples are alike, which crip-
ples the algorithm and does not let it generalize. In the process of activity
recognition, a thorough analysis of the hyper-parameters, such as activation
function, optimizer, the numbers of layers, and batch size, should contribute
to the recognition process using the DRNN, as explained in Table 2.

• Hyper-Parameter Tuning: A massive combination of hyper-parameter set-
tings could be possible for the recurrent neural network. Therefore, this pa-
per analyzes the effects of varying hyper-parameters on the performance of
the DRNN. We incorporated the grid search approach by analyzing the pre-
vious best model. Tuning starts from the number of layers L1 (one-layer,
L1; two-layer, L2; three-layer, L3; and four-layer, L4 ) learning rate affects
the recognition rate. Other parameters, such as weight decay, momentum,
and epochs size, also contributed toward improving the recognition rate.

4. Human Activity Recognition (HAR)

This section presents the proposed framework for the Human Activity Recog-
nition framework (HAR). Fig. 2 illustrates an abstract overview of the proposed
framework. With the help of an illustration.

4.1. Smartphone Sensing and Dataset Collection
We develop an android application that can be installed on the participant’s

smartphone. However, there are various smartphones; this application is meant
for only every Android-based smartphone only. For Android, the requirement of
the operating system is fixed to 4.0. The following are the characteristic of the
proposed application.

• Graphical user interface.
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Figure 2: Abstract data flow architecture of HAR. The illustration shows smartphone sensor data
begin fused with Google FIT data. The agent-based analysis is applied to the fused data and agent-
based instance features passed onto the DRNN module which classifies the activity.

• A continuous service running in the background to collect data from the
(three) sensors and Google Fit API at the same timestamp.

• Accelerometer, gyroscope, and magnetometer were selected and fused with
Google Fit API.

• Collected data stored in a file on the smartphone.

An extensive analysis is conducted before fusing Google Fit API with a smart-
phone sensor. Hardware sensors work independently and do not share information.
Firstly, we fuse three sensors to get the data from these sensors at the same times-
tamp. After this, we fused Google Fit API with these sensors to get data reading
in the same timestamp, as shown in Fig. 2.

4.2. Feature Extraction
To obtain the optimum results, the raw data is transformed into a sensor event

window, a window having 1000 activity samples of every participant. That is a
diverse window, which captures the required readings needed for classification.
Contemporary researchers have suggested this length [31, 50]. We pick a window
and appended this window into a file. Later, a feature matrix of 130000 raw sensor
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data observations containing three axes each of three sensors, [Ax1, Ay2, Az3], [Gx1, Gy2, Gz3],
[Mx1,My2,Mz3], is generated. The accuracy of the activity being performed is
stored between 0 − 100 as a label. An input matrix of the 11 axis feature matrix
is given to the proposed machine learning model DRNN to be trained on a large
dataset to predict the activity being performed as described in Section 3. The out-
put of the model is a label of an activity. This label is then sent to the Agent-based
Analysis (ABA) 4.3. Similarly, the labels from Google Fit API are also sent to this
ABA to make further progress. Working of ABA is discussed next.

4.3. Agent-based
Analysis (ABA) This agent is responsible for analyzing the accurate label of

activity being performed by an individual. In first, Google Fit API returns a list
of labels containing each activity name and their confidence level in a percent-
age ranging from 0− 100. The agent mines these activities and selects only those
activities with a confidence level greater than 50%. The activity confidence value
processed by the agent is then appended with the reading returned by the smart-
phone sensors. It is passed as an input to the proposed machine learning model, as
shown in Fig. 2.

4.4. Activity Recognition Algorithm
Algorithm 1 summarizes the steps of the proposed framework. Suppose, d

represents the dataset containing instance I = i1, i2, . . . , in. Let l represents the
target class labels to be predicted by each classifier, and nl represents the total
target classes. The data preprocessing phase normalizes data and removes dupli-
cates stored as dnew. The preprocessed data is given as an input to our agent-based
analysis (ABA) that checks the thresholds of each fused instance denoted as Inew.
In the next phase, Inew is fed to the machine. And deep learning classifiers for
activity recognition.

4.5. RNN Based Activity Recognition
HAR uses fused sensor reading along with fused Google Fit activity tracking

module on a smartphone as the direct input after performing agent-based analy-
sis, as explained in Section 4.3. We use DRNN such that the 10-axis data corre-
sponds to the input layer of 10-dimensions and five activity labels correspond to
the five-dimensional output layer. Neurons on the internal layer are computed us-
ing the LSTM unit. A softmax defines the output layer’s activation function with a
cross-entropy loss function common in multinomial NN classifiers. The network
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Algorithm 1 HAR Algorithm for Activity Recognition
1: procedure HAR(d)
2: dnew ← Preprocess (d)
3: for i ∈ dnew do
4: Inew ← ABA (dnew)
5: Il ← classifiers (Inew)
6: for each epoch in range (n): do
7: Calculate Loss
8: Calculate Accuracy
9: Calculate Precision, Recall, F-Score, Roc Curve

10: return Output
11: return Il

Figure 3: Proposed design of the Deep RNN network employed by HAR.

provides an activity class as an output label. Figure 3 illustrates the architecture
of the proposed Deep DRNN used for activity recognition.

The details of RNN are summarized in Table 2 and the flow of epochs is also
shown in Fig. 4.
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Table 2: Details of Recurrent Neural Network Parameters

Parameter Value
Initial weights rand [-0.1, 0.1]
Initial Bias None
Type of internal layer unit LSTM
Input dimension 9
Output dimension 5
Activation Function Softmax
Mini-batch size 20
Learning Optimizer Adam
Error Function Categorical CrossEntropy

Figure 4: Flow of data during an epoch through the DRNN [56]

4.6. Comparative Methods
The results are compared using Sequential Minimal Optimization (SMO), de-

cision tree (c4.5), Meta-Heuristic algorithm (Adaboost), Naive Bayes (NB), and
Multilayer Perceptron (MLP) with state-of-the-art techniques. The SMO is used
with various parameters and finally set to the Polykernal and. The value of gamma
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and alpha is set to 1. NB is used with a kernel estimator. The decision tree is used
with a confidence factor of 0.25. Existing studies [49, 50] prefer the data sensing
frequencies between 10−50 samples per second and a window of 2−3 seconds for
the recognition task. Lastly, for the constructed feature matrix, machine learning
methods SMO, c4.5, Adaboost, MLP, NB, and DRNN is applied.

5. Experimental Evaluation

This section presents different evaluation measures used in the experimenta-
tion. We then explain and discuss the activity recognition results. Conventional
machine learning classifiers are applied using WEKA [58]. We try 3, 5, 7 Fold-
Cross-validation and select 5 Fold-Cross-validation as the F-score is promising
using five folds. For DRNN, data is split into 80 and 20 for training and testing,
respectively. Furthermore, 20% of the total 80% training data is used for valida-
tion. The main idea of using RNN is finalized after performing statistical analysis,
initial visualizations, and classification reports. The data is comprised of activities
performed; thus, the temporal information becomes vital in this regard. In con-
trast, CNN does not make use of temporal information. For time-series repeated
pattern-based data, the RNN not only recognizes but may also exploit the time-
related context. More weights are applied to the patterns for recognition. Further-
more, the previous and following tokens are recognized instead of being evaluated
in isolation. Consequently, this led us to select RNN for our use case.

5.1. Dataset
The data is collected from twelve volunteers using different smartphone mod-

els:Oppo F3, Oppo F1, Samsung J7, Samsung Grand Prime, and Huawei Honor.
Table 3 demonstrate the details of the dataset. Some of the smartphones are not
embedded with a magnetometer or with a gyroscope. In this case, we use these
phone datasets only to build a model for accelerometer data. The application per-
mitted us to control the frequency of collecting sensor readings. The frequency is
set, keeping in sight the battery life. Invoking the hardware sensors continuously
consumes more battery [59]. Therefore, a fixed sampling frequency of 30/sec is
used to collect the data. This frequency is fine between 10 − 50 samples per sec-
ond and reduces less battery as preferred by existing studies [50, 59]. The more
the sensors are invoked, the more it consumes battery. A larger dataset is required
to build a most effective framework. The data collection duration is approximately
2− 3 minutes which is efficient enough to learn the classes’ boundaries. This task
is controlled and administered by our group members for data quality assurance.
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Table 4 shows the features used in this study. Existing studies such as [36] used

Table 3: Dataset Characteristics

Dataset Self Collected
Number of Participants 12
Mean Age 25
Total Activities 5
Still When the participant is not moving
Tilting When the participant is moving
On Foot When the participant is on foot
Walking When the participant is walking
In a Vehicle When the participant is moving in a vehicle

only three axes of the Accelerometer sensor. [17, 51] used all features that are
specified in Table 4. [55, 50] used only three axes of the Accelerometer sensor.

Table 4: Features of the dataset

Number Feature Name
1 Accelerometer-Ax
2 Accelerometer-Ay
3 Accelerometer-Az
4 Gyroscope-Gx
5 Gyroscope-Gy
6 Gyroscope-Gz
7 Magnetometer-Mx
8 Magnetometer-My
9 Magnetometer-Mz

The dataset contains only numerical features. For the ground truth data, man-
ual labels are assigned to each sensed observation for the already-known task
being performed. Fig. 5 shows one vector of data collected using smartphone sen-
sors for walking activity. Each axis of the three sensors is plotted to observe the
behavior of the walking patterns. It can be observed that while walking, a lively
acceleration is being produced, as shown in the blue line Ax axis. This line is
showing the continuous movement of the leg in a positive x-axis direction. The
Ay axis movement is continuous, and the same for the whole activity as the leg is
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Figure 5: One Vector of Walking Activity Accelerometer, Gyroscope and Magnetometer Sensor
Data

not moving towards the upward. Similarly, the large peaks of the Az axis repre-
sent the upside-down forward movement of the leg. The same is the case with the
other sensors showing a periodic pattern. Gx and Gz axis present normal unin-
terrupted movement. It may be observed that there is a sudden acceleration peak
in the Gy axis representing the change in leg transition. The magnetometer sen-
sor is essential for identifying a smartphone’s orientation relative to the Earth’s
magnetic north. Mx, My, and Mz axes contribute a lot for activity recognition
as these show sudden peak and then low peak while walking, representing leg
movement. The same characteristics are shown by a study [55, 50], which proves
the proposed framework’s applicability. Furthermore, it can be seen in Fig. 6 that
when a participant switched his/her state from walking to sitting, all the accelera-
tion readings become stable and flat and do not show periodic behavior.

5.2. Experimental Settings
Table 5 provides the overview of experimental setup of our computing envi-

ronment for evaluating the proposed activity recognition framework.

5.3. Evaluation Metrics
Evaluation measures are vital for assessing the performance of the classifiers.

Below are the applicable terms used in evaluation metrics for data analysis. The
confusion matrix gives better metrics. Some measures that can be determined by
the confusion matrix are defined as follows where the F-score is the harmonic
mean of Precision and Recall:
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Figure 6: One Vector of Sitting Activity Accelerometer, Gyroscope and Magnetometer Sensor
Data

Table 5: Computing Environment

Parameter Specification
Operating System Ubuntu 18.04.2 LTS
CPU Xeon E5/Corei5
RAM 128GB
GPU NVIDIA GeFroce 1080
CUDA Verion 9.0
Python Version 3.2

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Accuracy =
TP + TN

TP + TN + FP + FN

F − score = 2× Precision×Recall
Precision+Recall

5.4. Optimized Model
The best model shows the best recognition results for both scenarios: using

agent-based analysis (ABA) and without agent-based analysis (WABA) 4.3 of data
while using the best value of hyperparameters. Table 6 shows the best parameters
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selected and used for the recognition task. For better illustration of the results, Fig.
9 shows the transition of improvement in accuracy as the learning rate increased
in the case of Agent-based Analysis. In the best model of Agent-based Analysis,
the test recognition rate is 99.43% at maximum while 94% without agent-based
analysis, as shown in Fig. 10.

Table 6: Optimized Model Parameter

Parameter Value
Input vector 32
Embedding Size 751817
Learning Rate 0.001
Weight Decay 0.005
Momentum 0.5-0.99
Batch Size 64
Maximum epochs 50

5.5. General Analysis and Results
The machine learning models perform well; however, they still need some

guidance when data is proliferating. On the other hand, deep learning techniques
work effectively when there is a lack of domain understanding for feature intro-
spection, as there is less need to worry about feature engineering. It is shown in
Fig. 7 that the deep learning model works efficiently when data is large in com-
parison with the machine learning model. Similarly, in Table 8, it is shown that
the proposed deep learning model outperformed existing studies [55, 36, 54, 50]
focusing on these activities: standing, still, and walking. Two activities Tilting and
in a vehicle, were out of focus in existing studies. If the ”in a vehicle” activity is
recognized by other machine learning approaches, it will get confused with sitting
activity. For this reason, the Google Fit-based framework is preferred that best
predicts this activity based on location and sensor reading. Therefore, we fuse our
framework with Google fit to strengthened the recognition process.

The accuracy comparison of the existing methods is shown in Fig. 7. The bar
graph represents the mean recognition rate of various methods. SMO achieves
the accuracy of 90% using WABA and 96%. C4.5 achieve an accuracy of 97.2%
using WABA and 97.9%, Adaboost achieves an accuracy of 92.8% using WABA
and 82.7%, NB achieves the accuracy of 91.8% using WABA and 92.2%, MLP
achieves the accuracy of 92.2% using WABA and 94.3%, and DRNN achieves the
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accuracy of 92.8% using ABA and best accuracy of 99.4% using WABA. DRNN
takes 780 seconds on a single epoch while other classifiers, such as MLP, take
1029 seconds, SMO takes 203.9 seconds, NB takes 1.2 seconds, c4.5 takes 0.06
seconds, and Adaboost takes 0.42 seconds. However, inference time is below 1
second for each algorithm.

Figure 7: Performance of Best DRNN Compared to other Algorithms. ABA denotes Agent-based
Analysis as stated in Section 4.3

5.6. Parameter Tuning and Comprehensive Analysis
We discuss the analysis of parameter tuning of DRNN by using a grid search.

For a learning algorithm, a set of optimal hyper-parameters is provided in the grid
search. The learning process is well controlled by using these parameters. After
three iterations of training, the model started to converge on a particular set of
parameters, which later on, we used for final training. The dataset consists of 32
temporal features. These features are ordered in sequences leading toward time
series prediction. The parameter used to train our DRNN are shown in Table 2.
As discussed, the input vector’s size is fixed to 32, leading to a context vector of
size 751817. The learning rate is set to 0.001 along with the ”Adam” optimizer to
train the DRNN. We chose to choose Categorical Cross-entropy as a loss function
with our labels as categorical and trained the DRNN for 50 epochs with a batch
size of 64. The recognition rate is 99% at the 27th epoch. We use five-fold cross-
validations. The transition of recognition rate accuracy in each epoch is presented
below in Figure 8.

Specifically, for the ABA, the accuracy is about 5% higher than that of the
model trained without ABA 4.3. Fig. 9 and 10 depicts that varying the learning
rate for both cases helps improve the model’s result. We got the best accuracy at
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Figure 8: Training and Testing loss for HAR Dataset

learning of 0.001. Epochs counts help to improve recognition accuracy when it is
fixed to 50.

Figure 9: Evaluation with Agent-based Analysis (A.B.A) Feature

Table 7: Evaluation of Daily Life Activity Recognition Using DRNN

Activities Precision Recall F-score AUC
In a vehicle 99.9 97.7 98.9 99.6
On Foot 96.7 78.8 86.8 97.3
Still 97.0 99.8 98.4 99.5
Tilting 99.8 100 99.9 100
Walking 99.7 99.4 99.7 99.8
Average 98.0 98.0 98.0 99.4
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Figure 10: Evaluation without Agent Based Analysis (A.B.A) Feature

In Table 7, the evaluation of the proposed framework is presented based on
daily life activity recognition in terms of performance metrics. The system recog-
nizes activities that include activities in a vehicle, on foot, while being still, tilting,
and walking. The evaluation criteria include Precision, Recall, F-score, and Area
Under the Curve (AUC). As seen in Table 7, the model shows a graceful perfor-
mance in recognizing the activities with an average Precision, Recall, and F-score
of 98% and an average AUC of 99.4%. Fig. 11 illustrates the confusion matrix,
demonstrating the percentage of correctly classified activities concerning misclas-
sified activities. There is too slight confusion between tilting and still activities.
Moreover, other activities are classified efficiently.

Figure 11: Confusion Matrix of the Proposed Activity Recognition Task

Fig. 12 and 13 illustrates weights and biases of a given layer. Fig. 12 shows
the model’s maximum and mean bias on the training and validation set of layer
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1. Fig. 13 illustrates the maximum, minimum, mean, and standard deviation bias
of the model on the training and validation set of layer 2. Fig. 14 and 15 show
the gradient value on which the model is performing best on the number of iter-
ations. The gradient norm is an important parameter to assess the weights of the
renal network. It indicates that the weight is being updated positively. A too low
gradient value can take toward vanishing gradient, or a too-high gradient can take
towards exploding gradient. The gradient updates are also diminishing over time
and approaching zero on both layers. Fig. 15 depicts that the best learning is near
0, as our best learning parameter 6 shows the same best parameter, which is 0.001.

Figure 12: Maximum and Minimum Bias of Layer 1 on Training and Validation Set using Tensor
Board

Table 8 presents a comparison of the accuracy metric with existing state-of-
the-art studies while recognizing the activities. The proposed framework achieves
a detection accuracy of 96.7% while standing on foot, 97.0% while Sitting still,
and 99.7% while walking. Our model shows a significant gain of 1% while recog-
nizing Standing (On foot), 2% while recognizing Sitting (Still) activity, and 1.2%
while recognizing walking activity. Thus, a significant gain in accuracy over pre-
vious studies shows the proficiency of the proposed framework. Furthermore, our
framework recognizes two novel activities: ”In a Vehicle” and ”Tilting,” which
focus on existing studies. We achieve an accuracy of 99.9% for ”in a vehicle”
activity and 99.8% for ”tilting” activity.
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Figure 13: Maximum, Minimum, Mean and Standard Deviation Bias at Layer 2 on Training and
Validation Set using Tensor Board

Figure 14: Gradient Norm of Layer 1 on Training and Validation Set using Tensor Board

Table 9 presents a comparison of the Precision, Recall, and F-score metrics
with existing state-of-the-art studies for recognizing the activities. The proposed
framework achieved the highest Precision of 96.7 for standing, F-score of 86.8,
and Recall of 78.8 while achieved the highest Precision of 97.0 for standing, F-
score of 98.4, and Recall of 99.8 and achieved the highest Precision of 99.7 for
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Figure 15: Gradient Norm of Layer 2 on Training and Validation Set using Tensor Board

Table 8: Comparison of the Proposed framework with Existing Studies (Accuracy)

Studies
Activities

Standing (On Foot) Sitting (Still) Walking

[55] 93.3 82.6 98.5
[36] 95.7 94.0 96.5
[54] 94.9 93.9 86.3
[50] 91.9 95.0 91.7
Proposed framework 96.7 97.0 99.7

standing, F-score of 99.7 and Recall of 99.4. The results show that the proposed
framework efficiently improves the recognition rate in comparison with state-of-
the-art studies.
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Table 9: Comparison of the Proposed framework with Existing Studies using Other Performance
Measures

Studies Precision Recall F-score
Standing (On Foot) [55] - - 90.7
Sitting (Still) [55] - - 93.6
Walking [55] - - 99.6
Standing (On Foot) UCI Dataset [54] 75.1 65.4 -
Sitting (Still) UCI Dataset [54] 46.8 56.7 -
Walking [54] 88.9 95.9 -
Standing (On Foot) WISDM Dataset [54] 84.0 88.1 -
Sitting (Still) WISDM Dataset [54] 89.0 90.9 -
Walking WISDM Dataset [54] 91.7 87.9 -
Standing (On Foot) Proposed framework 96.7 78.8 86.8
Sitting (Still) Proposed framework 97.0 99.8 98.4
Walking Proposed framework 99.7 99.4 99.7

6. Conclusion and Future Work

This paper investigated that HAR using an accelerometer, gyroscope, and
magnetometer fused with Google Fit API improve activity recognition. We evalaute
our framework for both scenarios: using ABA and WABA. Our evaluation shows
that our framework works better when used with fused and with Google Fit API.
We applied a DRNN for HAR using raw hardware sensors and Google Fit read-
ings. The obtained recognition accuracy is 99% against the test dataset when
trained on the dataset provided by Agent-based Analysis and 95% when trained
without Agent-based Analysis. We provided a thorough analysis of the combi-
nation of hyper-parameters of the DRNN. We provided the best combination of
various parameters to classify HAR correctly. We believe that our framework is
significant for activity recognition. In the future, we intend to analyze more rou-
tine life activities and apply our proposed framework to data gathered from a
more significant number of participants belonging to different age groups. Also,
we plan to compare the proposed framework with some meta-heuristic algorithms
to evaluate feature selection strategies.
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