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HUNA: A method of Hierarchical Unsupervised
Network Alignment for IoT
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Abstract—With the advent of the era of the Internet of Things (IoT), a large number of interconnected smart devices form a huge 
network. The network can be abstracted as a graph, and we propose to identify similar IoT devices in different networks by graph 
alignment. However, most methods rely on prelabeled cross-network node pairs such as anchor links, which are difficult to obtain due 
to personal privacy and security restrictions, especially in IoT. In addition, existing network entity alignment methods focus on individual 
pairs of nodes but ignore the tightly connected group structure in the network, which is a significant feature of IoT devices. In this paper, 
we propose a method of Hierarchical Unsupervised Network Alignment (HUNA) to identify similar IoT devices in different networks by a 
deep learning approach. First, we propose an Unsupervised Network Alignment method based on cycle adversarial networks (UNA), 
which utilizes the adversarial characteristics of cycle adversarial networks to achieve entity alignment under unsupervised conditions. 
Second, we further expand the model by carefully designing the group structure aggregation optimization module to aggregate the 
nodes with closely related attributes and structures into a coarse-grained node and align the coarse-grained nodes. Finally, we 
evaluate HUNA with real and synthetic datasets. Experimental results show that this method can improve the accuracy of node 
alignment by 10% and perform well in terms of parameter sensitivity.

Index Terms—Network Alignment, Deep Learning, AI, IoT, Network Security.
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1 INTRODUCTION

G RAPH data are a data structure with a strong expressive
ability that can describe the attributes (nodes) of enti-

ties and capture the relationships (edges) between entities.
In the area of IoT, the interconnection between devices
constitutes a network with different scales and different
characteristics, which can be abstracted into graph data to
better explore the correlation between devices, where the
devices can be abstracted as nodes and the link relationship
between the devices can be abstracted as edges in the
graph data [1], [2]. The research on graph data has attracted
widespread attention in the academic and industrial fields.
Although the research on a single graph has achieved
many achievements, such as graph representation learning
[3], [4], [5], community discovery [6], and link prediction
[7], some problems cannot be solved by a limitation to a
single graphfor example, cross-network user relationship
prediction [8], cross-network product recommendation [9],
and cross-graph financial crime tracking [10]. In cross-graph
data research, entity alignment is a fundamental problem,
and its purpose is to find the same entities of different
graphs. It is common for similar entities to appear in dif-
ferent networks. For example, with the rise and develop-
ment of various online social networks, one person may

• D. Zhu and Y. Sun are with the School of Computer Science and
Technology, Harbin Institute of Technology, Weihai, China, 264209.

• H. Du is with the School of Astronautics, Harbin Institute of Technology,
Harbin, China, 150001.

• N. Cao is with the School of Natural and Computational Sciences, Massey
University, New Zealand.

• Thar Baker is with the School of Computer Science, the Liverpool John
Moores University, United Kingdom.

• Gautam Srivastava is with the Department of Mathematics & Computer
Science, Brandon University, Canada. Research Centre for Interneural
Computing, China Medical University, Taichung, Taiwan.

(Corresponding author: Ning Cao, ning.cao2008@hotmail.com)

register for different social accounts; a scholar may exist
in different academic networks such as Google Scholar
and Baidu Scholar [11], [12]. Similar devices used by the
same person can appear in different networks. Therefore,
the research on the network entity alignment method has
important academic and application value for identification
and tracking of similar devices in IoT scenarios, as shown in
Fig. 1.

Fig. 1. Diagram of network entity alignment in IoT. Each network can be
abstracted into a graph. Nodes represent IoT devices, and edges rep-
resent connections between devices. Different colors represent different
networks, and devices connected by dotted lines are similar device pairs
in different networks identified by network alignment.

The most intuitive method is to align the nodes in dif-
ferent networks by comparing artificially defined reference
attributes, such as username, age, gender, and hobbies [13],
[14]. Since the attributes of matching nodes in different
networks may vary greatly, considering only the basic at-
tributes of nodes causes high volatility in the results. For
example, the attributes of a device in different networks
may be different, along with the settings that may be set
according to the functions of different networks. In addition,
entity alignment through structural similarity is a common
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method [15], [16]. This type of method is very sensitive to
the network structure, which is not static. In addition, such
methods rely on complex operations such as matrix decom-
position and are not suitable for decomposing large-scale
network data. With the rapid development of deep learning,
in recent years, methods based on network representation
learning [17], [18], [19], [20] have attracted increasing at-
tention. These methods use network embedding methods
to convert node attribute and structural information into a
low-dimensional vector space in each graph and then learn
mapping functions of vectors between different networks.
This kind of method combines the attribute and structural
information in the network, which greatly improves the
accuracy and stability of entity alignment. However, most
such methods rely on manually labeled anchor links. Due to
personal privacy and security restrictions, obtaining these
anchor links is very difficult, and in large-scale network
data scenarios, labeling these data is a very labor-intensive
task. In addition, the existing network entity alignment
methods simply align the nodes but do not leverage the
tightly connected group structure in the network, which
has a great effect on improving the performance of entity
alignment. Because personal smart home and other IoT
devices often present the phenomenon of local network
aggregation, the group structure of nodes in graph data
is particularly important in the recognition of similar IoT
devices across the network.

In this paper, we propose a method of Hierarchical
Unsupervised Network Alignment (HUNA) to identify sim-
ilar IoT devices in different networks by a deep learning
approach. Firstly, we propose an Unsupervised Network
Alignment method based on adversarial networks (UNA),
which leverages the adversarial properties of adversarial
networks to achieve network entity alignment under unsu-
pervised conditions. Secondly, we design a cycle adversarial
structure to solve the problem of abnormal state oscillations
in adversarial learning [21], [22], [23] and achieve bidirec-
tional conversion between networks. Finally, we validate the
superiority of our method through experiments on real and
synthetic datasets. As far as we know, this is the first AI-
based entity alignment method to analyze IoT. We provide
a new idea and method for the research of multi-network
data fusion and network security in the 5G era.

The rest of this paper is arranged as follows: Section
2 discusses some research work related to this paper, in-
cluding network alignment and deep learning. Section 3
presents our proposed methodology in detail. Section 4
evaluates the method and baselines with real experiments
and discusses the experimental results in detail. Section 5
concludes the paper and Section 6 provides the discussions
of the directions for future research.

2 RELATED WORK

In this section, the work related to this paper is discussed,
mainly including the research work on network alignment
and deep learning.

2.1 Network Alignment
Network entity alignment technology, as an important re-
search point in the field of network datamining, has at-

tracted many researchers in the past decade. The goal of
network alignment is to identify the node pairs in different
networks, as shown in Fig. 1. The method of network entity
alignment based on attribute matching [13], [14] relies on
artificially defined features, such as username, age, gender,
and hobbies. Because the attributes of nodes have great
uncertainty, considering only the basic attributes of nodes
causes high volatility in the results. For example, the names
of the same user in different networks may be intentionally
set to be different, and different parameters may be set
according to the functions of different networks.

The second method is based on network topology
matching [15], [16]. For example, the core idea of IsoRank
[15] is that if the local structures of the nodes in two
networks are similar, the more likely they are correspond-
ing nodes. BigAlign [16] considered both the manually
defined attributes and the network topology, which greatly
improved performance. These kinds of methods are very
sensitive to the network structure, which is not static. In
addition, such methods rely on complex operations such as
matrix decomposition and are not suitable for decomposing
large-scale network data.

In the area of IoT, data are accumulating in a variety
of formats, and traditional methods are no longer suitable
for large-scale and diverse data scenarios. In recent years,
with the development of deep learning and network repre-
sentation learning [24], network entity alignment based on
network embedding [12], [25] has received increasing atten-
tionfor example, PALE [12]. First, PALE embeds the network
into a low-dimensional feature space in which each node is
represented as a feature vector that contains rich structural
and semantic features. The network entity alignment task
is transformed into a mapping function that learns node
vector transformation between different network spaces.
PALE requires pre-matched node pairs (anchor links) for
supervised training. However, due to personal privacy, se-
curity, and commercial barriers, anchor links are difficult
to obtain in reality. Therefore, the alignment of network
entities in unsupervised learning is the future development
trend, especially in massive data scenarios. The approach of
Chen [26] belongs to the category of unsupervised learning,
which does not need the anchor links. Although Chen
et al. [26] used a similar adversarial network to achieve
network entity alignment under unsupervised conditions,
it can achieve only a one-way conversion from one network
to another, but not a two-way conversion, and it does not
use the group hierarchy to optimize the efficiency of entity
alignment.

2.2 Deep Learning

Deep learning is a technique of nonlinear transformation
or representation learning of an input by a neural network
with no less than two hidden layers. A deep neural network
consists of an input layer, several hidden layers, and an out-
put layer. There are several neurons in each layer, and there
are connection weights between the neurons. Each neuron
simulates a living organism’s neural cells, and connections
between nodes simulate connections between neural cells.

Convolutional Neural Networks (CNN) are a kind of
feedforward neural network with depth structure and con-
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Fig. 2. Diagram of the overall framework. H1 and H2 denote low-dimensional vector representations of nodes learned by network embedding
methods in Network1 and Network2, respectively. H,

1 and H,
2 denote the low-dimensional vector representation of the group obtained by the

nodes in Network1 and Network2 through our proposed hierarchical group optimization module, respectively.

volution computation. It is one of the representative algo-
rithms of deep learning. CNN [27], [28] has the capability
of representation learning and can carry out shift-invariant
classification of input information according to its hierarchi-
cal structure, so it is also known as ”translation invariant
artificial neural networks.” Hubel and Wiesel [27] recorded
the electrical activity of various neurons in a cat’s brain.
They used a slide projector to show the cat certain patterns
and noted that certain patterns stimulated activity in certain
parts of the brain. This single-neuron recording was an inno-
vative work, made possible by special recording electrodes
invented by Hubel earlier, which they used to systematically
create maps of the visual cortex. In the ImageNet recognition
contest of 2012, Hinton [28] introduced Alexnet into the
new deep structure and dropout method and reduced the
error rate from above 25% to 15%, which upended the
image recognition field. The former CNN also has many
applications in natural language processing, speech signal
processing and other fields.

Recursive neural networks (RNN), which are used to
process sequence data, are another representative model
in the field of deep learning. In the traditional neural net-
work model, the layers are fully connected, and the nodes
between each layer are disconnected. However, this kind
of ordinary neural network cannot process the sequence
data, in which there is a dependency relationship between
each of the sequence data. For example, predicting the next
word in a sentence usually involves using the previous
word because the words before and after a given word
are not independent. RNN refers to a sequence in which
the current output is related to the previous output. The
specific manifestation is that the network will remember
the previous information, keep it in the internal state of
the network, and apply it to the calculation of the current
output. That is, the nodes between the hidden layers are
no longer connectionless but linked, and the input of the
hidden layer contains not only the output of the input layer
but also the output of the hidden layer at the previous time.

In theory, RNN can process sequence data of any length,
but in practice, to reduce complexity, it is often assumed
that the current state is associated with only a small number
of previous states. LSTM [29] and GRU [30] are common
RNN variants and have been applied in machine translation,
speech signal processing and other fields.

CNN is used to process spatial information, and RNN is
used to process sequence data. With the rapid development
of the Internet and the popularity of mobile devices, we
can carry out online chatting, online sharing and online
transactions anytime and anywhere. A large amount of data
are generated on the network. There are all kinds of complex
and diverse relationships between different individuals,
which can be abstracted as graph data. Prior to the advent of
graph neural networks (GNN), the existing models in deep
learning could not directly process such graph data. The
concept of GNN was first proposed by Scarselli et al. [31]
in 2009. It extends existing neural networks to process data
represented in graphs. In the graph, each node is defined
by its characteristics and associated nodes. Later, with the
further analysis of graph data, some new GNN variants
such as G2S [32] and R-GCN [33] were proposed. A class
of variants is the information processing of edges, such as
weight or edge type. With the continuous development of
online networks, a dynamic graph processing algorithm [34]
was proposed by Shi et al. This model regarded the graph
evolution as a time sequence process and continuously
predicted the graph information of the next time point by
using the information in current and historical graphs. With
the emergence and application of various complex systems,
networks have evolved from homogeneous networks with
the same node type and the same relationship type into
heterogeneous networks with multiple node types and mul-
tiple relationship types. The latest GNN development direc-
tion has also been implemented in heterogeneous network
research, such as metapath-based methods [35], [36] and
multiple information (text, image) fusion methods [37].

With the continuous development and improvement of
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Fig. 3. Diagram of the UNA structure.

deep learning, some methods use it to solve problems in
IoT scenarios. Hu et al. [38] used network representation
learning technology to solve the represen-tation problem
of interaction and communication data in IoT and proved
that the proposed method can more effec-tively capture
the semantic relationship of IoT data through experiments.
Mohammadi et al. [39] adopted the method of reinforcement
learning to improve intelligent service capability in IoT and
smart city scenarios. Its core is the use of reinforcement
learning to make proper use of unmarked data to solve
the problem of difficult acquisi-tion of training data in IoT
scenarios. Abbasi et al. [40] proposed a method to optimize
the partial distribution of workload and created a balance
between latency and edge power consumption. Liao et al.
[41] proposed a channel selection method based on learn-
ing, which combines service reliability awareness, energy
awareness, backlog awareness and improved throughput
by 30% and 36%. In addition, there are some studies using
related methods to solve data storage [42], [43] and security
[44] issues in IoT scenarios. Huang [42] et al. proposed
ThinO-RAM to remove complicated computations in the
client side and requires only O(1) communication cost with
reasonable response time. Liu et al. [43] proposed a novel
multi-cloud ORAM scheme, called NewMCOS to achieve
better performance, much smaller client cache size, lower
read and write overheads. Li et al. [44] proposed the con-
cept of ”forward search privacy”, which ensured that the
search operation on the newly added documents would
not reveal the past query information, and developed new
forward privacy technology to achieve greater security goal.

3 HIERARCHICAL UNSUPERVISED NETWORK
ALIGNMENT

In this section, we first present the overall idea and frame-
work of the proposed model and then detail the technical
implementation and discuss key technologies in each part.

3.1 Overview
The overall framework of our proposed model is shown
in Fig. 2. First, we obtain low-dimensional vector repre-

sentations of nodes through unsupervised network embed-
ding methods (such as DeepWalk [45]). Second, the low-
dimensional vector representation of the nodes is input to
the proposed cycle adversarial network for the learning of
entity alignment mapping. Finally, with the help of the pro-
posed hierarchical group optimization module, we coarse-
grain nodes with similar attributes and a tight structure into
a virtual node (representing a group) and perform entity
alignment optimization on the virtual node. We detail each
core module in the next section.

3.2 Unsupervised Network Alignment
First, an unsupervised entity alignment method based on
adversarial learning is proposed. The overall structure of
the model is shown in Fig. 3. The network consists of two
parts. One part is the generator model, which maps the
node vectors in the source network to the target network
space. The other part is the discriminative model, which
determines whether the input node is a real node or a
node mapped by another network. For example, when we
transform network N1 to network N2, the generator G12

is responsible for mapping the node vector of space N1

to space N2, and its goal is to ”cheat” the discriminative
model as much as possible, so that it is impossible to
distinguish whether the current node is G12 mapped to
space N2 or the real node of space N2. The purpose of the
discriminative model is to distinguish the mapped node and
the real node as much as possible. When training, some of
the vector of space N2 is used as the positive sample, and
the generated node of G12 is used as the negative sample to
train the discriminative model while maintaining G12. With
the sameD1, the training of G12 is then optimized by using
the decision results of D1. Repeatedly, the generator model
and the discriminative model interact until the generator
reaches a certain level of precision.

Therefore, the loss function of the adversarial network is
calculated as:

min
G12

maxL(G12, D1, N1, N2) = logD1(N2)

+ log(1−D1(G12(N1)))
(1)
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The objective function of network N2 to network N1
conversion is calculated as:

min
G21

maxL(G21, D2, N1, N2) = logD2(N1)

+ log(1−D2(G21(N2)))
(2)

Through the above objective function, the mutual map-
ping of the two network vector spaces is realized under the
condition of no labeled training data. However, the problem
shown in Fig. 4 will occur; i.e., the current antagonistic
network can achieve the correct mapping of the overall
distribution of the two network nodes, but corresponding
errors of specific nodes will occur. The details are shown in
Fig. 5(a) and Fig. 5(b).

Fig. 4. Diagram of the overall distribution fitting correctly but partial
nodes fitting incorrectly. The positions of nodes represent the distribution
of nodes in the network space, and the same color represents the node
corresponding to the same entity in different spaces. The black and
green nodes in Network1 have mapping errors in the spatial distri-
bution after being mapped by G12, and their positions are staggered,
which leads to errors in the search for matching the nearest nodes in
Network2.

Fig. 5. Detail diagram of partial nodes fitting incorrectly in (a,b) and the
state oscillation problem in (c). In (a), there is a cross-mapping error
between the node pairs in Network1 and Network2. In (b), two nodes
in Network1 map to the same node in Network2, while other nodes
in Network2 have no corresponding nodes in Network1. In (c), after
adding the reconstruction loss, the phenomenon of oscillation between
the two states is prone to occur during the training.

To solve the above problems, the reconstruction loss
module is added based on the original adversary network
to ensure the alignment of nodes as shown by the dotted
line in Fig. 3. After G12 mapping the nodes in the source
network space N1 to the destination network space N2, we
expect G21 to have the ability to restore the mapped nodes
to the source network space N1, as shown in equation (3).
The diagram of node reconstruction is shown in Fig. 6.

G21(G12(N1)) ≈ N1 (3)

Fig. 6. The diagram of node reconstruction.After nodes in network 1 are
mapped by G12, they can be reverted to network 1 by G21 ideally. After
continuous training to reduce the reconstruction loss.

Therefore, the loss function of the Cycle-GAN is calcu-
lated as:

min
G12,G21

Lcyc(G12, G21, N1, N2)

= ||G21(G12(N1))−N1||1
+||G12(G21(N2))−N2||1

(4)

However, the instability problem of state oscillation will
still occur in the model after the reconstruction loss is
added, as shown in Fig. 5(c). To solve this problem and
further optimize the network structure, we utilize a Cycle
Adversarial Network with two pairs of generative and
discriminative models, which contains two reconstruction
loss parts. Generators of the same color represent parameter
sharing. Through two-way training of the two networks,
mutual conversion between the two network nodes under
unsupervised conditions is achieved.

3.3 Hierarchical group optimization module

The module of the overall process is diagrammed in Fig.
7. By the network embedding method, we can obtain the
vector representation of the node that contains the semantic
relationship between nodes, and then similar nodes can be
gathered by a clustering algorithm (such as k-means). To
provide effective input in the next group alignment, the
information aggregation process is also needed to represent
all nodes in a group as a virtual node vector.

One simple method is to use the sum of all node vectors
or an averaging operation. However, the aggregation results
of these methods can be easily affected by special nodes, and
changes to a few attributes have a greater influence on the
final result, which is not conducive to the stability of the
model training. Therefore, we need a smooth mechanism
within the group on the properties of the nodes for smooth
operation.

A hierarchical group optimization method based on
Graph Attention is proposed in this paper, which uses the
Graph Attention network to perform information aggrega-
tion operations on nodes in the group.

First, a virtual node is introduced into each group, and a
virtual edge with a real node pointing to the virtual node is
added between each real node and the virtual node. Second,
the real node hi and the virtual node vector hj are input
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Fig. 7. Flow diagram of the hierarchical group optimization module. The black bold line represents the link edge between nodes or groups, the
colored thin lines represent the coarse-grained process or group gathering process, the different node colors represent the different groups divided,
and the black dotted line represents the entity alignment process.

to the Graph Attention network to calculate the attention
weight, which is calculated as:

eij = LeakyRelu(W [hi||hj ]) (5)

where W denotes the trainable parameters. The normalized
weight is obtained through the SoftMax function, which is
calculated as:

αij =
exp(eij)∑

s∈Ni

exp(eis)
(6)

where Ni represents the neighbors of node i. After the
attention weight of each node to the virtual node is ob-
tained, the final vector representation of the virtual node
is further calculated, it will also be the final coarse-grained
representation of the group, which is calculated as:

hi=σ(
∑
k∈Ni

αik · hk) (7)

To make the training more stable and further reduce the
impact brought by the variability of the network structure,
we added multiple attention, which is calculated as:

hi= ||Kk=1σ(
∑
j∈Ni

[αij ]k · hk) (8)

where [αij ]k represents the weight calculated by the k − th
attention network, and K denotes the header numbers. The
schematic diagram is shown in Fig. 8.

As for the link relationship between the two groups
after coarse-graining, we stipulate here that if there are real
nodes connected between the two groups, an edge is added
between the virtual nodes of the two groups.

4 EXPERIMENT

In this part, we comprehensively measured our method
based on the dataset generated from the real dataset and

compared and analyzed it with other supervised learning
methods and unsupervised learning methods. We also ver-
ified the stability of our model through case study experi-
ments

4.1 Dataset

In the experiment, we selected three real datasets and one
generated dataset from [3] to simulate IoT data.

TABLE 1
Datasets information

Douban Flickr-Lastfm FB-TW

Number of nodes 3906-1118 12974-15436 6714-10733
Number of edges 8164-1511 16149-16319 7333-11081
Average degree 4.18-2.70 2.49-2.11 2.18-2.06

TABLE 2
Datasets insight

Douban Flickr-Lastfm FB-TW

RN 0.3851 0.0017 0.0149
RSFG 1.000 0.8248 No features

Douban online vs Douban offline real datasets: These
data were taken from the Douban network. Network 1 is
an online interactive relationship network; network 2 is
a Douban offline network. The edges between nodes and
points indicate that two users have met in the same social
event offline. Offline network 2 contains 1118 users, and
online network 1 contains 3906 users, including the 1118
offline network users. The user’s geographical location is
used to build the node properties.

Flickr vs Lastfm real datasets: The Flickr network has
12,974 nodes, and the Lastfm network has 15,436 nodes. The
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gender of the user is used to construct the node properties,
and the alignments between some nodes can be obtained.

Twitter vs Facebook (FB-TW) real datasets: These
datasets were gathered from Singapore-based Facebook
and Twitter accounts. The Facebook subnetwork has 17,359
nodes, and the Twitter subnetwork has 20,024 nodes. The
partial ground truth of 1998 user identity pairs is deter-
mined by users short biographical descriptions on their
Twitter accounts in which they state their Facebook ac-
counts. Node features are not provided for this dataset.

Protein-Protein synthetic datasets: In order to better
measure the performance impact of network characteristics
on the model, we adopted a method like [3] to generate
datasets. Synthetic datasets from the protein-protein dataset.
To learn the effect of structural noise, we remove edges with
different probability without leaving any nodes isolated.

The statistics for all datasets are shown in table 1 and
table 2, where RN denotes the ratio of two nodes from
ground truth, in which neighbors in the source network also
have a connection in the target network. RSFG is the ratio to
which nodes in ground truth share similar attributes in the
source and target networks.

4.2 Comparison Methods

In this paper, we compare the following methods.
ISORANK [15]: IsoRank is a popular and typical tech-

nique for this category. The general idea of IsoRank is that
two nodes from two networks are similar if their neighbor-
hoods are similar.

BIGALIGN [16]: BigAlign aims to solve the network
alignment problem by converting to bipartite graphs using
the original feature and handcrafted features of network
nodes, such as node degree, weight, and cluster coefficient.
Given the specific structure of bipartite graphs, BigAlign
hopes to achieve better alignment quality.

FINAL [23]: FINAL is a typical example that defines
three criteria to align two networks: structural similarity,
node feature similarity, and edge feature similarity.

DEEPLINK [25]: Deep Link involves a preprocessing
step in which prior mappings between two graphs are used
to fill in missing edges that are available in one graph but

not the other. Deep Link achieves the approach by construct-
ing the graph embedding, and its mapping function differs
as it considers the mapping direction as well.

UNA (our): Our model without hierarchical model opti-
mization.

HUNA (our-full): Our model with hierarchical model
optimization.

4.3 Experiment Settings

For the method we proposed, first, the network represen-
tation learning process was required. In the experiment,
Deepwalk was used for unsupervised network embedding
to obtain the low-dimensional vector representations of
nodes. The window size was set to 5, and the embedded
dimension was set to 32. Therefore, the generator of the anti-
neural network was 32*32, and the judges for the anti-neural
network were set as two-layer neural networks with a size
of 2048. Leaky-Relu was used as the activation function. For
our hierarchical structure optimization module, we adopted
two-layer iterative optimization. The number of the coarse
k-means group in the first layer was set to =200, the number
of the coarse k-means group in the second layer was set
to =50, and the number of multiple attention was set to
k=3. For the benchmark method, we adopted the same
optimal parameters as in [1] by default, and each result was
averaged after 10 runs. The experimental environment was
a Pytorch with an Intel Core i7-9700k CPU, 32 GB of RAM,
and an NVIDIA GeForce RTX 2080 TI 11G GPU.

4.4 Evaluation

In this paper, we use the following indicators to evaluate the
model.

1) ACCURACY:
Accuracy is a critical evaluation index of network align-

ment, which is calculated as:

Accuracy =
n1

n
(9)

where n1 is the number of correctly identified node pairs,
and n is the number of all ground truth node pairs.

2) PRECISION@K:
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Fig. 9. Result of the experiment to explore the effects of the edge removal ratio. The horizontal axis is the edge removal ratio and represents
the difference between the two networks. The vertical axis shows the performance of various models in terms of three indicators. Different colors
represent different models.

In addition to Accuracy, we also use Precision@k evalu-
ation, which is calculated as:

Precision@k = nrk
n (10)

where nrk is the number of times that the target node
appears in the top n similarity candidates, and is the number
of all ground truth node pairs.

3) Mean Average Precision (MAP):
In practical applications, we want the correct results to

be ranked as high as possible among all potential results
each time. Therefore, to measure the performance of the
model more comprehensively, we also employ Mean Aver-
age Precision (MAP) as a metric to measure its performance
in sorting multiple potential results. MAP can be calculated
as:

MAP = 1
ra

(11)

where ra is the rank of a positive matching node in the
sequence of sorted candidates.

4.5 Experimental results and analysis
The experimental results of each method on real data are
shown in table 3. It can be seen in the table that BigAlign
had the worst performance, it ignores the rich attribute
information on nodes and edges in many real graphs and
is prone to lead to sub-optimal results.IsoRank and FINAL
achieved better results, mainly due to the use of username
similarity. The result of the UNA without the hierarchical
optimization method is worse than FINAL on the Flickr-
Lastfm dataset. This may be caused by the instability the
training of GAN, which is also the pain point in the field
of deep learning. The HUNA achieved the best results. This
shows that our hierarchical optimization module has a very
good optimization effect. It also eliminates the performance
problems caused by the training instability of GAN to some
extent.

4.6 Case study
We use the graph size imbalance to measure the sensitivity
of the model. Graph size imbalance is another possible
factor influencing the alignment method. In this experiment,
we use source graphs with 1000 nodes and 5000 nodes

TABLE 3
Real data accuracy

Methods Douban Flickr-Lastfm FB-TW

IsoRank 0.0418 0.3967 0.0017
BigAlign 0.0123 0.0051 0.0009
FINAL 0.4134 0.6642 0.0006
UNA 0.4317 0.6297 0.0123

HUNA 0.5287 0.6834 0.02361

and then randomly remove nodes from the source graph
to generate the target graph. The ratio is from 0 to 0.5, so
the imbalance between the source and target networks is
1:1 to 2:1. It can be seen in Fig. 9 that compared with the
contrasting method, the stability of the proposed method
is superior to the other methods. In terms of precision, the
performance of IsoRank and our method is best without
removing edges, but the performance drops sharply after
removing a few edges. The other methods are relatively
stable, but the accuracy is always less than 0.6. The results of
MAP and Precision@10 are similar. The FINAL performance
is good at the beginning but drops with increasing edge
removal ratio. Our proposed model is consistently the best
performing and most stable and has significant advantages
over the other approaches. The detailed result is shown in
table 4.

5 CONCLUSION

In this paper, we propose a group structure-enhanced un-
supervised cross-network entity alignment method to solve
the problem of identifying similar devices under different
networks. First, we design a node alignment model based
on the cycle adversarial network, which makes full use
of the adversarial properties of the adversarial network to
achieve unsupervised network entity alignment and adds
a bidirectional cycle structure to solve the problems of
state oscillation and instability in the adversarial learning.
Second, we proposed for the first time adopting a group
structure to optimize the alignment of network entities.
Through a well-designed group structure aggregation opti-
mization module, the nodes closely related to attributes and
structures were aggregated into a coarse-grained node, and
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TABLE 4
Result comparison on Protein-Protein synthetic datasets

Metrics Edge removal ratio IsoRank BigAlign FINAL Our(full)

0 0.990 0.607 0.393 0.992
0.01 0.262 0.582 0.368 0.974

Accuracy 0.05 0.233 0.514 0.342 0.932
0.1 0.151 0.467 0.324 0.894
0.2 0.122 0.321 0.315 0.833

0 0.160 0.211 0.603 0.928
0.01 0.140 0.183 0.360 0.892

MAP 0.05 0.122 0.154 0.320 0.881
0.1 0.103 0.130 0.293 0.872
0.2 0.081 0.112 0.214 0.845

0 0.113 0.221 0.623 0.998
0.01 0.091 0.212 0.490 0.962

Precision@10 0.05 0.082 0.198 0.381 0.951
0.1 0.071 0.161 0.342 0.922
0.2 0.060 0.144 0.315 0.898

the coarse-grained nodes were aligned at the group level.
Experiments on several real datasets and generated datasets
verify that our method improves the accuracy by approxi-
mately 10%-20% and the stability by a large amount. As far
as we know, this is the first AI-based entity alignment to
enable the analysis and identification of similar IoT devices
across different networks. This will provide a new idea and
method for the research of multi-network data fusion and
network security in the 5G era.

6 DISCUSSIONS

However, it is important to note that in a real dataset, all
methods failed to achieve a result greater than 0.7, so the
result was close to zero, suggesting that the present method
applied to real datasets achieved a significant difference. We
suppose that the main reason is that the difference between
network structures is more uncertain (e.g., node degree)
than the generated data. This is the direction that network
entity alignment researchers should explore. Secondly, the
group information was regarded as the optimization of
entity alignment for the first time. How to integrate group
discovery with entity alignment and achieve end-to-end hi-
erarchical entity alignment is our future research direction.
Finally, in the 5G era, IoT devices are frequently added and
updated. Therefore, how to realize data fusion and analysis
of dynamic network is a research hotspot in the future.
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