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A B S T R A C T

Road damages have caused numerous fatalities. Therefore, the study of road damage detection, espe-
cially hazardous road damage detection and warning, is critical in improving tra�c safety. Existing
road damage detection systems mainly process data on clouds. However, they are not able to warn
users timely due to the long latency. Recent edge-computing techniques mitigate this problem while
users can only receive warnings of hazardous road damages within a small area due to the limited com-
munication range of edges. Besides, untrusted edges might misuse users’ sensitive information. In
this paper, we propose FedRD: a novel privacy-preserving edge-cloud and Federated learning-based
framework for intelligent hazardous Road Damage detection and warning. In FedRD, a new hazardous
road damage detection model is developed leveraging the advantages of hierarchical feature fusion. A
novel adaptive federated learning strategy is designed for robust model learning from di�erent edges
with limited and unequally-sized datasets. A new individualized di�erential privacy approach with
pixelization is proposed to protect users’ privacy before sharing data. Simulation results demonstrate
that FedRD achieves a high detection performance and provides fast responses with accurate warn-
ing information covering a wider area while preserving users’ privacy, even when some edges have
limited data.

1. Introduction
Road transportation networks are indispensable social

and economic components for all nations [7]. However, road
systems are crumbling and sometimes even to a dangerous
level due to aging, lacking periodic maintenance, and natu-
ral disasters [15]. Road damages, especially hazardous road
damages (e.g., big holes, blowups, fractures, and pounding),
highly increase the risk of road accidents and might cause
serious injuries or fatalities [14]. For example, when a new
big hole appears on a road while drivers are not aware of it,
one vehicle may collide with another and injure the drivers
or passengers when hitting or avoiding the big hole. As re-
ported in [37, 14], road accidents caused by road damages
lead to millions of injuries every year and cost around 1.5%
to 3% of Gross Domestic Product (GDP) economic losses
all over the world. Therefore, detecting hazardous road dam-
ages and warning drivers timely is critical for ensuring tra�c
safety.

However, due to colossal road network volume and clut-
tered real-world environments, it is challenging for drivers to
obtain accurate road damage information (e.g., types, levels,
and locations). Besides, current road condition monitoring
is predominantly performed by certified inspectors, which is
subjective, labor-intensive, costly, and time-consuming [24].
Expensive vehicles equipped with various sensors, high-defi-

?This project is in part supported by the China Scholarship Council
(Grant ID: 201706050095).

<Corresponding author
yali.yang001@gmail.com ( Yali Yuan*)

ORCID(s):

nition cameras, and illumination devices are also utilized in
countries like Germany and the UK. However, it is una�ord-
able for some developing countries and local road adminis-
trations. So far, some road damage detection systems [34,
27] have been proposed, but they can’t warn drivers about
hazardous road damages in advance. Few researches enable
road damage warning [6] by using a central cloud server.
In these systems, data is processed on a cloud, and warning
messages are sent to drivers from the cloud. However, due
to the long latency between the cloud and drivers, drivers
may not receive the warnings timely, which might result in
serious road accidents. Further, most existing systems are
sensor-based [1, 12], so road damages can only be detected
when vehicles hit them, which is dangerous and not suitable
for accident-preventing.

The authors’ previous work [41] provided an edge-cloud
computing-based framework named EcRD for low-latency
road damage detection and warning by deploying the detec-
tion model on edges. Unlike sensor-based systems [1, 12],
EcRD detects hazardous road damages before vehicles hit-
ting them, which is much safer. However, in EcRD, drivers
can only receive warnings about road damages within a small
area due to the limited communication range of edges. For
instance, Road Side Units (RSUs) are usually used as edges
in intelligent transportation systems. However, their com-
munication range is only around 1000 meters. Vehicles cov-
ered by an RSU can only receive road damage information
within this range. Moreover, the detection performance of
edges is strictly constrained by the amount of data collected.
Some edges may fail to detect road damages if they do not
have enough data for training. Even if edges or devices can
directly collect pre-trained models from the cloud, it requires
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direct data sharing from edges or devices to the cloud, which
has a high privacy leakage risk. Also, the computation power
and storage space of IoT Devices are limited. Despite the im-
portance, there is no existing work that addresses these prob-
lems in this field. Furthermore, data collected from users’
Devices at edges contain massive private information, for ex-
ample, people’s faces, locations, and license plate numbers.
Only few researches [39, 3] considered the privacy problem
for road condition inspection by using cryptographic tech-
niques. However, they have a high computation cost for key
generation, authentication, encryption, and decryption. Be-
sides, no existing work considers the privacy problem inside
image/video data in this field.

To tackle these issues, in this paper, we design FedRD: a
novel privacy-preserving edge-cloud-based federated learn-
ing framework for intelligent hazardous road damage detec-
tion and warning. In FedRD, a new map construction ap-
proach is introduced. It provides drivers/users a hazardous
road damage warning map, which has hundreds or even thou-
sands of times wider coverage than EcRD [41]. Additionally,
Federated Learning (FL) strategy [25] is utilized to collabo-
ratively learn hazardous road damage information from de-
centralized edges without direct data sharing. It improves
the model’s robustness and protects people’s privacy from
untrusted cloud servers. Di�erent from [16, 25, 29], the
developed Adaptive Federated learning strategy (AFed) en-
sures high detection performance by only aggregating quali-
fied models selected from topK models received from edges.
In this way, high detection performance can be guaranteed
within limited computation iterations. Also, it can prevent
data poisoning attacks since the local models trained on poi-
soned data will not be used for global aggregation due to
their low performance on the shared testing set on the cloud.
Although FL protects privacy from untrusted clouds by keep-
ing data locally on edges, there is still a high privacy leak-
age risk because FL does not protect privacy from untrusted
edges. Additionally, private data can also be recovered only
by shared parameter gradients of FL [13]. Hence, Di�eren-
tial Privacy (DP) technique [8] is utilized to fill in this gap.
Unlike [9, 30, 38], the proposed Individualized Di�erential
Privacy with Pixelization (IDPP) method preserves privacy
on users’ devices before uploading data to untrusted edges,
which is more private. Moreover, it has 3_4 less computa-
tion cost because noise is added to pixelized images instead
of original images. To the best of our knowledge, we are the
first to propose a privacy-preserving edge-cloud-based fed-
erated learning framework for smart hazardous road damage
detection and warning addressing the problems of existing
systems (e.g., long latency, small coverage, model robust-
ness, and privacy). The main contributions of this paper are
summarized as follows:

• A novel edge-cloud computing and Federated learning-
based framework (FedRD) for intelligent hazardous
Road Damage detection and warning is proposed. Fe-
dRD utilizes the advanced edge-cloud computing, fed-
erated learning, and di�erential privacy techniques for
fast, accurate, cheap, and private hazardous damage

detection and warning.

• An Advanced road Damage Detection model (ADD)
for hazardous road damage detection is developed. ADD
leverages high feature extraction advantages of deep
learning models with hierarchical feature fusion. ADD
enables fast, accurate, and robust road damage detec-
tion.

• A novel Adaptive Federated learning strategy (AFed)
is designed which updates the learning models based
on their detection performance and learning speed. It
ensures more robust model learning with low commu-
nication rounds. Additionally, a new map construc-
tion method is introduced to provide road users a global
warning map covering a wider area.

• A new privacy protection technique named Individu-
alized Di�erential Privacy with Pixelization (IDPP) is
introduced based on the advanced di�erential privacy
technology. IDPP protects both users’ sensitive infor-
mation (e.g., ID and location) and the privacy inside
images/video frames (e.g., people’s faces and drivers’
plate numbers) collected at users’ devices before up-
loading to edges.

• Extensive evaluations are performed to prove that the
proposed FedRD framework can achieve a high detec-
tion performance with low latency and provides accu-
rate warning information covering a wider area while
preserving privacy, even when some edges have lim-
ited data.

The remainder of this paper is organized as follows: Sec-
tion 2 explains the design of the FedRD framework, includ-
ing design goals, architectural components, components in-
teractions, and algorithm design. Section 3 introduces adap-
tive federated learning and warning map construction. Sec-
tion 4 elaborates individualized di�erential privacy with pix-
elization technique. Experimental setup, datasets, and base-
lines are illustrated in Section 5. The performance of the
proposed approaches and the overall FedRD framework is
evaluated in Section 6. Section 7 gives a detailed summary
and comparison of the related literature. Finally, Section 8
concludes the paper.

2. System Design
This section introduces the design goals, architectural

components, components interactions, and details of the pro-
posed AbRS and ADD models of the FedRD framework.

2.1. Design Goals
The following goals drive the design of FedRD:

1. Latency: A hazardous road damage detection and warn-
ing system must warn users timely about dangerous
road damages for accident prevention, which means
the latency should be low.
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Figure 1: Overall framework of FedRD.

2. Accuracy: The proposed system should detect haz-
ardous road damages accurately since miss-detected
dangerous road damages are fatal for road users.

3. Robustness: The proposed system’s performance should
be robust to di�erent environments, such as di�erent
weather conditions, various illuminations, and obsta-
cles like vehicles and pedestrians. Besides, it should
achieve high performance even when some edges only
have limited data (which is common in the real world).

4. Coverage: The designed framework should provide
users with hazardous road damage information with
wide coverage for accident prevention and route plan-
ning.

5. Cost: Image/video analysis is a high resource-demanding
task. The size of an image/video is usually large, and
the amount of data quickly increases as time goes by.
Also, the Internet bandwidth and data storage are ex-
pensive. Hence, the developed system requires low
data transmission and data storage costs.

6. Privacy: There is a high privacy leakage risk from
untrusted edges/clouds or during data transmission in
open-access environments. The designed framework
should protect the privacy of users, such as ID and
location, and the privacy inside collected data, e.g.,
people’s faces and license plate numbers.

2.2. Architectural Components
The proposed FedRD framework that satisfies the design

goals is illustrated in Fig. 1. The components of this frame-
work are described in detail as follows:

– Devices: This component gathers video data by perva-
sively used IoT devices (e.g., smartphones) mounted

on vehicles. The Abnormal Road Screening module
(AbRS) deployed on devices detects suspicious road
damages. Then, the data (including users’ informa-
tion) is processed by Individualized Di�erential Pri-
vacy with Pixelization method (IDPP) to protect pri-
vacy. Finally, the processed data is sent to the nearest
edge (e.g., Road Side Unit (RSU)).

– Edges: The Advanced road Damage Detection model
(ADD) is deployed on edges for fast response. ADD
detects hazardous road damages. The detection per-
formance of the ADD models is further improved by
the Adaptive Federated learning strategy (AFed). Once
any dangerous road damages are detected, edges broad-
cast warning maps to covered users for accident-preventing.
The warning maps contain the detected hazardous road
damage information, for example, type (e.g., big holes,
fractures, blowups, pounding), level (i.e., low, middle,
and high), and location (i.e., GPS coordinates). They
are then uploaded to the cloud for aggregation.

– Cloud: The cloud serves as an aggregator which ag-
gregates selected ADD models from edges into one
model and sends it back to all edges to improve the
learning process of the ADD models on edges. Mean-
while, it integrates received warning maps from edges
into one warning map and sends it back to the edges
for both accident-preventing and route planning.

– AbRS: AbRS is deployed on devices. It is a light-
weighted deep learning model and quickly detects sus-
picious abnormal roads from raw videos recorded by
the devices. In this way, normal roads are successfully
screened out, which significantly reduces data trans-
mission cost between devices and edges. Then, only
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suspicious abnormal road data is transmitted to edges.
– IDPP: The IDPP technique protects privacy on users’

devices before sending data to edges, including both
users’ privacy (e.g., IDs and locations) and privacy in-
side collected images/videos (e.g., faces and license
plate numbers). It is developed based on the advanced
di�erential privacy technique. Besides, a pixelization
approach is utilized in IDPP to reduce computation
and communication costs.

– ADD: The ADD model functions as a hazardous road
damage detector. It is a deep learning-based model
with hierarchical feature fusion. It is deployed on edges
to reduce latency. ADD enables fast and accurate haz-
ardous road damage detection and warning.

– AFed: The AFed strategy further improves the detec-
tion performance of the ADD models on edges by us-
ing the cloud as a parameter server without requiring
direct data sharing.

2.3. Component Interactions
The detection models deployed on edges and clouds are

defined as local models and global models, respectively. Lo-
cal models learn knowledge from data on edges, while global
models assist the learning process of local models by ag-
gregating the local models. The FedRD framework mainly
consists of the following four phases that are repeated peri-
odically for e�cient hazardous road damage monitoring:

• Phase 1: Each vehicle collects road condition data by
its carried smart IoT devices. The AbRS model on
devices detects suspicious abnormal roads. The de-
tected suspicious abnormal roads are transmitted to
the nearest edge after protecting privacy by the IDPP
technique.

• Phase 2: Each edge detects hazardous road damages
by the ADD model based on data received from cov-
ered users. Once detected, it broadcasts the hazardous
road damage warning information to all users within
its communication range. The hazardous road damage
warning information from an edge is also called a lo-
cal map. Then, the edge sends the trained local model
and the local map to the cloud.

• Phase 3: The cloud selectively aggregates received
local models according to their performance to gener-
ate a global model. Meanwhile, the cloud integrates
all collected local maps into a global map. Afterward,
the cloud sends the global model and the global map
back to the covered edges. Also, the global map is sent
to road administration authorities for timely repair and
maintenance.

• Phase 4: Edges update their local models with the re-
ceived global model and broadcast the acquired global
map to the covered users. With the global map, users
are informed about road conditions in a broader area
(e.g., a city) and can select optimal routes for travel-
ing.

Table 1

Summary of notations.

NotationDescription

Vi The i-th video
R, C No. of rows and columns
Mi The i-th image in {M1,5 ,MN}
L Prediction loss of AbRS
Lthreshold Threshold of prediction loss L
ci Different classes of hazardous road damages
l1, l2, l3 Low, middle, and high level hazardous road damages
K Top K received local models
Q Top Q best local models
wt

i Local model parameters on i-th edge at time t
wt Global model parameters at time t on cloud
t Period of time
Di No. of images on the i-th edge
D Total no. of images on all edges
b Optimal pixels differ from neighboring images
1_✏ Level of privacy
F (x) A random function
X,�, 2b2 Random variable, its mean and variance
P Pixelization function
✓i Value from Laplace distribution
�P L1-sensitivity of the function P
S No. of subsets
M(r,c) An image with r rows and c columns
l Length of a square subset
E No. of epochs.

2.4. Algorithm design
In this section, the proposed algorithms incorporating

the Abnormal Road Screening model (AbRS) and the Ad-
vanced hazardous road Damage Detection model (ADD) are
introduced in detail.

Abnormal road screening model (AbRS): Video trans-
mission and analysis are high resource-demanding tasks. Di-
rectly transferring video data from devices to edges would
cause network congestion and seriously a�ect other services.
Fortunately, road condition videos recorded by smart IoT de-
vices are primarily normal roads without dangers (around
80%). Hence, it is essential to detect abnormal roads first and
only upload them to edges to minimize network communi-
cation burden and data processing and storage costs. Addi-
tionally, AbRS is built based on deep learning models since
they are more robust for processing real-world data with clut-
tered backgrounds comparing to traditional machine learn-
ing methods combined with hand-craft features [20, 41]. More-
over, considering that the AbRS model is deployed on de-
vices with limited computational power, we choose a light-
weighted deep learning model structure (i.e., depthwise sep-
arable convolutions) to build our AbRS model similar to Mo-
bileNet [19]. As illustrated in Fig. 2, the AbRS model in-
cludes one Convolutional layer (Conv), one Depthwise Con-
volutional layer (DConv), one Pointwise Convolutional layer
(PConv), twelve Depthwise Separable Convolutional layers
(DSConv), a Global Average Pooling layer (GAP), one Fully-
Connected layer (FC), and a softmax classification layer. Dif-
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DConv: Depthwise Conv; Pconv: Pointwise Conv; DSConv: Depthwise Separable Conv;
GAP: Global Average Pooling; FC: Fully-Connected

Figure 2: Abnormal road screening model (AbRS).

ferent from standard convolution operations, a depthwise sep-
arable convolution is a form of factorized convolutions in-
cluding a depthwise convolution and a 1 ù 1 pointwise con-
volution [19], which makes the AbRS model more e�cient.
The AbRS model classifies each video frame as normal roads
and suspicious abnormal roads and only upload suspicious
abnormal roads to edges. In this way, the data transmission
cost can be significantly reduced (by around 80%), and con-
siderably fewer data need to be processed on edges and the
cloud.

The training of the AbRS model requires a large labeled
dataset, while abnormal roads are not easy to collect in some
areas. Also, data samples are considerably di�erent even
within the abnormal road class, making the learning of AbRS
even harder. In contrast, normal roads have a high homo-
geneity. In other words, data samples are similar within the
normal road class. Therefore, we only train the AbRS model
with normal roads, and the abnormal roads are recognized
based on the prediction loss of the model. More specifically,
since the model is well-trained with normal roads, it can rec-
ognize normal roads with considerably high confidence. If
an image’s prediction loss is lower than the threshold, then it
is considered a normal road. On the contrary, if an image’s
prediction loss is higher than the threshold, it is classified as
an abnormal road.

We define a video as V . The videos collected by a user
are denoted as {V1,V2,5 ,VN}, where N is the number of
videos collected by the user. Additionally, a frame with R
row and C column pixels in video V is denoted as Mi. The
pixel value at location (r, c) of an image M is defined as
I(r, c). As shown in Fig. 2, videos {V1,V2,5 ,VN} are gath-
ered by a road user with a smart IoT device. The AbRS
model on the device pre-processes the videos to filter out
normal roads. The output of the AbRS model is a prediction
loss L, reflecting the probability of being a normal road. If
L > Lthreshold , then the input is an abnormal road; other-
wise, it is a normal road.

Advanced hazardous road damage detection model
(ADD): The Advanced hazardous road damage Detection
model (ADD) is introduced to detect hazardous road dam-
ages and measure their severity levels. ADD is deployed on

edges instead of the cloud for fast response. Besides, IoT de-
vices are not directly employed for hazardous road damage
detection due to their low computational power, and each
device only has limited training samples. In contrast, edge
servers have much higher computational power than IoT de-
vices and much closer to users than the cloud. Once any haz-
ardous road damages are detected by ADD on edges, warn-
ing messages are distributed to its covered users instantly,
incorporating hazardous road damage types, levels, and lo-
cations.

According to [17], deeper models can significantly in-
crease the classification performance but more challenging
to train and has a higher computation cost. Fortunately, the
deep residual learning structure proposed by [17] is easier to
optimize and can achieve high accuracy from considerably
increased depth. Hence, ADD is built based on deep resid-
ual learning structure, i.e., residual blocks with skip connec-
tions. Although the detection accuracy increases with the
growth of the number of residual blocks, the data process-
ing time is longer. As a trade-o�, ADD only uses five resid-
ual blocks, as shown in Fig. 3. Each residual block contains
a residual function performed by a shortcut connection and
element-wise addition. An example of a residual block is
displayed in Fig. 4.

Di�erent residual blocks produce di�erent levels of fea-
tures. Deep layers produce high-level features, while shal-
low layers generate low-level features. Generally, only the
last layer’s feature is utilized for classification. However,
low-level features also contain valuable information that can
assist the final classification task. In ADD, multiple-level
feature maps are extracted from di�erent residual blocks.
Extra layers are applied to the output of the four residual
blocks (i.e., residual blocks 2, 3, 4, and 5) to fuse the fea-
ture maps, as illustrated in Fig. 3. More specifically, when
an image feeds into the ADD, we can get one feature map
from each residual block (except the first one). The feature
maps are then processed by extra feature fusion layers to re-
fine and resize them. The fusion of the four feature maps
is used to classify the input image. Based on the classifica-
tion result of ADD, the input image is further categorized
into three dangerous levels according to visual severity. To
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Figure 3: Advanced hazardous road damage detection model (ADD).

Figure 4: An example of a residual block.

be more specific, images without damages or only with mi-
nor damages (i.e., cracks and patches) are treated as low-
level. Middle-level and high-level road damages are images
with middle severity damages (i.e., potholes and fractures)
and high severity damages (i.e., big holes and serious road
blowups).

We define the input of ADD as {M1,M2,5 ,MN}, where
Mi is the i-th image and N is the total number of input
images. The input images are classified into six classes by
ADD, denoted as {c1, c2,5 , cN}, where, ci represents dif-
ferent classes of road damages, i.e., cracks, patches, pot-
holes, fractures, big holes, and blowups. Based on the classes
of the damages, the output result is further categorized into
three levels, i.e., {l1, l2, l3} , where l1, l2, and l3 represent
low, middle, and high dangerous levels.

3. Adaptive Federated Learning (AFed) and
Map Construction
Adaptive Federated learning (AFed): Adaptive Fed-

erated learning (AFed) is a decentralized adaptive federated
learning strategy inspired by [25]. Unlike centralized meth-
ods that train a machine learning model with data on a cen-
tral cloud server, decentralized approaches (e.g., Federated
Learning (FL)) train a global model by collaboratively learn-
ing from multiple clients without direct data sharing. Di�er-
ent from existing FL strategies [25, 29, 16], AFed selective
aggregates Q qualified models from top K local models col-
lected from edges, which complies with the fact that the cen-
tral server has no control over local clients. Also, by only ag-
gregating high-quality local models, high performance can
be ensured in limited communication rounds, and data poi-
soning attacks can be alleviated to some extent.

There are mainly two phases in AFed, i.e., local update
and global aggregation. The local update phase updates the
local models at edges periodically, while the global aggre-
gation phase generates a global model by aggregating the
selected local models. Local models are utilized for timely
hazardous road damage detection and warning. The global
model is used for updating local models’ parameters to im-
prove their performance.

We consider the AFed strategy with the setting of one
cloud and N edges. Let Di denote the number of data sam-
ples in the local database held by the edge i. The local train-
ing on the i-th edge aims to obtain a parameter set wt

i of the
local model at time t by minimizing the loss function. The
goal of the cloud is to learn a global model wt over data on
the selected edges. Specifically, the cloud waits until top K
local models are received. Out of them, the cloud aggregates

Yachao Yuan et al.: Preprint submitted to Elsevier Page 6 of 16



Intelligent hazardous road damage detection and warning

Q best local models by:

wt =
Q…
i=1

Di
D

wt
i, (1)

where Di is the number of samples on the i-th edge, while
D is the total number of samples over the selected Q edges.
Also, D = ≥Q

i=1Di.
The training process of the AFed strategy involves the

following four steps. Firstly, edges locally train models on
their datasets to obtain the optimal model parameters {wt

1,5 ,
wt
i,5 ,wt

N} at time t. Secondly, the edges send the locally
trained parameters to the cloud. Thirdly, the cloud selects
Q qualified local models from top K received models. It
stops receiving local models once K local models are col-
lected. The Q qualified local models are selected by com-
paring the detection performance between the K collected
local models. Only the local models with top Q highest de-
tection performance will participate in the aggregation. The
detection performance of both local models and the global
model is evaluated by a shared testing set on the cloud. Then,
the cloud aggregates the parameters of the Q local models
from the edges by Eq. (1). The aggregated global model’s
parameters wt are sent back to edges if its performance is
better than the edges’ local models. Finally, edges update
their local models with the global model. More details of
the method are presented in Algorithm 1, where Fselect(<)
means the selection of top Q local models; P (<) indicates
performance; ⌘ is the learning rate, ‘ is the derivative, l(<)
is the loss function, w and b are the weights and biases; E is
the number of epochs.

Algorithm 1: AFed strategy
Input : Local databases from edges and detection

model ADD.
Output: Optimal local models on edges
for each time period t do

cloud initialize w0;
for every E epochs do

for each edge i = 1, 2,5 ,N do
wt
i },, localUpdate(t,wi

t)
end
cloud wait until receive K local models
wt },,

≥Q
i=1

Di
D Fselect(wt

i)
end
send wt to edges if P (wt) > P (wt

i)
for every E epochs do

update wt
i by wt if receive

wt
i },, wt

i * ⌘‘l(wt
i, b

t
i)

end
send wt

i to the cloud
end

Map construction: In FedRD, the local and global maps
are generated by the local and global models. Based on
the collected road condition information at edges, the local

model detects dangerous roads and classifies them into three
severity levels: low, middle, and high. Then, the local maps,
including the types, levels, and locations, are constructed on
edges. Each edge provides a fast warning by broadcasting
its local map to its neighboring users. After that, each edge
sends its local map to the cloud. The global map is created on
the cloud by aggregating all local maps. The cloud broad-
casts the global map to all users. Then, users can obtain
the latest road conditions in a large area (e.g., a whole city),
which helps users select optimal routes for traveling and sig-
nificantly reduces the road accidents caused by hazardous
road damages.

4. Individualized Di�erential Privacy with
Pixelization
As mentioned in Section 1, although AFed protects pri-

vacy from untrusted clouds, there is still a high privacy leak-
age risk from untrusted edges. Sending data from users’ de-
vices to untrusted edges also poses great threats to users’ data
(e.g., location and ID) and the collected data (e.g., people’s
faces and license plate numbers). To protect privacy, users
must sanitize all data before sending it to edges. Therefore,
we introduce a new privacy-preserving technique named In-
dividualized Di�erential Privacy Pixelization (IDPP) to ful-
fill this requirement. IDPP is built based on the powerful
di�erential privacy approach [21]. Unlike [9, 21], IDPP pre-
serves privacy at users’ devices before uploading to untrusted
edges. Also, images are pixelized before applying DP to re-
duce the computation cost of devices and the communica-
tion cost from devices to edges. Similar to [8], the Laplace
mechanism is employed in IDPP.

4.1. Preliminaries
Following [9], we define neighboring images as follows:

Definition 1. Let two images be M1 and M2. We can say

that M1 and M2 are neighboring images if they have the

same dimension and di�er by b pixels.

According to Definition 1, images’ sensitive informa-
tion, such as faces and license plate numbers, can be pro-
tected by up to b pixels di�erence. We can select the optimal
b value to customize di�erent levels of privacy according to
the requirements of users and the trade-o� between detection
performance and privacy.

In the following content, the necessary preliminaries re-
lated to IDPP are illustrated. Then, we prove that IDPP achieves
the ✏-di�erential privacy. Following the concept of the dif-
ferential privacy mechanism from Dwork et al. [8], ✏-di�erential
privacy is defined as follows:

Definition 2. (✏-di�erential privacy): A random function F
is said to be a ✏-di�erential privacy (✏-dp) function, if for

two di�erent inputs x, x® À Dom(F ) and one output be z À
Range(F ), we have:

P (F (x) = z) f exp(✏)P (F (x®) = z). (2)
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Remark 1. The parameter ✏ denotes privacy level. The

higher the ✏ value, the more privacy leakage. Hence, ✏ is uti-

lized to measure the trade-o� between privacy leakage and

detection performance.

To accomplish the ✏-di�erential privacy, the Laplace mech-
anism is often employed to add noises to the original data,
where the noises are generated from the Laplace distribution
from Definition 3.

Definition 3. Laplace distribution: A random variable X
follows the Laplace distribution if its probability density func-

tion is,

Lap(xb) = 1
2bexp(*

x * �
b

), (3)

where the localization parameter is � and scale parameter

is b. Furthermore, the mean of the random variable X is �
and the variance of X is 2b2.

Remark 2. If X follows a Laplace distribution with local-

ization parameter � and scale parameter b, then we write

X Ì Lap(�, b).

The concept of the Laplace mechanism is given in Defi-
nition 4.

Definition 4. Laplace mechanism: Given a function P :
Rn ô Rp

, we define the Laplace mechanism F as,

F (x,P (.), ✏) = P (x) + (✓1,5 , ✓p), (4)

where ✓i Ì Lap(0, �P✏ ). The �P is the L1-sensitivity of the

function P , which is illustrated in Definition 5.

Definition 5. L1-sensitivity: The L1-sensitivity of a func-

tion P : Rn ô R is defined as:

�P = supx,yÀAÒP (x) * P (y)Ò1, (5)

where Ò.Ò1 is the L1 norm.

Remark 3. The sensitivity shows how much the function P
can be changed by adding random noise while still preserv-

ing privacy.

4.2. Pixelization
An image is represented as a matrix M , and each pixel

value of the image is denoted as Mi,j , where i = 1, 2,5 ,R,
j = 1, 2,5 ,C , and 0 f Mi,j f 255. The pixelization tech-
nique takes blocks/subsets of the image matrix as input. Ev-
ery element Mi,j that belongs to that block is replaced by the
average value of that block. In this paper, we take a square
subset of length l. Thus, for a matrix with dimension RùC ,
the total number of square subsets is S = ‰Rl Â ù ‰Cl Â.

To include pixelization technique to the di�erential pri-
vacy concept, we define the pixelization global sensitivity in
Lemma 1.

Lemma 1. The L1 sensitivity of the pixelization technique

is �Pl =
256b
l2 .

Proof. By Definition 1, we have two neighboring images
M1 and M2. These images di�er by at most b pixels. Since
each pixel ranges from 0-255, we have,

supM1,M2
M1 *M2 f 256b. (6)

Now, the pixelization here takes a square of length l. Thus
in each square, we have l2 pixels. Therefore, for the entire
image, the global sensitivity is:

supM1,M2
ÒPl(M1) * Pl(M2)Ò1 = �Pl =

256b
l2

. (7)

4.3. IDPP
Algorithm 2 illustrates the procedure of IDPP. In partic-

ular, S is the number of pixel subsets. The random variable
✓i of the i-th subset is generated following the Laplace distri-
bution. After that, we add this random noise to the average
of each subset. The proof of IDPP is illustrated in Theorem
2.

Algorithm 2: IDPP
Input : image M(r,c) and R,C , l, b, ✏
Output: image M(r,c) with privacy
Initialize with S = ‰Rl Â ù ‰Cl Â, �Pl =

256b
l2

for i = 1, 2,5 ,S do
✓i Ì Lap(0, �Pl✏ )
Pl(M(r,c)) =

≥
(r,c)Àgi

M(r,c)
l2

õPl(M(r,c)) = Pl(M(r,c)) + ✓i
Return õPl(M(r,c))

end

Theorem 2. The ÉPl in Algorithm 2 satisfies ✏-di�erential

privacy.

Proof. Let two neighboring frames be M1, M2, another in-
dependent frame beM , and a random variable be ✓i Ì Lap(0,
�Pl
✏ ), where i = 1,5 ,K .

P ( õPl(M1) = M)
P ( õPl(M2) = M)

=
K«
i=1

exp(* ✏Pl(Mi,1)*Mi
�Pl

)

exp(* ✏Pl(Mi,2)*Mi
�Pl

)
,

=
K«
i=1

exp(
✏(Pl(Mi,2) *Mi * Pl(Mi,1)i *Mi)

�Pl
).

(8)

Applying the triangular inequality, and from Eq. (8) we ob-
tain,

f K«
i=1

exp(
✏Pl(Mi,1) * Pl(Mi,2)

�Pl
). (9)
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By L1 norm and L1 sensitivity in Definition 5, from Eq. (9),
we have,

= exp(
✏ÒPl(M1) * Pl(M2)Ò1

�Pl
),

f exp(✏).

Thus,

P ( õPl(M1) = M)
P ( õPl(M2) = M)

f exp(✏). (10)

Finally, the proof of Theorem 2 is concluded as below,

P ( õPl(M1) = M) f exp(✏)P ( õPl(M2) = M). (11)

5. Experimental setup and dataset
In this section, the experimental setup and the dataset

are introduced first. Then, we describe the comparison base-
lines. Following this, experimental results are presented.

5.1. Experimental setup
A cheap smartphone (VG30+) is used as an example of

IoT devices for data acquisition. A laptop (Dell Latitude
5880, 64-bit Windows 10 Operating system, 16G RAM, In-
tel Core i7 i7-7820HQ CPU with 2.9GHz) is used as our
edge server to simulate an RSU. A high-performance server
(Ubuntu 16.04 LTS system, 125.8GB of RAM, 5.93 TB of
hard disk, and 8GTX 1080Ti GPUs) is used as our cloud
server. The client application is implemented using Python 3.6.
For fair comparison and good performance, we set the learn-
ing rate as 0.001, the total number of epochs as 1000, the
number of epochs for local update E as 30, batch size as 64,
momentum as 0.9, and weight-decay as 0.0001. To simulate
the model training with limited and unequally-sized datasets
on di�erent edges, we split the training set into three subsets,
i.e., 80%, 60%, and 40%, for edge1, edge2, and edge3.

5.2. Datasets
To e�ectively evaluate the performance of FedRD, more

than 75 road videos (more than 49 minutes of each) with the
resolution of 1280ù720 pixels from drivers’ front viewpoint
are collected by the IoT device. We build our training set
by automatically extracting frames from the collected videos
with an interval of 0.5 seconds. The training set of the AbRS
model contains 1560 normal road images. Fig. 5 presents
some examples of normal roads and abnormal roads. The
training set of the ADD model includes 300 abnormal road
images predicted by AbRS and 600 hazardous road dam-
age images collected from the Internet. We augment the
dataset to 2500 by rotation, skew, crop, adding noise, and
padding. Some examples of di�erent levels (i.e., low, mid-
dle, and high) of hazardous road damages are shown in Fig.
6. Each edge has its local dataset on which it trains its local

Figure 5: Image examples of (a) Normal road, (b) Abnormal
road.

Figure 6: Image examples of abnormal roads in (a) Low level,
(b) Middle level, (c) High level.

model. The cloud has a global dataset and global model. Lo-
cal models and the global model share the same architecture.
Further, the cloud has a small test dataset (with 60 images,
20 images per dangerous level) to decide the local models in-
volved for global aggregation. For testing, we build a video
including 5000 frames with 1080 abnormal roads and 3920
normal roads.

5.3. Baselines
To evaluate the proposed ADD, AFed, and FedRD, we

compare their performance with the following baselines.
Baselines for the evaluation of ADD:

1) cloudRD [10]: It is a method deploying the detec-
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tion model on the cloud. The detection model mainly
contains seven convolutional + batch normalization +
ReLU layers, six max-pooling layers, one fully-connected
layer, and a softmax layer.

2) edgeRD [22]: It deploys the detection model on edges
instead of the cloud for fast response. The detection
model is a CNN-based model with four convolutional
+ max-pooling layers, one global average pooling layer,
two fully-connected layers, and a softmax layer.

3) ResNet [17]: ResNet is a CNN-based model using five
residual blocks, one average pooling layer, one fully
connected layer, and a softmax layer. Each residual
block has an extra shortcut connection and element-
wise addition.

Baselines for the evaluation of AFed:

1) No-AFed: it represents that the detection model (ADD)
learns without the AFed strategy.

2) AFed: it denotes that ADD learns with the AFed strat-
egy.

Baselines for the evaluation of FedRD:

1) FedRD-no-IDPP: It is a variant of FedRD, without
our IDPP technique. By comparing with FedRD (with
IDPP), we will know the influence of IDPP on the per-
formance of FedRD and the best trade-o�.

2) cloudRD [10] and edgeRD [22]: They are variants
of FedRD. edgeRD deploys the hazardous road dam-
age detection task on edges while cloudRD deploys it
on the cloud. Additionally, both of them are not us-
ing federated learning strategies. The performances
of both cloudRD and edgeRD are compared to FedRD
to evaluate the e�ectiveness of our edge-cloud-based
Federated learning framework.

3) EcRD [41]: Similar to FedRD, EcRD is also an edge-
cloud-based hazardous road damage detection frame-
work that detects hazardous road damages on edges
for fast response. However, it uses a di�erent detec-
tion model (i.e., HDD) and not using any federated
learning strategy. By comparing with EcRD, the per-
formance of the proposed ADD and the necessity of
using the federated learning strategy in FedRD can be
proved.

6. Experiments and Evaluation
In this section, the performance of the FedRD frame-

work and the proposed methods (i.e., AbRS, ADD, AFed,
and IDPP) are evaluated by the evaluation metrics defined
in [41], including Precision, Recall, Accuracy, F1-score, run-
time, and latency.

6.1. AbRS and ADD Results and Evaluation
The experimental results of the AbRS model are illus-

trated in Table 2. As shown in the table, the F1-score of
AbRS is 98.79%, which is 18.11%, 2.87%, and 1% times
higher than AlexNet, GoogleNet, and VGG16, respectively.

The result shows that although AbRS is more lightweight
than AlexNet, GoogleNet, and VGG16, it achieves better ab-
normal road detection results. The reason behind this is that
abnormal roads, especially for those with hazardous road
damages, are vastly di�erent from normal roads, as shown in
Fig. 5, making the separation of abnormal roads and normal
roads simpler. Moreover, the runtime of AbRS is 89.21%,
92.99%, and 90.93% times lower than AlexNet, GoogleNet,
and VGG16, respectively. Likewise, AbRS has the lowest
runtime because it has a small model size for using deep sep-
arable convolutions instead of normal convolutions. Given
the high performance of the AbRS model, the amount of data
that needs to be transmitted from devices to edges is signif-
icantly reduced by using the AbRS model. Despite the high
F1-score, there are still some miss-detected abnormal roads.
Some results of AbRS are illustrated in Fig. 7. The results
show that AbRS may fail to detect abnormal road frames
when the frames are very bright, very dark, with shadows,
or very light damages. The experimental results of the AbRS

Table 2

AbRS evaluation results.

Model Accuracy (%) F1-score (%) runtime (s)

AlexNet [26] 82.20 83.64 0.063
GoogleNet [33] 94.80 96.03 0.097
VGG16 [31] 96.50 97.81 0.075
AbRS (Ours) 97.38 98.79 0.0068

model are illustrated in Table 3. As shown in the table,
ADD achieves a 92.52% F1-score, which is 26.34%, 15.51%,
and 9.53% times more accurate than cloudRD, edgeRD, and
ResNet. ADD achieves worse runtime than the baselines be-
cause it contains extra feature fusion layers to capture valu-
able multi-scale features from di�erent layers. However, ADD
enables accurate and relatively fast hazardous road damage
detection on edges. Although it achieves a relatively high
F1-score, some hazardous road damages are wrongly classi-
fied due to illuminations and shadows. Also, if the hazardous
road damages are not small for some classes, for example,
minor blowups and small holes in Fig. 8(b), Fig. 8(d), and
Fig. 8(f), they tend to be miss-classified as lower-level haz-
ardous road damages, which is reasonable in practice. Fig. 8
illustrates some good and bad results of di�erent hazardous
road damage levels predicted by ADD.

Table 3

ADD evaluation results.

Model Accuracy (%) F1-score (%) runtime (s)

cloudRD [10] 75.54 73.23 0.038
edgeRD [22] 81.21 80.10 0.054
ResNet [17] 86.35 84.47 0.032

ADD (Ours) 93.48 92.52 0.085
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Figure 7: Experimental results of the AbRS model. (a) Good results of normal roads, (b) Bad results of normal roads, (c) Good
results of abnormal roads, (d) Bad results of abnormal roads.

Figure 8: Experimental results of the ADD model. (a) Good results of low-level road damages, (b) Bad results of low-level
road damages, (c) Good results of middle-level road damages, (d) Bad results of middle-level road damages, (e) Good results of
high-level road damages, (f) Bad results of high-level road damages.

6.2. Adaptive Federated Learning Results and
Evaluation

Experiments with three edges and one cloud are con-
ducted to evaluate the performance of the proposed AFed
strategy. In the experiments, local models on edges update
their weights every 30 iterations. The goal is to improve
the detection performance of local models on edges without
directly sharing data.The evaluation results of the proposed
AFed strategy are presented in Table 4. This table shows that
the F1-score of edges after applying AFed improves by max-
imally 6.95% than without AFed. Similarly, the accuracy of
edges after using AFed increases by maximally 3.66% than
that without AFed. The cloud waits until the top two local
models are received, complying with the fact that the cloud
has no control over edges.

Table 4

AFed evaluation results.

Setting Edge Accuracy (%) F1-score (%)

No-AFed
edge1 89.82 84.57
edge2 88.35 87.26
edge3 89.39 88.41

AFed
edge1 93.48 91.52
edge2 90.68 89.76
edge3 92.94 91.37

6.3. IDPP Results and Evaluation
The performance of the FedRD before and after applying

IDPP is given in Table 5. The table shows that only 1.08%
F1-score and 0.7% accuracy are reduced after using IDPP,
while data privacy can be well-protected. Also, the com-
putation time of FedRD is only increased by 0.0008 s after
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Figure 9: Effect of ✏ on images.

Figure 10: F1-score and accuracy of FedRD with different
privacy budget ✏.

applying IDPP. Fig. 10 illustrates the detection performance

Table 5

FedRD and FedRD-no-IDPP comparison results with ✏ =
0.4.

Model Accuracy (%)F1-score (%)Latency (s)

FedRD-no-IDPP91.53 91.40 0.0318
FedRD 90.83 90.32 0.0326

of the ADD model after applying AFed with di�erent pri-
vacy budgets ✏, which measures the amount of noise added
to the original data. Typically, the higher is the ✏, the more
noise is added, and the more private the data becomes. As
shown in the figure, the detection accuracy raises with the
increase of the ✏. The detection accuracy of FedRD with
✏ = 0.1 is 47.37% higher compared with ✏ = 0.015. Also,
the detection accuracy of FedRD with ✏ = 0.4 improves by
6.00% compared to that of ✏ = 0.1. However, the perfor-
mance of FedRD with ✏ = 0.4 is close with ✏ = 0.8 and
✏ = 1.0. Moreover, the F1-score of FedRD has a similar
trend with the accuracy of FedRD. Fig. 9 shows the e�ect of
✏ in IDPP on images. It shows that the more noise added to
the image, the more private is the image content. However,
if too much noise is added, e.g., when ✏ = 0.001, no valu-
able information can be observed, including hazardous road
damages without any sensitive information. Therefore, we
select ✏ = 0.4 as a good trade-o� for high detection perfor-
mance and good privacy-preserving.

6.4. FedRD Overall Performance Evaluation
The performance of FedRD framework is compared with

cloudRD [10], edgeRD [22], and EcRD [41] to evaluate its
e�ectiveness. The comparison results are illustrated in Ta-
ble 6. Overall, the results clearly show that FedRD outper-
forms its variant and other baselines regarding the accuracy,
F1-score, latency, coverage range (i.e., local or global), and
privacy risk. Specifically, the detection accuracy achieved
by FedRD is as high as 90.83% which is good considering
the small road damage dataset as well as high inter-class
divergence of the road damages as illustrated in Fig. 6. In
addition, compared to the baselines, FedRD has the lowest
privacy leakage risk for the usage of AFed and IDPP. The
cloudRD has a very high privacy leakage risk because clouds
are usually highly untrusted. The edgeRD and cloudRD also
have a high privacy leakage risk due to untrusted edges and
data transmission between devices and edges in open-access
networks. Concerning latency, cloudRD has around 45 times
higher latency than FedRD and edgeRD for hazardous road
damage detection tasks. With such a high latency, users
may not be able to receive life-threatening warning infor-
mation in time. Therefore, the hazardous road damage de-
tection and warning task should be deployed on edges to en-
sure high quality of service (QoS). Moreover, existing edge-
based frameworks, such as edgeRD [22] and EcRD [41], can
only broadcast hazardous road damage warning information
covered by an edge to nearby users. FedRD widens the cov-
erage area hundreds or even thousands of times.

To our best knowledge, it is the first research on edge-
cloud federated learning-based frameworks for intelligent haz-
ardous road damage detection and warning system. The pro-
posed FedRD e�ciently utilizes the available resources from
devices, edges, and the cloud for hazardous road damage de-
tection and warning, which satisfies the design goals listed in
Section 2.1 in the following ways: Firstly, the FedRD frame-
work deploys the hazardous road damage detection model
(ADD) on edges. Hazardous road damage warning messages
are sent to users immediately from the edge once any haz-
ardous road damage is detected. The latency is extremely
low because edges are very close to users (satisfying design
goal 1). Secondly, the AFed strategy improves local models’
detection performance by updating their parameters with the
latest global model when necessary (design goal 2). In this
way, high performance can be guaranteed even when some
edges only have limited data, which improves the robustness
of hazardous road damage detection (design goal 3). Also,
the robustness is further improved by training the model with
diverse data, such as from di�erent scenarios, various illu-
minations, and obstacles (design goal 3). Thirdly, by lever-
aging the edge-cloud-based global map construction strat-
egy, drivers/users can receive road damage information on a
much broader area (satisfying design goal 4). For example,
if FedRD (with 500 edges and one cloud) monitors a city’s
roads, and each edge’s communication range is 1000 me-
ters. Then, drivers can receive hazardous road damage infor-
mation of the whole city, which may reach 500,000 meters.
Fourthly, the communication and storage costs of FedRD are
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Table 6

FedRD framework Evaluation Results.

framework Accuracy (%) F1-score (%) Latency (s) Global warning Privacy risk

cloudRD [10] 86.39 86.22 2.49 Yes very high
edgeRD [22] 81.76 81.81 0.054 No high
EcRD [41] 91.96 92.43 0.003 No high

FedRD (ours) 90.83 90.32 0.0326 Yes very low

considerably reduced (design goal 5). The communication
cost is significantly reduced by around 80% by filtering out
normal roads using the AbRS model before transmitting to
edges. The storage cost is minimized by only saving abnor-
mal road data. Also, the 75% computation cost is reduced
for applying DP by using pixelization. Finally, the FedRD
framework protects data privacy (design goal 6). On the one
hand, no data is directly shared from edges to the cloud, pro-
tecting privacy from untrusted clouds. On the other hand,
IDPP preserves data privacy at users’ devices before sending
to untrusted edges and prevents privacy leakage risk during
data transmission in open-access networks.

Despite the outstanding advantages, FedRD has the fol-
lowing limitations. Firstly, although the ADD model achieves
high accuracy (93.48%), the runtime (0.085s) is not low enough
for real-time hazardous road damage detection and warning.
A more lightweight model should be designed to improve the
accuracy and reduce the runtime. Secondly, the classifica-
tion results in Fig. 8 show that classifying images only based
on the damage types is not always correct, especially when
some damages are small. The results would be better if the
road damages can be localized on the images and use both
the size and type for road damage rating. Depth information
can also be utilized if 3D data is collected. Finally, this paper
only tests hazardous road damage as an example for general
road danger detection and warning applications. More road
danger types, such as tra�c accidents, fallen trees, and icy
roads, can also be explored in the following researches.

7. Related Work
This section reviews the related literature about road dam-

age classification techniques, cloud/edge computing systems
for hazardous road damage inspection, and privacy.

Road damage classification techniques: Most state-of-
the-art hazardous road damage classification methods can
be categorized into two classes: traditional approaches and
deep-learning-based approaches.

Traditional approaches are mainly based on statistics, fil-
ters, and models. Statistical-based methods leverage sta-
tistical information of the image, e.g., the distribution of
image pixel value. For example, [11] combined both gray
level co-occurrence matrix (GLCM) and local binary pattern
(LBP) feature where GLCM was used for feature extraction,
and LBP was utilized for feature’s robustness improvement.
The KNN classifier then classifies the features. Filter-based
methods describe texture information of images by several

filters. This kind of approach works well when classify-
ing road damages with strong texture features. For exam-
ple, to detect surface defects, the authors of [2] used phase-
only Fourier transform to detect saliency regions of images.
Then, the detected saliency areas were matched with the cor-
responding template regions. Model-based methods con-
struct a mixture model with some base models according to
certain distributions or other attributes. For example, the au-
thors of [40] utilized two mixture models to calculate pattern
likelihoods. Defects were detected automatically by sim-
ple parametric thresholding. Despite good performance on
texture-oriented defects, they may fail for data with hetero-
geneous textures or when there are considerable variations
of defects or backgrounds. Also, most of them have high
complexity, time-ine�cient, and prone to errors. Therefore,
it is not suitable for real-world applications.

Deep-learning-based approaches achieved state-of-the-
art results for many applications [36]. For example, Faster
R-CNN and its variants are widely used in road damage dan-
ger detection in civil infrastructure like [32, 5]. For faster
computing, SSD and MobileNet are utilized. MobileNet is
lightweight and specially designed for mobile applications
with limited resources. To produce more robust and abun-
dant feature representations, di�erent deep future fusion strate-
gies are designed. For example, in [28], a multi-scale pyra-
midal pooling network was proposed for defect classifica-
tion, which accepts di�erent input image sizes. The authors
of [18] introduced a multilevel-feature fusion network (MFN),
which fused multilevel hierarchical features from di�erent
layers of the CNN backbone into the same dimension for
defect recognition. Similarly, [42, 4, 35] also fused multi-
level features to build discriminative hyper features for de-
fect monitoring.

Following the success of deep-learning-based approaches,
we used the deep separable convolutions as utilized in the
MobileNet to build our AbRS model for real-time suspicious
abnormal road screening at users’ IoT devices. Also, we de-
veloped the ADD model based on ResNet structure and mul-
tilevel feature fusion for hazardous road damage detection at
edges.

Cloud/edge computing systems for road damage in-
spection: Vision-based road damage inspection is a high
resource-demanding task. Suitable computing platforms must
be selected to ensure high Quality of Service (QoS), such as
fast response and high accuracy. Some researchers deploy
the road inspection task on clouds for their high computing
power and storage capacity for data processing. For exam-
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ple, in [39], a cloud server was utilized to process data re-
ceived from vehicles, and the results were then sent to the
tra�c monitoring center. Similarly, in [10], data collected by
cameras was processed by machine learning or deep learn-
ing algorithms on a cloud server to automatic the monitoring
process. In this way, the calculation and storage burden is
transferred to the cloud, thus, less burden for users or vehi-
cles.

Nevertheless, cloud-based approaches still have many is-
sues, for example, high latency and high bandwidth costs
caused by continuously transmitting large amounts of data to
the cloud. With the emergence of edge computing, some re-
searchers explored edge-based inspection systems due to the
advantages, e.g., location awareness, large scalability, and
low latency. The collected data (by users/vehicles) are up-
loaded to the nearest edge in edge-based systems instead of
the cloud in centralized cloud-based systems. For example,
a new system for road condition inspection with edge com-
puting was proposed by [3, 23]. Edge servers directly pro-
cess data from users by specific algorithms and then transfer
the results to a cloud. The cloud stores the results for later
use. Kawano et al. [22] used edge computing for road dam-
aged lane markings detection. Following its success, the au-
thors’ previous work [41] proposed an edge-cloud comput-
ing framework (EcRD) for intelligent road damage detection
and warning. EcRD exploits the fast-responding benefit of
edge and the high computational power and enormous stor-
age space advantages of the cloud. However, there are still
some limitations of EcRD: firstly, drivers are only informed
about hazardous road damages within a small area covered
by one edge. Secondly, since the detection model at each
edge is just trained with the data collected from that edge,
it cannot ensure the detection performance of the edges that
have limited data.

Therefore, in this paper, edges are utilized for fast haz-
ardous road damage detection and warning. Edges warn
users/drivers immediately once any hazardous road damages
are detected. It is much faster than cloud-based approaches.
Also, the detected hazardous road damage information is
transmitted to a central cloud. The cloud aggregates it and
sends it back to users via edges. In this way, users can receive
warnings from a wider range compared with [41]. Further,
to improve the performance of edges with limited data, we
used the Federated Learning strategy to learn from multiple
edges collaboratively without direct data sharing.

Privacy: Despite the success of edge/cloud computing
for road damage inspection, the privacy issue is still not ad-
dressed in many existing schemes [39, 10, 23]. Only a few
systems considered the privacy issues, e.g., [39, 3, 41]. [39]
preserved privacy against clouds by receiving data in cipher-
text format. After validating the data source by the cloud and
the authority, only data from legitimate vehicles are chosen.
In [3], the privacy-preserving certificateless aggregate sign-
cryption scheme (CLASC) was proposed for road condition
monitoring by vehicular crowd-sensing using edge comput-
ing. The scheme is computing-e�cient. However, it did not
consider location privacy. Moreover, the authors’ previous

work [41] filtered out sensitive information by a road seg-
mentation model at edges to protect users’ privacy. How-
ever, there is still a high privacy leakage risk when sending
data from users’ devices to edges.

In summary, although cryptographic techniques or im-
age/video pre-processing approaches were utilized to pro-
tect users’ privacy, none of the existing works considered
the privacy information within images/videos. Therefore,
in this paper, we protect privacy via the Di�erential Pri-
vacy technique [8]. Di�erent from [38, 30, 9], our method
preserves privacy at users’ devices before uploading to un-
trusted edges, which is more private. Moreover, it has 3_4
less computation cost because it adds noise to pixelized im-
ages instead of original images.

8. Conclusion and Future Work
This work investigates the importance of hazardous road

damage detection and warning for tra�c safety. We study
the critical limitations of the existing cloud/edge-based sys-
tems, such as limited warning scope, low performance of
edges with no or limited data, and high data privacy leak-
age risks. To tackle these problems, we propose the FedRD
framework. In FedRD, a new map construction approach
is introduced to aggregate hazardous road damage informa-
tion of a wide area into a global map, which is hundreds or
thousands of times wider than existing edge-based systems.
The global map contains rich hazardous road damage infor-
mation and helps to improve users’ travel experience and re-
duce road accidents. Additionally, Adaptive federated learn-
ing (AFed) is designed to improve the performance of local
models on edges, especially for the edges with no or lim-
ited data. AFed ensures high detection performance in lim-
ited communication rounds by selective aggregating quali-
fied local models for global model aggregation on the cloud.
Moreover, the IDPP technique is proposed to protect data
privacy. It protects privacy at users’ devices before upload-
ing to untrusted edges, and it reduces 3_4 computation and
communication costs by using pixelization. Simulation re-
sults show that the FedRD framework detects hazardous road
damages accurately and warns drivers with low latency. It is
robust on challenging datasets and still performs well when
some edges are lacking data for training. It covers a broader
area and has small computation, communication, and stor-
age cost. Data privacy is also preserved. As part of fu-
ture work, we will collect and integrate more hazardous road
damages from both the real world and the Internet to further
evaluate the robustness of our proposed model. In addition,
we will test the proposed system in the real world to verify
the robustness and explore the challenges.
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