
This is the author accepted manuscript version of Thermal Comfort in Buildings: 1 
Scientometric Analysis and Systematic Review published in the Journal of Architecture 2 
Engineering, Volume 29, Issue 2, June 2023. 3 

The final published version can be accessed at:  4 
https://ascelibrary.org/doi/10.1061/JAEIED.AEENG-1490 5 

This material may be downloaded for personal use only. Any other use requires prior 6 
permission of the American Society of Civil Engineers. This material may be found at 7 
https://ascelibrary.org/doi/10.1061/JAEIED.AEENG-1490  8 

 9 

Thermal Comfort in Buildings: Scientometric 10 

Analysis and Systematic Review 11 

Abstract: The building sector is one of the most resource-exhausting areas in global energy 12 
consumption. Maintaining good thermal comfort for occupants is the leading energy demand 13 
in buildings. The primary purpose of the current study is to identify the development of 14 
research areas on occupant comfort, pinpoint the gaps in knowledge and recommend 15 
directions for future studies. A scientometric analysis and a comprehensive systematic 16 
literature review are conducted using 792 sources. It is evident from the exponential increase 17 
in published papers that scholars are highly interested in this research topic. However, 18 
discrepancies remain between the two fundamental models of evaluating thermal comfort. 19 
There is a pressing need to balance thermal comfort while increasing energy efficiency. The 20 
foundation of achieving this balance can only be done by correctly evaluating the surrounding 21 
environment of occupants and understanding all the factors influencing human thermal 22 
comfort conditions. There is also a high potential in employing industry 4.0 technologies to 23 
assist in designing more innovative solutions for thermal comfort. Furthermore, there is a 24 
need for local thermal standards targeting specific regions. The lack of interoperability 25 
between BIM 3D modelling and energy simulation tools remains an obstacle.  26 
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Introduction  45 

According to statistics, people usually spend more than 80% of their time indoors 46 

(KLEPEIS et al., 2001).  Indoor Environment Quality (IEQ) refers to the quality of 47 

conditions that affect building occupants' health and well-being (Al Horr, Arif, et al., 48 

2016a). It encompasses several factors, including thermal, acoustic conditions, visual 49 

and Indoor Air Quality (IAQ) (Amit Kaushik et al., 2020). It is vital to study occupants’ 50 

thermal comfort in buildings as this can positively or negatively impact their productivity, 51 

satisfaction, and wellbeing (Wen Wei Che et al., 2019; Kim et al., 2020).  52 

On the other hand, the ever-increasing world energy use has raised alarms about 53 

oversupply complications, exhaustion of energy sources and aggravation of the 54 

environmental situation. Accordingly, energy efficiency and savings strategy has become 55 

a priority objective worldwide (Pérez-Lombard, Ortiz and Pout, 2008). It is imperative 56 

with the rise of energy consumption in HVAC systems that have become essential with 57 

the increased demand for thermal comfort in indoor environments (Wen Wei Che et al., 58 

2019). More than ever, there is a need to balance the thermal comfort of occupants and 59 

energy consumption in buildings.  60 

Thus, the current study aims to help Architecture, Engineering and Construction 61 

professionals understand all the available tools that can be used to determine each factor 62 

that influences occupants’ thermal comfort. There are existing reviews of tools and 63 

literature. However, this paper provides an updated comprehensive literature review and 64 

scientometric. It will provide a holistic understanding of the topic and concepts related to 65 

thermal comfort while providing a snapshot of global research efforts on this topic using 66 
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scientometric analysis. This paper is divided into five sections. Section 1 is an 67 

introduction to the research topic and its structure. The scientific methodology used for 68 

this study is detailed in section 2. Section 3 presents the findings of the scientometric 69 

analysis with various visualisation graphs. Section 4 presents a systematic review of 70 

thermal comfort in office buildings. Section 5 outlines the conclusion. 71 

Research methodology  72 

A four-step approach was adopted for data collection, inclusion, and exclusion criteria, 73 

followed by scientometric analysis and a comprehensive field evaluation through a 74 

systematic literature review. The summary of this methodology is presented in figure 1.  75 

 76 

77 
Figure 1- Research Methodology 78 

Phase one: Search for publications  79 

The research in this study follows systematic literature review guidelines by defining the 80 

appropriate keywords and the search database (Durach, Kembro and Wieland, 2017; 81 

Borrego, Foster and Froyd, 2014).  82 



The scientific literature on thermal comfort in indoor environments in buildings was 83 

retrieved from Scopus, the largest abstract and citation database, one of the globally 84 

recognised enriched metadata records of scientific articles (Baas et al., 2020). The 85 

publications were collected around the topic through the following retrieval formula 86 

TITLE-ABS-KEY (“thermal comfort" )  AND  TITLE-ABS-KEY ( "indoor environment" ). 87 

The search for “indoor” AND “environment” produced a good result that was not focusing 88 

the indoor environment but on the environment in general and mentioned indoor in some 89 

of the text. To keep the results rich and relevant to the topic, we excluded this string. As 90 

a result, a total of 1,641 publications were obtained. It should be noted that a similar 91 

retrieval mode on a different day will yield slightly different results due to the continuous 92 

updating strategy in the Scopus database. Additionally, 59 publications were added to 93 

the results after reviewing the references of significant publications related to this 94 

research.  95 

Phase two: Exclusion criteria  96 

The types of publications used for the search were limited to “journal” articles and 97 

“reviews” in English, resulting in 1,017 references. From those papers, duplicate results 98 

were eliminated, leaving 963 unique papers... An Excel sheet was created to find more 99 

duplicate results, excluding a further 171.  100 

The final number of publications included in the scientometric analysis section was 792.  101 

Phase three: Scientometric analysis  102 

Following the literature search, 792 were exported in CSV format in Scopus. These 103 

created the input of the scientometric analysis phase. Several analyses were conducted 104 

on the bibliometric data, such as publications and citations per year, publication sources 105 

and origin of publications. VOS-viewer was used to produce the scientometric links and 106 



maps between the various bibliometric parameters, including keywords co-occurrence 107 

and software used (van Eck and Waltman, 2013).  108 

 109 

Phase four: Systematic literature review 110 

Systemic literature review helped to outline thirteen critical areas of research. These 111 

topics were grouped into five main categories. A structured representation of the main 112 

areas of thermal comfort research was presented, identifying research gaps, findings 113 

and conclusions.  114 

Scientometric analysis  115 

This section presents a scientometric analysis of the 792 research papers revealing the 116 

current state and development of knowledge surrounding thermal comfort in indoor 117 

environments. (Nalimov and Mulʹchenko, 1971) were the first to use the term 118 

scientometric and define it as “a quantitative study of the research on the development 119 

of science”.  120 

Number of publications and citations  121 

Figure 2 shows the distribution of the 792 articles published on thermal comfort between 122 

1962 and 2021. An upward trend in research associated with thermal comfort started in 123 

2008, with 18 publications increasing to 111 in October 2021 (the date the research 124 

analysis was conducted). . This increase in publications coincided with the acceptance 125 

of the ASHRAE standard 55 for the adaptive thermal approach in 2004. It can be 126 

concluded that the subject field is critical among scholars in the scientific field.  127 



 128 

Figure 2- Evolution of the number of publications 129 

Publication source  130 

Publication sources used in this scientometric analysis were limited to journal articles to 131 

increase the quality of analysis done in this paper. 116 scientific journals were identified; 132 

however, considering the high number of journals, figure 3 displays the top 15 journals 133 

published with nine or more articles. It was observed through this analysis that almost 134 

60% of the articles were published in two journals; Building and Environment have 196 135 

publications, followed by Energy and Buildings with 149 publications. It indicates the 136 

leadership of these two journals in thermal comfort.  137 

 138 



 139 

Figure 3- publication sources 140 

Origin of publications  141 

This research analysed the origin of publications through VOSViewer software. A total 142 

of 85 countries were identified and presented in figure 3. The leading countries are China 143 

(152 articles), the United Kingdom (96 articles), and the United States of America (84 144 

articles), respectively. The United States of America and the United Kingdom have a 145 

long history of thermal comfort research. However, China has significantly increased 146 

research on thermal comfort in the last 20 years. 147 

 148 

Figure 4- Distribution of publications by country 149 



Most cited publications  150 

Global citations have recognised the top ten distinguished and highly regarded articles. 151 
These are presented in table1. It includes three literature reviews of thermal comfort (Liu 152 
Yang, Yan and Lam, 2014; and building energy consumption implications (Crawley et 153 
al., 2008), a review of optimised control systems for building energy (Shaikh et al., 154 
2014)and comfort management of innovative, sustainable buildings Rijal et al., 2007 and 155 
a review of human thermal comfort in the built environment (Rupp, Vásquez and 156 
Lamberts, 2015).  157 

Table 1- Top 10 cited publication 158 

Order  Citations Title Reference 
1 1197 Developing an adaptive model of thermal 

comfort and preference 
(De Dear and 
Brager, 1998) 

2 1095 Adaptive thermal comfort and sustainable 
thermal standards for buildings 

(Nicol and 
Humphreys, 
2002a) 

3 1013 Contrasting the capabilities of building 
energy performance simulation programs 

(Crawley et al., 
2008) 

4 845 Thermal comfort in naturally ventilated 
buildings: Revisions to ASHRAE Standard 
55 

(De Dear and 
Brager, 2002) 

5 665 Thermal comfort and building energy 
consumption implications - A review 

(Liu Yang, Yan and 
Lam, 2014) 

6 485 A review on optimized control systems for 
building energy and comfort management 
of smart sustainable buildings 

(Shaikh et al., 
2014) 

7 403 Using results from field surveys to predict 
the effect of open windows on thermal 
comfort and energy use in buildings 

(Rijal et al., 2007) 

8 396 A review of human thermal comfort in the 
built environment 

(Rupp, Vásquez 
and Lamberts, 
2015) 

9 394 Forty years of Fanger's model of thermal 
comfort: Comfort for all? 

(Van Hoof, 2008) 

10 363 Derivation of the adaptive equations for 
thermal comfort in free-running buildings in 
European standard EN15251 

(Nicol and 
Humphreys, 2010) 

Keywords’ co-occurrence  159 

Keywords’ analysis signifies the themes of knowledge in thermal comfort research. This 160 

study had 4345 keywords across the 792 publications included in this research. Due to 161 

many keywords, a normalisation method was used through the thesaurus file 162 

accumulating repeated keywords. Irrelevant keywords, such as country names, were 163 



removed. Figure 5 represents the number of co-occurrence of keywords. The larger node 164 

size indicates increased occurrence. The link strength is shown through the thickness of 165 

the lines between keywords relevant to the concept. As expected, “thermal comfort” has 166 

the largest central node in the network. The co-occurrence mapping displays strong 167 

direct links between “thermal comfort” and keywords such as “energy efficiency in 168 

buildings”, “indoor air quality”, “ventilation”, “architectural design”, “climate conditions”, 169 

and “HVAC”. It indicates the direct effect of those concepts on indoor thermal comfort. 170 

Regarding the keyword “building”, it has direct links with “air temperature”, “carbon 171 

dioxide”, “air quality”, “operative temperature”, and “airspeed”. These keywords pinpoint 172 

the factors affecting thermal comfort in buildings.  173 

 174 

Figure 5- Keyword co-occurrence network 175 

Software 176 

A total of 23 software tools were identified within the literature on thermal comfort. Figure 177 

6 displays the identified software. The node size represents the number of times the 178 

software has been included in a publication. The link thickness represents the number 179 

of occurrences of both software tools in a specific publication. Table 2 presents the top 180 



10 software tools used for energy simulation, building design and data collection. They 181 

are also used specifically for thermal comfort research. EnergyPlus is the most used by 182 

designers and validated by the most significant number of research articles. 183 

DesignBuilder is one of the interfaces of EnergyPlus software, and it can be seen in 184 

second place in the analysis. Figure 6 shows the vital link between these two software 185 

tools. EnergyPlus software has strong links with four other tools, namely CBE, 186 

DesignBuilder and IDA-ICE, and MATLAB©.  187 

Table 2- Thermal comfort software in the publications 188 

No. Software Total Link 
Strength 

References  

1 EnergyPlus 23 (Chowdhury, Rasul and Khan, 2008; Xu et al., 2010; 
Hwang and Shu, 2011; Attia et al., 2012; Buratti et al., 
2013a; Evola, Marletta and Sicurella, 2013a; Gon Kim 
et al., 2013; Cappelletti et al., 2014; Dias et al., 2014; 
K.H. Lee and Schiavo, 2014; Nguyen and Reiter, 
2014; Petersen, Momme and Hviid, 2014; Sage-Lauck 
and Sailor, 2014; Stazi et al., 2014; Attia and Carlucci, 
2015; Hilliaho, Lahdensivu and Vinha, 2015a; Liao, 
Cheng and Hwang, 2015; Vanhoutteghem et al., 2015; 
Wang et al., 2015a, 2020; Zhang and De Dear, 2015; 
Cetin, Manuel and Novoselac, 2016a, 2016b; 
Delgarm, Sajadi and Delgarm, 2016a; Jamil et al., 
2016a; Kim et al., 2016a; Li, Lee and Jia, 2016; 
Muñoz-González, León-Rodríguez and Navarro-
Casas, 2016; Nghana and Tariku, 2016; Requena-
Ruiz, 2016; Samani et al., 2016; Figueiredo et al., 
2017a; He et al., 2017; Kim, Yang and Moon, 2017; 
Kontes et al., 2017a; Kwok et al., 2017; Pastore, 
Corrao and Heiselberg, 2017; Zhang et al., 2017a; 
Abuelnuor et al., 2018a; Beccali et al., 2018; Costanzo 
et al., 2018; de Abreu-Harbich, Chaves and 
Brandstetter, 2018; Hong et al., 2018a; Ibrahim et al., 
2018; Jazizadeh and Jung, 2018; Martinopoulos et al., 
2018; Ruz, Garrido and Vázquez, 2018; S. Gou et al., 
2018; S. Yang et al., 2018a; Yao et al., 2018; Ahangari 
and Maerefat, 2019; Amoruso, Dietrich and Schuetze, 
2019a; Ardiyanto, Hamid and Sutopo, 2019; 
Escandón, Ascione, et al., 2019a; Escandón, Suárez, 
et al., 2019; Kwak and Huh, 2019; Lotfabadi and 
Hançer, 2019; Mahar et al., 2019; Robledo-Fava et al., 
2019a; Salehi et al., 2019; Zamani et al., 2019; Deng 
and Tan, 2020; Grygierek and Sarna, 2020a; Luo et 
al., 2020; Muñoz González et al., 2020; Sadeghi et al., 
2020; Shan and Lu, 2020; Tuck et al., 2020; Vella et 
al., 2020; Xu, Li and Zhang, 2020; Zhao and Du, 2020; 



Al-Absi et al., 2021; Aliakbari, Ebrahimi-Moghadam 
and Ildarabadi, 2021; Conejo-Fernández, Cappelletti 
and Gasparella, 2021a; Elnaklah et al., 2021; Elshafei 
et al., 2021; Ghaderian and Veysi, 2021a; Goudarzi et 
al., 2021; Hagentoft and Pallin, 2021; Halhoul Merabet 
et al., 2021; Heibati, Maref and Saber, 2021a; K. Qu 
et al., 2021; Kükrer and Eskin, 2021a; Mabdeh, 
Radaideh and Hiyari, 2021; Nie et al., 2021; 
Rangaswamy and Ramamurthy, 2021; Saif et al., 
2021a; Yılmaz and Yılmaz, 2021; Y. Qu et al., 2021a)  

2 DesignBuilder 10 (Chowdhury, Rasul and Khan, 2008; Shastry, Mani 
and Tenorio, 2014, 2016; Adekunle and Nikolopoulou, 
2016; Braulio-Gonzalo et al., 2016; Kwok et al., 2017; 
Martinez-Molina et al., 2017a; Stazi, Tomassoni and 
Di Perna, 2017; Beccali et al., 2018; Shaeri, Yaghoubi 
and Habibi, 2018; Lotfabadi and Hançer, 2019; 
Zamani et al., 2019; Muñoz González et al., 2020; 
Sadeghi et al., 2020; Shao and Jin, 2020; Zhao and 
Du, 2020; Al-Absi et al., 2021; Albatayneh et al., 
2021a; Cao et al., 2021; Diler et al., 2021; Elshafei et 
al., 2021; Kükrer and Eskin, 2021a; Mabdeh, 
Radaideh and Hiyari, 2021; Saif et al., 2021a) 

3 Trnsys 1 (Theluer, Cordier and Monchoux, 1994; Nikolaou et 
al., 2009; Buratti et al., 2013b; Wang, Tian and Ding, 
2013; Cappelletti et al., 2014; Wang et al., 2015b; Yu 
et al., 2015a; Delgarm, Sajadi and Delgarm, 2016b; 
Kim et al., 2016b; Kotopouleas and Nikolopoulou, 
2016; Medjelekh et al., 2016; Mirrahimi et al., 2016; 
Moon and Jung, 2016; Kontes et al., 2017b; Lebon et 
al., 2017; Mousa, Lang and Auer, 2017; Zhang et al., 
2017b; Abuelnuor et al., 2018b; Cho and Jeong, 2018; 
Martinopoulos et al., 2018; Mora and Bean, 2018a; 
Potočnik et al., 2018; S. Gou et al., 2018; S. Yang et 
al., 2018a; Escandón, Ascione, et al., 2019b; 
Escandón, Suárez, et al., 2019; Robledo-Fava et al., 
2019b; Yang et al., 2019; Evola et al., 2020) 

4 CBE 7 (Mora and Bean, 2018b; Kwag et al., 2019; W.W. Che 
et al., 2019; Zhou et al., 2019; Balbis-Morejón et al., 
2020; Fu et al., 2020; Kiki et al., 2020; Konis et al., 
2020; Tartarini et al., 2020; de Oliveira, Rupp and 
Ghisi, 2021; Goudarzi et al., 2021; Oh and Song, 
2021a; Shahinmoghadam, Natephra and Motamedi, 
2021) 

5 Equest 4 (Attia et al., 2012; Leung and Ge, 2013; Charoenkit 
and Yiemwattana, 2016; Pastore, Corrao and 
Heiselberg, 2017; Galagoda et al., 2018; 
Martinopoulos et al., 2018; Z. Gou et al., 2018; Tang 
and Wang, 2019; Sokkar and Alibaba, 2020; Utkucu 
and Sözer, 2020; Ghilardi et al., 2021; Heibati, Maref 
and Saber, 2021b; Saif et al., 2021b) 

6 Exergy 3 (Saber et al., 2014a; Li, Lee and Jia, 2016; Buyak, 
Deshko and Sukhodub, 2017; Feng et al., 2018; 



Turhan and Gokcen Akkurt, 2018; Draganova et al., 
2021; Indraganti and Humphreys, 2021; Kim et al., 
2021; Lamberti et al., 2021; Yüksel et al., 2021) 

7 Ecotect 9 (Altan et al., 2009; Attia et al., 2012; Yao, 2013; Latha, 
Darshana and Venugopal, 2015; Anand, Deb and 
Alur, 2017; Vitale and Salerno, 2017; Ibrahim et al., 
2018; Kwon, Lee and Cho, 2019; Jin and Zhang, 
2021) 

8 IES-VE 4 (Lomas and Giridharan, 2012; Spentzou, Cook and 
Emmitt, 2018; Amir et al., 2019; Oleiwi et al., 2019; 
Ghaddar et al., 2021) 

9 OpenStudio 5 (Attia et al., 2012; Cetin, Manuel and Novoselac, 
2016a; Amoruso, Dietrich and Schuetze, 2019b; 
Grygierek and Sarna, 2020b; Guo and Bart, 2020)  

10 IDA-ICE 3 (M Hamdy, Hasan and Siren, 2011; Hilliaho, Lahdensivu 
and Vinha, 2015b; Simson, Kurnitski and Maivel, 2017; 
Dodoo and Ayarkwa, 2019)  

 189 

Figure 6 - Thermal comfort software network 190 

Systematic literature review  191 

A systematic literature review was conducted in this section, critically appraising the 192 

selected research articles. Key focus areas of thermal comfort research were identified 193 

and grouped into main research categories as presented in table 3. The review starts 194 

from the thermal comfort background, initial works and development of various models. 195 



It includes thermal comfort parameters and standards. It is followed by a review of 196 

thermal comfort simulation work, which CFD and software usage. The third sub-section 197 

discusses energy efficiency in buildings. It is followed by a fourth sub-section continuing 198 

the review of energy efficiency. Sub-section four focuses on heating and cooling 199 

systems. The fifth sub-section presents occupant and building interaction, and it presents 200 

a review of occupant productivity and occupant behaviour.  201 

Table 3- Main research areas of thermal comfort 202 

Category  Topic  Publications  
Thermal Comfort 
Development  

Thermal 
Comfort Model 
Development  

(Fanger, 1970; de Dear and Brager, 1998; 
Haghighat et al., 2000; ISO, 2005; La Gennusa et 
al., 2007; Hoof, 2008; ASHRAE, 2010; De Dear, 
2011; Orosa and Oliveira, 2011; Chen and Chang, 
2012; Halawa and Van Hoof, 2012; Li, Yu and Li, 
2012; Langevin, Wen and Gurian, 2013; Maiti, 2014; 
Wang et al., 2014; Martínez et al., 2015; Gangisetti 
et al., 2016; Moon and Jung, 2016; Martinez-Molina 
et al., 2017b; Alzahrani et al., 2018; B. Yang et al., 
2018; Deng and Chen, 2018; Elizabeth Amudhini 
Stephen, 2018; Hang and Kim, 2018; Hong et al., 
2018b; Jiang et al., 2018a; Zhang et al., 2018, 2020; 
Escandón, Ascione, et al., 2019b; Haddad, Osmond 
and King, 2019; Hellwig et al., 2019; Jindal, 2019; 
Kwak and Huh, 2019; Ma, Liu and Shang, 2019; 
Piasecki et al., 2019; Tewari et al., 2019; Xu, Li and 
Zhang, 2019; Ali et al., 2020; Gładyszewska-
Fiedoruk and Sulewska, 2020; Heracleous and 
Michael, 2020; Huang and Zhai, 2020; Karyono et 
al., 2020; Ma et al., 2020, 2021; Mui, Tsang and 
Wong, 2020; Palladino, Nardi and Buratti, 2020; 
Sung and Hsiao, 2020; Yang et al., 2020; Zhao, 
Genovese and Li, 2020; Alonso et al., 2021; 
Aparicio-Ruiz et al., 2021; Bagheri Moghaddam et 
al., 2021; B. Chegari et al., 2021; Bouzidi et al., 
2021; Brik et al., 2021; Conejo-Fernández, 
Cappelletti and Gasparella, 2021b; de Oliveira, 
Rupp and Ghisi, 2021; Forcada et al., 2021; Kükrer 
and Eskin, 2021a; Lamberti et al., 2021; Nie et al., 
2021; Oh and Song, 2021b; Ozarisoy and Altan, 
2021; Rijal et al., 2021; Rodríguez, Coronado and 
Medina, 2021; Shrestha et al., 2021; Staveckis and 
Borodinecs, 2021; Taylor, Brown and Rim, 2021a; 
Valinejadshoubi et al., 2021; Vella et al., 2021; Xu 
and Li, 2021; Zahid, Elmansoury and Yaagoubi, 
2021) 

  
Thermal 
Comfort 
Parameters  

(Macpherson, 1962; Nicol and Humphreys, 2002b; 
Morgan and de Dear, 2003; Marincic, Ochoa and Del 
Río, 2012; Chen, Moshfegh and Cehlin, 2013; Jing 
et al., 2013; Wang, Tian and Ding, 2013; Adunola, 
2014; Kwang Ho Lee and Schiavo, 2014; Saber et 
al., 2014b; Song, Wang and Wei, 2016; Djamila, 
2017; Vellei et al., 2017; Zhang et al., 2017a; 



Kalmár, 2018; S. Yang et al., 2018b; Cao and Deng, 
2019; Gautam et al., 2019; Kong et al., 2019; Kwag 
et al., 2019; Van Craenendonck et al., 2019; Wang 
et al., 2019; Wang, Kang and Zhou, 2019; 
Sansaniwal et al., 2020; Deng and Chen, 2021; 
Jiang et al., 2021; Kim, Shin and Cho, 2021; Rupp, 
Kazanci and Toftum, 2021; Sharma, Kumar and 
Kulkarni, 2021; Zuo, Luo and Liu, 2021) 

 Thermal 
Comfort 
Standards   

(de Dear and Brager, 1998; Olesen and Parsons, 
2002; Olesen and Brager, 2004; Li et al., 2014; 
Carlucci et al., 2018; Gautam et al., 2019; Elnaklah 
et al., 2021; Rupp, Kazanci and Toftum, 2021) 

Thermal Comfort 
Simulation 

CFD (Catalina, Virgone and Kuznik, 2009; Wang and 
Wong, 2009; Chiang, Wang and Huang, 2012; Woo 
O., 2012; G. Kim et al., 2013; Hajdukiewicz, Geron 
and Keane, 2013; Schellen et al., 2013; 
Fathollahzadeh, Heidarinejad and Pasdarshahri, 
2015; Horikiri, Yao and Yao, 2015; Naboni, Lee and 
Fabbri, 2017; van Hooff, Blocken and Tominaga, 
2017; Liu et al., 2019; Utkucu and Sözer, 2020; Xie 
et al., 2020; Calzolari and Liu, 2021; Gan et al., 
2021)  

 Thermal 
Comfort 
Software  

(Lee and Strand, 2001; Crawley et al., 2008; Attia et 
al., 2011; Jamaludin et al., 2015; Felix and 
Elsamahy, 2017; Morsy et al., 2018; de Wilde, 2019; 
Tartarini et al., 2020) 

Energy Efficiency 
in Buildings  

Energy Use and 
Optimisation  

(M. Hamdy, Hasan and Siren, 2011; L. Yang, Yan 
and Lam, 2014; Shaikh et al., 2014; Stazi et al., 
2014; Méndez Echenagucia et al., 2015; Yu et al., 
2015b; Delgarm, Sajadi and Delgarm, 2016b; Mao 
et al., 2017; Martinopoulos et al., 2018; Lotfabadi 
and Hançer, 2019; Wang and Fukuda, 2019; 
Kuczyński and Staszczuk, 2020; Panraluk and 
Sreshthaputra, 2020; Acar, Kaska and Tokgoz, 
2021; B Chegari et al., 2021; Ghaderian and Veysi, 
2021b; Ghilardi et al., 2021; Homod et al., 2021; 
Lakhdari, Sriti and Painter, 2021; Rana, 2021; 
Taylor, Brown and Rim, 2021b; Yılmaz and Yılmaz, 
2021; Y. Qu et al., 2021b)  

 Phase Change 
Materials  

(Evola, Marletta and Sicurella, 2013b; Sage-Lauck 
and Sailor, 2014; Jamil et al., 2016b; Nghana and 
Tariku, 2016; Socaciu et al., 2016; Feng et al., 2017; 
Figueiredo et al., 2017b; Afolabi et al., 2019; 
Ahangari and Maerefat, 2019; Alizadeh and 
Sadrameli, 2019; Nada, Alshaer and Saleh, 2019; 
Bagheri-Esfeh, Safikhani and Motahar, 2020; 
Kerroumi, Touati and Virgone, 2020; Ye, Wang and 
Qian, 2020; Yun et al., 2020; Al-Absi et al., 2021; Al-
Yasiri and Szabó, 2021; Ortega Del Rosario et al., 
2021; Y. Qu et al., 2021b; Zhu et al., 2021)  

Heating and 
Cooling Systems  

Naturally 
Ventilated  

(De Dear and Brager, 2002; Wong et al., 2002, 2003; 
Liping and Hien, 2007; Zhang et al., 2007, 2016; 
Stavrakakis et al., 2008; Yang and Zhang, 2008; 
Wang et al., 2010, 2021; Ai et al., 2011; Dong, 
Soebarto and Griffith, 2014; Lei et al., 2017; Omrani 
et al., 2017; Singh et al., 2018; Heracleous and 



Michael, 2019; Kumar et al., 2019; Abdullah and 
Alibaba, 2020; Izadyar et al., 2020; Ahmed, Kumar 
and Mottet, 2021; Luo, Hong and Pantelic, 2021) 

 Air Conditioned  (de Dear, Leow and Foo, 1991; Dounis et al., 1994; 
Kavgic et al., 2008; Karjalainen, 2009; ASHRAE, 
2010; Daum, Haldi and Morel, 2011; Mardiana-Idayu 
and Riffat, 2012; Indraganti et al., 2014; Chenari et 
al., 2016; Wei et al., 2019; Zhang, Zhang and Khan, 
2020; Guevara, Soriano and Mino-Rodriguez, 2021) 

 Personal 
Comfort 
Systems  

(Madsen and Saxhof, 1980; Bogdan and 
Chludzinska, 2010; Jazizadeh et al., 2014; 
Parkinson and Dear, 2015; Conceição et al., 2018; 
Godithi et al., 2019; W.W. Che et al., 2019; Rawal et 
al., 2020) 

Occupant Building 
Interactions  

Productivity and 
Task 
Performance  

(Wargocki et al., 1999; Edwards and Torcellini, 
2002; Akimoto et al., 2010; Bakó-Biró et al., 2012; 
De Giuli, Da Pos and De Carli, 2012; Boerstra et al., 
2015; De Dear et al., 2015; Al Horr, Arif, et al., 
2016b; Al Horr, Katafygiotou, et al., 2016; Arif et al., 
2016; Hoque and Weil, 2016; Mustapa et al., 2016; 
Kang, Ou and Mak, 2017; Rijal, Humphreys and 
Nicol, 2017; Tarantini, Pernigotto and Gasparella, 
2017; Jiang et al., 2018b; Liu et al., 2018; Lau, 
Zhang and Tao, 2019; Wargocki, Porras-Salazar 
and Contreras-Espinoza, 2019; A. Kaushik et al., 
2020; Amit Kaushik et al., 2020; Alzahrani et al., 
2021; Bueno, de Paula Xavier and Broday, 2021; 
Kükrer and Eskin, 2021a; Tuniki, Jurelionis and 
Fokaides, 2021; Hu et al., 2022)  

 
 Monitoring 

Occupant 
Behaviour  

(Branco et al., 2004; Tohoku University, 2013; De 
Wilde, 2014; Tam, Almeida and Le, 2018; Causone 
et al., 2019) 

 Occupant 
Perception of 
Thermal 
Comfort  

(Lutzenhiser, 1993; Baker and Standeven, 2007; 
Karjalainen, 2012; Mishra and Ramgopal, 2013; 
Veselý and Zeiler, 2014; Tuniki, Jurelionis and 
Fokaides, 2021) 

 203 

Thermal Comfort development 204 

This category brings together topics associated with thermal comfort development 205 

relating to the fundamental models used in the literature, the parameters incorporated in 206 

these models and the standards they are included.  207 



Thermal Comfort model development  208 

Thermal Comfort models prevailing in the literature are the steady-state and adaptive 209 

models. P.O. Fanger developed the first thermal comfort model in the 1970s (Fanger, 210 

1970).  This steady-state model calculates the Predicted Mean Vote (PMV) of thermal 211 

comfort as well as the Predicted Percentage of Dissatisfied (PPD) (Fanger, 1970). This 212 

model has become the base of thermal comfort standards such as ASHRAE 55 (Hoof, 213 

2008; ASHRAE, 2010) and ISO 7730 (ISO, 2005). However, the PMV-PPD model is 214 

based on controlled laboratory experiments, assuming that the human body passively 215 

accepts surrounding thermal conditions without adapting to temperature changes. Thus, 216 

it is usually most suitable to be used in air-conditioned spaces with mostly seated 217 

occupants, such as office buildings (Chen and Chang, 2012; Langevin, Wen and Gurian, 218 

2013; Wang et al., 2014; Martínez et al., 2015; Gangisetti et al., 2016; Elizabeth 219 

Amudhini Stephen, 2018; Kwak and Huh, 2019; Tewari et al., 2019; Ali et al., 2020; 220 

Bagheri Moghaddam et al., 2021; de Oliveira, Rupp and Ghisi, 2021; Staveckis and 221 

Borodinecs, 2021).  Previous research has established that the difficulty of applying PMV 222 

models is estimating occupants’ clothing insulation and metabolic rate (Ma et al., 2021).   223 

Moreover, there are some discrepancies in PMV and subjective Thermal Sensation 224 

Value (TSV). While some researchers found that the latter is always higher than objective 225 

PMV, reflecting thermal adaptation (B. Yang et al., 2018), others found that PMV 226 

overestimated TSV responses (Maiti, 2014). Thus, many researchers have debated the 227 

accuracy of the PMV-PPD results (Orosa and Oliveira, 2011) and recommended several 228 

solutions to correct it (Martinez-Molina et al., 2017b; Piasecki et al., 2019; Mui, Tsang 229 

and Wong, 2020; Nie et al., 2021). One of the reasons for the imprecision of Fanger’s 230 

model is that it neglects the influence of solar radiation on human thermal comfort (La 231 

Gennusa et al., 2007; Huang and Zhai, 2020; Conejo-Fernández, Cappelletti and 232 

Gasparilla, 2021b). A Corrected Predicted Mean Vote (CPMV) model was developed to 233 

consider the solar radiation in the original heat balance equation (Zhang et al., 2018). 234 



The acceptability of this model has been studied by several researchers (Xu, Li and 235 

Zhang, 2019; Yang et al., 2020; Zhang et al., 2020; Xu and Li, 2021). Another concern 236 

surrounding the PMV-PPD model is that it neglects the differences in occupants' 237 

perception of thermal comfort depending on their gender, age and metabolic rate, among 238 

other personal differences in multi-occupancy environments (Hong et al., 2018b).  239 

De Dear and Brager developed the adaptive Thermal Comfort model as the basis of 240 

standards for the American Society of Heating, Refrigeration and Air-conditioning 241 

Engineers (ASHRAE) (de Dear and Brager, 1998; ASHRAE, 2010). In contrast to the 242 

steady-state model, the adaptive model expresses the indoor comfort temperature about 243 

the outdoor temperature and determines acceptable thermal comfort conditions in 244 

naturally ventilated environments. It is deducted from the idea that the range of thermally 245 

acceptable temperature in naturally ventilated buildings is more extensive than in air-246 

conditioned buildings. Those models are applied in naturally ventilated buildings. They 247 

have been extensively researched in the literature in different types of buildings, such as 248 

nursing homes (Forcada et al., 2021) and educational buildings (B. Yang et al., 2018; 249 

Jiang et al., 2018a; Haddad, Osmond and King, 2019; Jindal, 2019; Heracleous and 250 

Michael, 2020; Ma et al., 2020; Alonso et al., 2021; Aparicio-Ruiz et al., 2021; Kükrer 251 

and Eskin, 2021a; Lamberti et al., 2021; Oh and Song, 2021b; Rodríguez, Coronado and 252 

Medina, 2021; Shrestha et al., 2021; Taylor, Brown and Rim, 2021a) health care 253 

buildings (Bouzidi et al., 2021) and places of worship (Vella et al., 2021). Although this 254 

adaptive approach works better in naturally ventilated buildings, it fails to include some 255 

important aspects of the traditional thermal comfort model (Halawa and Van Hoof, 2012). 256 

As the adaptive method is concerned with human behaviour, the former focuses on 257 

thermal physiology (Karyono et al., 2020). It has been previously observed that thermal 258 

comfort models are constructed for young adults and are unsuitable for estimating 259 

children and the elderly (Aparicio-Ruiz et al., 2021). Some studies highlighted the use of 260 

the adaptive approach in estimating the comfort standards for those vulnerable groups 261 



of people (such as young, elderly, ill and disabled) (Haghighat et al., 2000). The adaptive 262 

thermal comfort model has also been used to save energy and cost compared to other 263 

strategies for retrofitting buildings (Albatayneh et al., 2021b). However, there remains a 264 

need to explore the correlation between adaptive principles and building energy use 265 

(Hellwig et al., 2019). Research also suggests the need to question the applicability of 266 

existing adaptive thermal comfort models in naturally ventilated buildings (Ozarisoy and 267 

Altan, 2021). The literature has confirmed that adaptive building design and adaptive 268 

thermal comfort of people are essential for energy-saving building design (De Dear, 269 

2011; Rijal et al., 2021). Other models, such as a two-node and multi-node model, also 270 

calculate thermal comfort. 271 

Latest developments in technology and computing have influenced the data collection 272 

and analysis of indoor environmental quality and its effect on the occupant. Several 273 

studies have incorporated industry 4.0 technologies into the thermal comfort models to 274 

cope with the various factors influencing both models of thermal comfort. Artificial 275 

Intelligence, for examplethe use of Artificial Neural Network (ANN) methods, has been 276 

incorporated into several studies (Li, Yu and Li, 2012; Moon and Jung, 2016; Alzahrani 277 

et al., 2018; Deng and Chen, 2018; Escandón, Ascione, et al., 2019b; Ma, Liu and 278 

Shang, 2019; Gładyszewska-Fiedoruk and Sulewska, 2020; Palladino, Nardi and Buratti, 279 

2020; B. Chegari et al., 2021). ANN can provide the personalisation of thermal comfort 280 

settings (Karyono et al., 2020). Another use of technology has been highlighted by 281 

(Zahid, Elmansoury and Yaagoubi, 2021), who developed the “Dynamic PMV”. This 282 

method uses real-time visualisation of thermal comfort using the PMV index to calculate 283 

the optimal temperature for indoor thermal comfort. This emerging technology of using a 284 

Digital Twin by combining BIM (Building Information and Modeling) and IoT sensors 285 

(Internet of Things) has been investigated by several other thermal comfort scholars 286 

(Hang and Kim, 2018; Sung and Hsiao, 2020; Zhao, Genovese and Li, 2020; Brik et al., 287 

2021; Valinejadshoubi et al., 2021).  288 

https://www.sciencedirect.com/topics/engineering/internet-of-things


Thermal Comfort parameters  289 

PMV model is a heat-balance model that incorporates six parameters in identifying 290 

acceptable thermal conditions for the number of occupants. Those parameters are 291 

environmental and personal. The environmental parameters are indoor air temperature 292 

(Adunola, 2014; Zhang et al., 2017a; Cao and Deng, 2019; Wang et al., 2019; Jiang et 293 

al., 2021), radiant temperature (Saber et al., 2014b), relative humidity(Marincic, Ochoa 294 

and Del Río, 2012; Jing et al., 2013; Vellei et al., 2017; S. Yang et al., 2018b; Kong et 295 

al., 2019; Kwag et al., 2019; Deng and Chen, 2021; Zuo, Luo and Liu, 2021) and air 296 

velocity (Kalmár, 2018; Van Craenendonck et al., 2019; Sansaniwal et al., 2020). At the 297 

same time, the personall parameters are personal activity and clothing insulation levels 298 

(Chen, Moshfegh and Cehlin, 2013; Wang, Tian and Ding, 2013; Kwang Ho Lee and 299 

Schiavo, 2014; Song, Wang and Wei, 2016; Gautam et al., 2019; Wang, Kang and Zhou, 300 

2019; Kim, Shin and Cho, 2021; Rupp, Kazanci and Toftum, 2021). It is suggested that 301 

PMV predictions can improve by considering chair and clothing insulation (Rupp, 302 

Kazanci and Toftum, 2021) and the effects of adding the age parameter to the thermal 303 

comfort investigations (Djamila, 2017).  304 

On the other hand, an adaptive model depends on the relationship between outdoor 305 

temperature and its effect on indoor temperature (Morgan and de Dear, 2003). This 306 

model does not consider personal parameters. They are implicitly considered by 307 

including the outdoor temperature (as the level of clothing insulation and human 308 

movement depends on outdoor temperature) (Nicol and Humphreys, 2002b). 309 

Nevertheless, disregarding the influence of relative humidity and air velocity that does 310 

not strongly depend on outdoor temperature has been debated amongst several 311 

scholars (Vellei et al., 2017). The research on thermal comfort has continuously evolved 312 

since Macpherson introduced thermal comfort parameters in 1962 (Macpherson, 313 

1962),Click or tap here to enter text.They have not resolved to the debate of accurately 314 

evaluating thermal comfort (Sharma, Kumar and Kulkarni, 2021).  Latest addition to the 315 



research is the data driven thermal comfort to improve the accuracy of the comfort 316 

prediction for the elderly(Zhao, 2021). 317 

Thermal Comfort standards  318 

P.O. Fanger’s model has been the base of thermal comfort standards; it is included in 319 

international standards ISO 7730 (Olesen and Parsons, 2002), American standards 320 

(Olesen and Brager, 2004) and Chinese standards (Li et al., 2014). One major issue in 321 

the PMV-PPD model is building ventilation, as this model overestimates occupant 322 

discomfort in naturally ventilated buildings (de Dear and Brager, 1998). Some minor 323 

issues include other insulation factors, such as chair insulation, as suggested by (Rupp, 324 

Kazanci and Toftum, 2021), who have argued that this impacts the indoor 325 

environment classification according to the European standard EN 16798-1. It also has 326 

significant limitations in incorporating and adapting to the individual users’ preferences 327 

that can be resolved using Bayesian Comfort Model (BCM) (Auffenberg, 2017). 328 

The adaptive model has been included in American, European, Dutch and Chinese 329 

standards and reviewed in the body of literature.  (Carlucci et al., 2018) Compared the 330 

adaptive thermal comfort models in five different standards (ANSI/ASHRAE 55, EN 331 

15251, prEN 16798-1, ISSO 74 and GB/T 50784), the review concluded discrepancies 332 

in results when applying those standards as well as a need to resolve the issue of 333 

applying adaptive models in mixed-mode buildings. Another study points out that comfort 334 

temperature in cold regions is significantly lower than the ASHRAE and CEN standards 335 

limit (Gautam et al., 2019). They are indicating the need to recommend adaptive 336 

standards suitable for freezing climates. In the same vein (Elnaklah et al., 2021) 337 

highlights the necessity of having localised thermal comfort standards in the Middle East 338 

region as the thermal comfort in buildings changes according to the surrounding 339 

climates.  340 



Thermal Comfort simulations development  341 

Thermal comfort analysis and simulation software tools allow designers to explore 342 

thermal performance and create several design options. We only considered specialist 343 

software and not self-developed tools implemented in general-purpose or domain-344 

specific programming languages. This category focuses on using those software tools 345 

and their role in providing occupant comfort while enhancing energy efficiency in 346 

buildings. 347 

Computational Fluid Dynamics  348 

Computational Fluid Dynamics (CFD) simulation techniques predict thermal comfort in 349 

complex indoor environments (Catalina, Virgone and Kuznik, 2009; Chiang, Wang and 350 

Huang, 2012; Hajdukiewicz, Geron and Keane, 2013). CFD is mainly used as an inverse 351 

design technique for thermal comfort analysis. Inverse design is a method of setting an 352 

aim in thermal performance and using an automated technique to search for a system 353 

that satisfies this aim (Calzolari and Liu, 2021). They have been used to predict thermal 354 

comfort in a single space or room (Wang and Wong, 2009; G. Kim et al., 2013; Schellen 355 

et al., 2013; Fathollahzadeh, Heidarinejad and Pasdarshahri, 2015; Horikiri, Yao and 356 

Yao, 2015), as well as thermal comfort-CFD mapping to assist in the design of thermally 357 

comfortable buildings (Naboni, Lee and Fabbri, 2017). CFD is widely used to analyse 358 

the performance of HVAC systems in different spaces, it includes the efficiency of 359 

system, their layout and occupant response based on thermal comfort models (Buratti, 360 

2017; Catalina, 2009). Although CFD has not substituted theoretical analysis and 361 

experimental data, it has been used to supplement them (Liu et al., 2019). A primary 362 

concern of CFD numerical simulation tools is in the accuracy and reliability of those 363 

predictions (van Hooff, Blocken and Tominaga, 2017), as using simulated data for 364 

predicting thermal comfort without enhancing it with accurate measurements might lead 365 

to errors in real applications (Xie et al., 2020). Another issue is their computational 366 

expensiveness (Woo O., 2012; Calzolari and Liu, 2021). Some researchers have 367 



incorporated CFD in 3D Building Information Models (BIM) (Utkucu and Sözer, 2020; 368 

Gan et al., 2021). However, interoperability limitations remain a significant concern in 369 

such analyses.  370 

Thermal Comfort software  371 

Building Performance Simulation (BPS) software replicates aspects of a building related 372 

to design, construction, and operation (de Wilde, 2019). Several software tools have 373 

evaluated thermal comfort conditions at the early design stages. EnergyPlus is one of 374 

the most widely used open-source energy simulation software (Crawley et al., 2008). It 375 

allows access from various simulation tools and third-party user interfaces. EnergyPlus 376 

is suitable for thermal analysis for two reasons. First, for its ability to address surface 377 

temperature effect on thermal comfort. Secondly, it incorporates thermal comfort models 378 

into its simulation algorithm (Lee and Strand, 2001). DesignBuilder is a graphical user 379 

interface for the EnergyPlus simulation engine. BIM models can be imported into the 380 

DesignBuilder interface through gbXML formats. It can assist designers and architects 381 

in all design stages (Attia et al., 2011). One of the uses is in choosing the most 382 

appropriate thicknesses of insulation materials that will reflect the best thermal comfort 383 

conditions for the occupants (Morsy et al., 2018). Another tool used by designers is the 384 

CBE thermal comfort tool. Like EnergyPlus, it incorporates the main thermal comfort 385 

models into its computations (Tartarini et al., 2020). Ecotect and GBS can be used as 386 

plugins for Autodesk Revit 3D modelling software and are suitable for early design stages 387 

(Jamaludin et al., 2015; Felix and Elsamahy, 2017).  388 

Energy efficiency in buildings  389 

This category brings together topics associated with maintaining acceptable indoor 390 

thermal comfort while enhancing building energy efficiency. It also sheds light on Phase 391 

Change Material (PCM) and its role in reaching optimal thermal comfort conditions by 392 

incorporating them in building envelopes.  393 



Energy use and optimisation 394 

One of the most significant challenges in thermal comfort studies is increasing energy 395 

efficiency while maintaining acceptable thermal comfort conditions for building 396 

occupants. A large amount of energy usage in buildings goes directly towards thermal 397 

comfort. It involves fulfilling thermal comfort parameters such as keeping the proper 398 

range of temperatures, relative humidity, and air velocity (L. Yang, Yan and Lam, 2014). 399 

Several studies have explored passive strategies to minimise energy use, namely; 400 

building orientation (Rana, 2021), thermal mass (Kuczyński and Staszczuk, 2020), 401 

advanced building envelope (Mao et al., 2017; Lotfabadi and Hançer, 2019; Acar, Kaska 402 

and Tokgoz, 2021; Homod et al., 2021), window to wall ratio (Lakhdari, Sriti and Painter, 403 

2021) and shading equipment (Stazi et al., 2014; Martinopoulos et al., 2018). These 404 

factors are determined in the preliminary design stage (Méndez Echenagucia et al., 405 

2015).  The multi-objective optimisation method can equally consider both objectives of 406 

raising efficiency and thermal comfort while incorporating the study with different 407 

algorithms (M. Hamdy, Hasan and Siren, 2011; Yu et al., 2015b; Delgarm, Sajadi and 408 

Delgarm, 2016b; Wang and Fukuda, 2019; Panraluk and Sreshthaputra, 2020; Acar, 409 

Kaska and Tokgoz, 2021; B Chegari et al., 2021; Ghaderian and Veysi, 2021b; Ghilardi 410 

et al., 2021; Yılmaz and Yılmaz, 2021; Y. Qu et al., 2021b). Algorithms enable comparing 411 

multiple scenarios and variables to find the optimised solution (Taylor, Brown and Rim, 412 

2021b). Another aspect that familiar scholars have gained interest in has been balancing 413 

energy and thermal comfort using optimisation and building controls in real-time 414 

environments (Shaikh et al., 2014). However, there is still a paucity of research that 415 

combines air temperature, relative humidity and air velocity using the optimisation 416 

approach (Taylor, Brown and Rim, 2021b).  417 

Phase Change Materials (PCM)  418 

Building envelope plays a significant role in building efficiency (Feng et al., 2017). 419 

Integrating Phase Change Materials (PCM) into building envelopes has improved 420 



thermal comfort in buildings (Sage-Lauck and Sailor, 2014). PCMs have a high thermal 421 

storage capacity with moderate temperature variations, increasing energy efficiency 422 

while maintaining good thermal comfort. (Socaciu et al., 2016). It is an emergent 423 

research area, attracting scholars to testing new types of PCM to reach optimal thermal 424 

comfort conditions by incorporating them into building envelopes (Evola, Marletta and 425 

Sicurella, 2013b; Sage-Lauck and Sailor, 2014; Jamil et al., 2016b; Nghana and Tariku, 426 

2016; Figueiredo et al., 2017b; Afolabi et al., 2019; Ahangari and Maerefat, 2019; 427 

Alizadeh and Sadrameli, 2019; Nada, Alshaer and Saleh, 2019; Bagheri-Esfeh, 428 

Safikhani and Motahar, 2020; Kerroumi, Touati and Virgone, 2020; Ye, Wang and Qian, 429 

2020; Yun et al., 2020; Al-Absi et al., 2021; Ortega Del Rosario et al., 2021; Y. Qu et al., 430 

2021b; Zhu et al., 2021). However, one of the main challenges of PCM, according to (Al-431 

Yasiri and Szabó, 2021), is their poor thermal conductivity, and this area needs further 432 

experimental research.  433 

Heating and cooling system control  434 

This topic explores the role of heating and cooling systems in constructing more 435 

thermally accepted and efficient buildings. Factors influencing thermal comfort levels in 436 

naturally ventilated structures and air-conditioned/ mechanically ventilated systems will 437 

be discussed along with thermal comfort modelling approach used in each case 438 

Naturally ventilated systems  439 

Before the implemention of Heating, Ventilating, and Air-Conditioning (HVAC) systems, 440 

natural ventilation was used to manage thermal comfort in buildings. The application of 441 

the adaptive thermal comfort model in determining thermal conditions in naturally 442 

ventilated spaces has attracted considerable attention from scholars (Ai et al., 2011; 443 

Singh et al., 2018; Heracleous and Michael, 2019; Abdullah and Alibaba, 2020; Izadyar 444 

et al., 2020; Ahmed, Kumar and Mottet, 2021). Those studies calculate the thermal 445 

adaptability of occupants because outdoor temperatures influence indoor thermal 446 



preferences. It engages wind and buoyancy to bring outdoor air into indoor spaces 447 

without mechanical systems. Based on buildings' proper design, natural ventilation 448 

provides higher ventilation rates than mechanical ventilation (De Dear and Brager, 449 

2002).  However, other factors should be taken into consideration, such as shading of 450 

windows (Abdullah and Alibaba, 2020), presence of balconies (Ai et al., 2011), and types 451 

of buildings (Wong et al., 2002; Liping and Hien, 2007; Dong, Soebarto and Griffith, 2014; 452 

Wang et al., 2021), seasons (Lei et al., 2017; Kumar et al., 2019) and climatic zones 453 

(Wong et al., 2003; Zhang et al., 2007, 2016; Yang and Zhang, 2008; Wang et al., 2010). 454 

Occupant behaviour in opening and closing windows also influences natural ventilation 455 

performance, improving indoor thermal comfort and air quality. Natural cross ventilation 456 

outperforms single-sided ventilation to attain a suitable thermal comfort level 457 

(Stavrakakis et al., 2008; Omrani et al., 2017).  458 

Recent research trends have focused on employing industry 4.0 technologies such as 459 

IoT technology, which has been used to determine natural ventilation potential and 460 

utilisation (Luo, Hong and Pantelic, 2021).  461 

Heating and Ventilation and Air Conditioning   462 

Designing an HVAC system is essential for enhancing indoor environmental quality and 463 

energy efficiency (Mardiana-Idayu and Riffat, 2012). Several studies have developed 464 

advanced systems to achieve greater comfort for occupants (Dounis et al., 1994; Kavgic 465 

et al., 2008). ASHRAE standards have specified that 80% of occupants should find 466 

thermal conditions satisfactory for the thermal environment to be acceptable (ASHRAE, 467 

2010). This standard uses the PMV model to specify comfort zones. However, although 468 

those systems have vastly advanced, thermal comfort and indoor air quality are 469 

sometimes inadequate (Chenari et al., 2016). The PMV model does not represent 470 

occupants’ diversity, thus making it challenging to apply it unanimously (Daum, Haldi and 471 

Morel, 2011). Secondly, limited occupant building control interaction leads to lower 472 



thermal comfort. A study highlighted lower thermal comfort in offices as compared to 473 

homes due to less control over thermal environment (Karjalainen, 2009).  474 

Several studies investigated the indoor environments and occupants' comfort in hot, 475 

humid conditions (de Dear, Leow and Foo, 1991; Indraganti et al., 2014; Wei et al., 476 

2019), as Air-Conditioning systems are primarily used in those climates. Some scholars 477 

have noted that the PMV model overestimates occupant thermal sensation in centrally 478 

air-conditioned buildings in hot, humid areas (Zhang, Zhang and Khan, 2020). However, 479 

it underestimates occupants' satisfaction in tropical climates in some other cases 480 

(Guevara, Soriano and Mino-Rodriguez, 2021).  481 

Personal comfort systems   482 

Personal Comfort Systems (PCS) are used to attain thermal comfort at a personal level 483 

(Bogdan and Chludzinska, 2010; Godithi et al., 2019). It can possibly improve air quality 484 

(Conceição et al., 2018; W.W. Che et al., 2019) and offers occupants of buildings 485 

psychological satisfaction of having personal control over their indoor thermal 486 

environment (Jazizadeh et al., 2014; Parkinson and Dear, 2015). They were first 487 

introduced to reduce energy consumption in buildings (Madsen and Saxhof, 1980). 488 

Despite numerous studies in the literature around this topic, further investigation in 489 

evaluating thermal comfort and energy savings of PCS devices is recommended, and 490 

research concerning extreme indoor air temperature in heating or cooling-dominated 491 

environments (Rawal et al., 2020).  492 

Occupant building interactions  493 

This category displays thermal energy's influence on building occupants’ health and 494 

productivity. It highlights occupant building interactions and their role in improving the 495 

predicted energy consumption of buildings during the design phase. 496 



Productivity and task performance  497 

Thermal Comfort conditions affect occupants’ productivity (Wargocki et al., 1999; 498 

Edwards and Torcellini, 2002; De Giuli, Da Pos and De Carli, 2012; Boerstra et al., 2015; 499 

Al Horr, Katafygiotou, et al., 2016; Arif et al., 2016; Kang, Ou and Mak, 2017) and task 500 

performance (Akimoto et al., 2010; Hoque and Weil, 2016; Liu et al., 2018; Wargocki, 501 

Porras-Salazar and Contreras-Espinoza, 2019). Researchers in the field have focused 502 

on studies in a single zone, such as offices (Al Horr, Arif, et al., 2016b; Mustapa et al., 503 

2016; Rijal, Humphreys and Nicol, 2017; Tarantini, Pernigotto and Gasparella, 2017; A. 504 

Kaushik et al., 2020; Amit Kaushik et al., 2020) or classrooms (Bakó-Biró et al., 2012; 505 

De Dear et al., 2015; Hoque and Weil, 2016; Jiang et al., 2018b; Lau, Zhang and Tao, 506 

2019; Alzahrani et al., 2021; Kükrer and Eskin, 2021a). However, far too little attention 507 

has been paid to multipurpose buildings (Kükrer and Eskin, 2021b). A limited number of 508 

studies also discuss all the IEQ factors combined with personal factors necessary to 509 

calculate productivity. There have been limited studies detailing occupant profiles, 510 

including ethnicity, age (Kükrer and Eskin, 2021a) and gender (Hu et al., 2022), as well 511 

as emotional states and cognitive abilities (Bueno, de Paula Xavier and Broday, 2021). 512 

(Tuniki, Jurelionis and Fokaides, 2021) suggests linking occupant productivity studies 513 

with energy consumption to conducting a cost-benefit analysis for decision-making 514 

purposes.  515 

Monitoring occupant behaviour  516 

Studies indicate a significant inconsistency between designed and actual energy 517 

consumption in buildings. Occupant behaviour plays a significant role in this discrepancy 518 

(Branco et al., 2004; Tohoku University, 2013; De Wilde, 2014). The main reason for 519 

consuming energy in buildings is to maintain the comfort conditions of occupants. 520 

Occupant behaviour depends on several objective and subjective factors. These factors 521 

include climate, indoor temperature, airspeed, and accessibility to energy control 522 



features, whereas the subjective factors include gender, age, social interaction, and 523 

thermal comfort perception (Tam, Almeida and Le, 2018).  524 

Although guidelines and laws on energy performance promote high-performance 525 

buildings (e.g., Net Zero Energy Buildings), very little research is published on 526 

operational data of building performance and occupant behaviour monitoring in real-time 527 

(Causone et al., 2019).  528 

Occupant perception of thermal comfort  529 

Previous research has established that the thermal comfort perception of occupants 530 

depends on various factors; Occupant related factors, Building related factors and Indoor 531 

Environmental Quality (IEQ) factors. Occupant-related metrics can be personal aspects 532 

such as the occupant’s lifestyle (Lutzenhiser, 1993), equipment control (such as windows 533 

doors and shading), and ability to adjust clothing and gender. Females, for example, 534 

display higher sensitivity and dissatisfaction than males, specifically in colder 535 

atmospheres (Karjalainen, 2012). It is also suggested that females should be used as 536 

test subjects when investigating indoor thermal comfort needs. If females are content, 537 

likely, males will also be content. (Karjalainen, 2012). Some studies (Mishra and 538 

Ramgopal, 2013) indicate that people above 60 prefer warmer environments (Veselý 539 

and Zeiler, 2014). Another aspect that influences occupants’ thermal perception is the 540 

building type. Most studies are conducted in the residential, office and educational 541 

buildings. However, few studies compare occupants' thermal behaviours in homes and 542 

offices (Tuniki, Jurelionis and Fokaides, 2021). IEQ factors influence the thermal 543 

perception of occupants, including Indoor Air Quality (IAQ), Visual Comfort, and Acoustic 544 

Comfort. Those factors influence their adaptive behaviours and cognitive tolerance 545 

(Baker and Standeven, 2007).  546 



Conclusion  547 

 Statistics indicate that people spend more than 80% of their time indoors. Enhancing 548 

comfort in the built environment is vital for occupants’ health and work efficiency. 549 

However, one of the most significant challenges in thermal comfort studies is increasing 550 

energy efficiency while maintaining acceptable indoor thermal comfort conditions. The 551 

foundation of achieving a balance between decreasing energy consumption of buildings 552 

and a comfortable environment for people can only be done by correctly evaluating the 553 

surrounding environment of occupants and understanding all the factors influencing 554 

human thermal comfort conditions. This paper provides an overview of the current state 555 

of thermal comfort research and its efforts to improve the comfort of buildings while 556 

decreasing energy consumption’s economic and environmental effects. From this work, 557 

the following conclusions can be drawn:  558 

Scientometric analysis conclusions 559 

• There is a high interest among scholars in the indoor thermal comfort topic. It is 560 

evident in the exponential growth in the number of published research papers and 561 

the 116 journals identified with publications on this topic. The increase in publications 562 

in 2008 coincided with the acceptance of the ASHRAE standard 55 for the adaptive 563 

thermal approach in 2004. 564 

• The main keywords identified were “thermal comfort”, “ventilation”, “energy 565 

efficiency”, and “indoor air”. These keywords reveal that research into thermal 566 

comfort is connected directly with indoor air quality and ventilation, respectively. 567 

These indoor factors can have a direct influence on energy efficiency in buildings.   568 

• “EnergyPlus” is the most used software tool for thermal comfort. It represents strong 569 

links with all the other thermal comfort software as it allows access from various 570 

simulation tools and third-party user interfaces. 571 



Systematic literature review conclusions 572 

• Since Macpherson introduced thermal comfort parameters in 1962, discrepancies 573 

between the two fundamental thermal comfort models have remained. On this front, 574 

some researchers suggested considering chair and clothing insulation to improve 575 

PMV predictions, while others suggested adding the age parameter to thermal 576 

comfort investigations. Fanger’s thermal comfort model can also be improved by 577 

considering solar radiation's influence on human thermal comfort. Studies combining 578 

the adaptive approach with the PMV-PPD model can combine all parameters 579 

concerning human behaviours and thermal physiology to overcome some of the 580 

challenges these models face when evaluating the thermal comfort of occupants. 581 

• New technologies to analyse thermal comfort levels have been increasingly used, 582 

such as incorporating IoT sensors with BIM models to enable real-time visualisation 583 

of thermal comfort. Artificial Intelligence has also played a significant role in designing 584 

more innovative solutions for thermal comfort. A future survey paper regarding the 585 

use of industry 4.0 technologies in enhancing the thermal comfort of occupants would 586 

be beneficial to understanding the extent of their current incorporation into this 587 

research area.  588 

• In thermal comfort standards, it was observed that those international standards do 589 

not apply to some regions, such as the Middle East or icy regions. It necessitates 590 

having local thermal standards targeted for specific areas, imposing a need to 591 

conduct more field studies demonstrating the levels of thermal comfort sensations in 592 

those regions.  593 

• CFD tools and simulation software have been increasingly used to optimise thermal 594 

comfort in buildings in the early design stages. However, the lack of interoperability 595 

between BIM 3D modelling and energy simulation tools remains an obstacle.  596 

• Considering natural ventilation is one of the most energy-efficient ways to enhance 597 

thermal comfort, many studies have surrounded the topic. Thus, employing IoT 598 



sensors technology to determine ventilation potential and utilisation in buildings is 599 

potentially a fruitful avenue for future research.   600 

• HVAC systems are a significant source of energy consumption in buildings. The PMV 601 

model fails to accurately estimate occupant thermal sensations in some areas, such 602 

as hot, humid, and tropical climates. The genericapplication of HVAC systems does 603 

not necessarily satisfy the recommended number of occupants and their 604 

preferences; thus, personal comfort systems are used to attain thermal comfort at a 605 

personal level. It contributes to improving air quality and offering occupants of 606 

buildings the psychological satisfaction of having personal control over their indoor 607 

thermal environment. In the future, further investigation in evaluating thermal comfort 608 

and energy savings of PCS devices  is recommended, and research concerning 609 

extreme indoor air temperature in heating or cooling dominated environments.  610 

• The effects of occupant behaviour on building energy performance are mostly 611 

undervalued and generalised in the literature, resulting in a gap between buildings' 612 

design and energy consumption. Despite the importance of factors influencing 613 

occupant behaviour, such as socioeconomic aspects, lifestyle, and occupants' 614 

habits, there remains a paucity of research. Currently, some researchers focus their 615 

work on the impact of thermal comfort on occupant productivity. However, it would 616 

be beneficial to link this with the energy consumption of buildings to conduct a cost-617 

benefit analysis for decision-making purposes. 618 

• One of the most significant challenges in thermal comfort studies is increasing energy 619 

efficiency while maintaining acceptable thermal comfort conditions for building 620 

occupants. A large amount of energy usage in buildings goes directly towards 621 

thermal comfort, which involves fulfilling thermal comfort parameters such as 622 

temperatures, relative humidity, and air velocity. Hence, more research is needed to 623 

address the combined parameters influencing thermal comfort while balancing 624 

energy consumption.   625 



Data Availability Statement 626 
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