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Abstract—Inefficient signal control will not only exaggerate
traffic congestion, but also increase the fuel consumption and
exhaust emissions. Thus, signal planning is highly important in
green transportation. As the Connected vehicle (CV) technology
has transformed today’s transportation systems by connecting
vehicles and the transportation infrastructure through wireless
communication, the CV-based signal control system has seen
significant studies recently. Unfortunately, existing signal plan-
ning algorithms in use are developed for the signal-intersection,
showing low traffic efficiency in the multi-intersection collabo-
rative planning due to ignoring the traffic correlation among
the neighboring intersections. In this work, we target the
USDOT (U.S. Department of Transportation) sponsored CV-
based traffic control system, and implement a multi-intersection
traffic network. We model the multi-intersection collaborative
signal planning problem as a multi-agent reinforcement learn-
ing problem, and present an actor-attention-critic algorithm to
improve transportation efficiency and energy efficiency in green
transportation, as well as resist congestion attack. Experiment
results on the multi-intersection traffic network indicates that
1) compared to the baseline, our approach reduces the total
delay by as high as 44.24%; 2) our method transports more
vehicles passing the intersections meanwhile reduces the total
CO2 emissions by 2.40%; 3) under the congestion attack, our
approach shows robustness and reduces the total delay by as
high as 64.33%.

Index Terms—Green transportation, Signal plan, CV-based
system, Multi-agent reinforcement learning.

I. INTRODUCTION

RECENTLY, as urbanization has dramatically increased
the traffic demand in cities globally, it also causes a

sharp increase of traffic congestion, energy consumption and
environment pollution. Improving transportation efficiency and
meanwhile reducing carbon emissions and fuel consumption
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has been significant studies for traffic control methods. Con-
nected vehicle (CV) technology transforms today’s transporta-
tion system by connecting vehicles and the transportation
infrastructure through wireless communication. In these CV-
based transportation systems, the strong connectivity of CV-
based systems greatly improves the mobility, safety and public
agency operations [1], [2]. Meanwhile, by increasing traffic ef-
ficiency, it also made contributions in sustainable development
and environmental protection.

I-SIG (Intelligent Traffic Signal System) [3], a CV-based
transportation sponsored by the USDOT (U.S. Department of
Transportation) [4], performs one of the most basic urban
traffic operations, traffic signal control. I-SIG operates based
on wireless communications to connect vehicles (On-Board
Units (OBUs)) and infrastructure (Roadside Units (RSUs)).
At the beginning of each signal cycle, vehicles use OBUs
to broadcast Basic Safety Messages (BSM) including its
real-time trajectory data, e.g., location and speed, to the
surrounding vehicles and infrastructure. Then the RSU of
the intersection sends the vehicle trajectories into the signal
planning model, and the signal planning model generates
signal plans for the coming signal cycle. The I-SIG has been
tested on real road intersection and has shown to achieve a
26.6% reduction in total vehicle delay [5].

However, the signal planning in the I-SIG system, for exam-
ple dual-ring version of the COP (Controlled Optimization of
Phases) algorithm [6], only taking the traffic of the intersection
itself into computation, ignoring the traffic correlation among
the neighboring intersections. Thus, when the traffic increases
sharply or malicious attack (e.g., congestion attack on the
CV-based traffic signal control [7]) occurred, causing massive
traffic congestions, the single-intersection signal planning will
take a long time to disperse the heavy traffic flow.

We implement simulation in a 4-intersection signal control
area using the conventional COP algorithm, and analyze the
variation of traffic conditions within a period. As shown in
Fig. 1, we found that, even a sudden change of traffic flow at
time t could cause the congestion of the intersection and thus
spread to the neighbor intersections. In this case, the way for
conventional signal plan algorithms to dissipate the congestion
is inefficiency, which calls for 59 minutes on average in our
simulation.

For green transportation, the sustainability is often defined
as the total energy consumption or emissions of vehicles
passing the intersection [8]. However, when traffic congestion
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Fig. 1: The shortcoming of single-intersection signal planning
in a multi-intersection scenario.

occurs in an intersection, the travel time for vehicles will be
much longer, which cause a waste of both time and energy.
What’s more, vehicles across the traffic congestion are always
in the idle state, which make the total energy consumption and
exhaust emissions higher than the flowing state. As the traffic
congestion increases the delay time of vehicles, adds social
costs and causes environmental pollution, it is a problem that
needs to be solved by the signal planning methods.

Researches have applied the reinforcement learning (RL)
technique [9]–[12] to signal control problem. Recent studies
[13] have applied deep reinforcement learning techniques,
such as Deep Q-learning (DQN), for traffic light control prob-
lem. However, traditional reinforcement learning is difficult to
apply due to the following challenges: (1) how to represent
environment; (2) how to model the correlation between en-
vironment and decision; and (3) how to compatibility with
multi-intersection environments. Wei et.al [14] proposed a
deep reinforcement learning model for traffic light control,
based on surveillance cameras. However, as traditional sensors
such as cameras have poor performance in bad weather and
poor lighting, the CV-based RL model leads to more superior
and stable performance. For green transportation, there are
Deep Learning (DL) methods used in intelligent transportation
for smart cities [15]. However, few of the above RL-based
methods focus on both of the traffic and efficiency and the
environmental problems in green transportation systems.

To tackle the above environmental problem of green trans-
portation, we define energy efficiency to evaluate the per-
formance in environmental protection in green transportation
respectively. Higher energy efficiency means to transport more
vehicles passing the intersection in unit energy consumption,
thus to reduce the environmental problems caused by traffic
congestion. In the CV environment, it is easy to get global
vehicle flow data, which makes multi-intersection signal plan-
ning a whole thing. An important insight brought by this
work is to model the signal planning of multiple intersections
in a region as a multi-agent reinforcement learning (MARL)
problem [16], [17]. In the MARL, signal control in one
intersection is controlled by an agent in RL model, each agent
aims to optimize its local signal plan to minimize the delay
time of vehicles, and thus to get the highest reward. Multiple
agents are in cooperative relationships, we further introduce

the attention mechanism to the RL model, which in a manner
similar to a differentiable key-value memory model.

We evaluate our MARL-based method with random traf-
fic flow scales with the simulator PTV VISSIM [18], a
commercial-grade traffic simulation software, which is used
to generate the traffic data as input of the RL model. Under
random traffic flow scales, we evaluate the performance of
the COP and our method in two aspects: the traffic efficiency
and the energy consumption. For the traffic efficiency, we
found that our method (1) reduced the total delay by 44.24%
in common traffic conditions; (2) is robust to the congestion
attacks, with the total delay reduced 64.33%. For the energy
consumption, our method (1) transported more vehicles mean-
while reduced the total CO2 emission by 2.40%; (2) kept the
fuel consumption at the same level. The result shows that our
method achieves higher effectiveness and robustness than the
conventional COP algorithm.

Our major contributions are highlighted as follows:
• We make the first attempt to explore the multi-intersection

signal planning in CV-based transportation system to
improve traffic efficiency and energy efficiency as well as
resist the congestion attack, by modeling the collaborative
planning as a multi-agent reinforcement learning problem
with shared rewards.

• We present an actor-critic based multi-agent reinforce-
ment learning algorithm that trains decentralized policy
for each agent, in which a centralized attention critic is
used to dynamically select agents should be focused on
for each agent at every time step.

• Comprehensive experiments on different traffic networks
demonstrate the effectiveness of our MARL-based signal
planning method in traffic efficiency and energy effi-
ciency, reducing the total delay and the total CO2 emis-
sion by 44.24% and 2.40%, respectively. Besides, under
congestion attack, our method shows great robustness and
reduces the total delay by as high as 64.33%.

The rest of the paper is structured as follows: Section II
introduces necessary background. Section III proposes a multi-
agent reinforcement learning-based signal planning frame-
work. Section IV reports our experiments in traffic networks
containing different number of intersections and evaluations
on the traffic efficiency and the energy consumption metrics.
In Section V, we discuss the related works. Finally, Section
VI concludes the work of this paper and discusses works in
the future.

II. BACKGROUNDS

A. Signal Control Concepts

The signal control scenario in a single intersection is shown
in Fig. 2. There are 8 traffic signals in each intersection, called
phases. Each phase is configured with the green light lasting
time tg , the yellow light lasting time ty , and the clearance red
light lasting time tr in the signal control. The Signal control
is performed by setting tg of the phase sequence, which is
calculated by the signal planning algorithm. The output of the
signal planning algorithm is called a signal plan, including (1)
the sequence of phases, and (2) tg for each phase, as shown
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in Fig. 3. Number 1 to 8 are phases, and the green, yellow,
and clearance red light periods for each phase are filled with
the corresponding colors.

Fig. 2: Signal control scenario in single intersection.

Fig. 3: Illustration of a signal plan for 8 phases.

The COP Algorithm is the core signal planning algorithm
used in the I-SIG system. The goal of the COP algorithm is
to reduce the total delay for all vehicles in the intersection.
The input of the COP algorithm is each approaching vehicle’s
estimated arrival time at the intersection, which is defined as
the estimated remaining time for a vehicle to reach the stop
bar of its current lane. Based on the arrival time, COP uses
dynamic programming to calculate an optimal signal plan for
8 phases with the least estimated total delay. After each stage
of signal control, the following signal status is returned as
feedback for continuous COP planning.

The use of COP is chosen by the I-SIG designer, the team
of USDOT-selected signal control experts, based on a 2015
paper published in Transportation Research Part C [19]. The
COP algorithm is chosen because it is very suitable for the
CV environment: its input is the arrival time for individual
vehicles instead of aggregated traffic information, and thus
can best leverage the per-vehicle trajectory data in the CV
environment to effectively handle traffic dynamics. However,
Chen et. al [7] has shown that the limitation of planning stage
in COP unexpectedly leaves the I-SIG system vulnerable to
congestion attacks.

B. Green Transportation

Green transportation is defined as “the transportation service
with a fewer negative impact on human health and the environ-
ment compared to existing transportation services” [20]. In this

context, green transportation has three major dimensions: envi-
ronment, economy, and society. From an environmental point
of view, green transportation has not adverse impact on the
environment. From an economic perspective, as transportation
is the main factor for growth, development, and employment,
green transportation must be energy efficiently and at a price
that is friendly to the community. Finally, green transportation
must be safe for the community and not harm public health
[21].

However, the current public transportation service is con-
sidered unsustainable due to the extensive use of the fossil
fuels driven transportation system, including private vehicles.
All its emissions are responsible for environmental pollution,
in which CO2 emission constitutes about 65% of the total
emission [22]. Thus, the green transportation has been ex-
tensively studied by researches in recent years. For instance,
the electrification of the vehicle is now picking up speed,
aiming to limit CO2 emissions and improve energy efficiency
[23]. Alternative fuels for the transportation system would
also be an alternative option [24]. Solutions for low-latency
failover traffic engineering are proposed to steer the traffic in
failure scenarios [25], which can be used to provide reliable
communication in CV environment. For the future intelli-
gent transportation systems, solutions on autonomous vehicles
smart-platooning [26] and electric vehicle energy prediction
[27] are also proposed to improve the green transportation. In
most cases, existing infrastructures and transportation systems
is also need to be innovated.

C. Multiagent Markov Decision Processes

Markov Games [9] is a multi-agent extension of Markov
Decision Processes. They are defined by a set of states, S,
action sets for each of N agents, A1, . . . , AN , a state transition
function, T : S × A1 × . . . × AN → P (S), which defines
the probability distribution over possible next states, given the
current state and actions for each agent, and a reward function
for each agent that also depends on the global state and actions
of all agents, Ri : S×A1×. . .×AN → R. We will specifically
be considering a partially observable variant in which an agent,
i receives an observation, oi ∈ Oi, which contains partial
information from the global state, s ∈ S. Each agent learns a
policy, πi : Oi → P (Ai) which maps each agent’s observation
to a distribution over it’s set of actions. The agents aim to learn
a policy that maximizes their expected discounted returns:

Ji(π1) = Ea1∼π1,...,aN∼πN ,s∼T [

∞∑
t=0

γtrit(st, a1t, . . . , aNt)]

(1)

where γ ∈ [0, 1] is the discount factor that determines how
much the policy favors immediate reward over long-term gain.

D. Actor-Critic and Soft Actor-Critic

For many practical problems, the computation of the ex-
act value function is intractable, analytically and numeri-
cally, due to the enormous size of the state space. Actor-
critic methods [28] aim to ameliorate this issue by using a
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function approximation of the expected returns, by approx-
imating the value function and restricting the search for a
good policy to a smaller family of policies. One specific
instance of actor-critic methods learns a function to esti-
mate expected discounted returns, given a state and action,
Qψ(st, at) = E[

∑∞
t′=t γ

t′−trt′(st′ , at′)], learned through off-
policy temporal-difference learning by minimizing the regres-
sion loss:

LQ(ψ)(st, at) = E(s,a,r,s′)∼D[(Qψ(s, a− y))
2
]

where y = r(s, a) + γEa′∼π(s′)[Qψ̄(s′,a′)]

(2)

where Qψ̄ is the target Q-value function, which is simply
an exponential moving average of the past Q-functions and D
is a replay buffer that stores past experiences.

To encourage exploration and avoid converging to nonop-
timal deterministic policies, recent approaches of maximum
entropy reinforcement learning learn a soft value function by
modifying the policy gradient to incorporate an entropy term
[13]. The loss function for temporal-difference learning of the
value function is also revised accordingly with a new target:

y = r(s, a) + γEa′∼π(s′)[Qψ̄(s′, a′)− α log(πθ̄(a
′|s′))] (3)

III. METHODOLOGY

A. Problem Definition

In this work, we try to model the signal planning of
multiple intersections as a multi-agent reinforcement learning
problem. For green transportation, we focus on (1) the traffic
efficiency and (2) the energy efficiency of the green trans-
portation system. Traffic efficiency is a common indicator for
evaluating a transportation system. Higher energy efficiency
means to transport more vehicles passing the intersection in
unit energy consumption, thus to reduce the environmental
problems caused by traffic congestion. In evaluation, except
for the evaluation in traffic control performance, we also
make estimation of the environmental impact of the traffic
congestion by defining the energy consumption metrics for
green transportation. In detail, (1) for the traffic efficiency, an
important insight brought by this work is to model the signal
planning of multiple intersections in a region as a multi-agent
reinforcement learning (MARL) problem; (2) for the energy
efficiency, we implement analysis on the fuel consumption and
CO2 emission metrics.

Considering the example in Introduction, the conventional
signal algorithm is based on the queuing vehicle data of
8 phases in independent signal intersection without taking
correlated intersections into consideration. As Fig. 1 shows
that it is ineffective and vulnerable to congestion attacks in
the practical scenario, which will further increase the fuel
consumption and the CO2 emissions for green transportation,
the main goal for agents is reducing total time consumption
of vehicles to prevent traffic congestions. In our proposed
method, multiple agents are in cooperative relationships. Based
on the current state, each agent generates optimal signal plan
that can improve the local traffic condition while the agent

group aims to improve the global traffic condition in long
term. In the end, agents achieve a policy optimizing the overall
signal plans. This is based on the following assumptions:
• Each agent can obtain traffic flow data from their neigh-

bors in CV-based intelligent signal planning system.
• The optimal policy of single agent is not conflict with the

optimal target of agent group.
In the real-world scenario, it is estimated that the market

penetration rate of CV technology needs 25-30 years to reach
at least 95%, which means that the portion of the equipped
vehicles is less than 95%. Thus, it is hard for an agent to get
global traffic data from all of the other agents as the system
cannot record trajectory data of the unequipped vehicles. To
deal with the problem in transition period, we introduce the
Observation space in POMDP [29], in which the state of agent
is unknown, but the observed value of the states is known.
For each agent, it observes the traffic data from all of the
other agents with different ’attention weights’ [30], [31]. Thus,
we introduce the Multi-Actor-Attention-Critic (MAAC) [32] in
which the attention mechanism functions in a manner similar
to a differentiable key-value memory model and each attention
head focuses on a different weighted mixture of other agents.
Intuitively, each agent queries the other agents for information
about their observations and actions and incorporates that
information into the estimate of its value function.

Fig. 4: Multi-agent reinforcement learning-based signal plan-
ning framework.

Fig. 4 illustrates the framework of our proposed method.
N agents correspond to the N intersection signal control area.
To make the RL training process more compatible with the
real-time scenario, we propose a novel training framework.
The training process are implemented under the real-time
interaction between the RL model and the simulator. The
preprocessed vehicle data of each section is regarded as the ob-
servation of each agent, then the generated global observation
is used as the input of the network for policy update. Each
agent obtains an action according to their observations and
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policy, which is the signal plan of the intersection, meanwhile
the current policy is updated. Then the current signal plan is
sent back to the simulator to execute the next signal cycle.
Finally the RL model outputs an global policy aiming at
optimizing the signal plan of the whole area.

We consider the standard 8 phase signal planning scenarios,
which means that the traffic flow data and the signal plan are
both phase-based, and phase settings only consider the traffic
input roads. In transition period, the equipped vehicle data for
each lane are assigned into three regions: (1) queuing region,
including vehicles waiting in the queue with zero speed, (2)
slowdown region, including vehicles slowing down because of
the front vehicles, and (3) free-flow region, including vehicles
far away from the queue so that they behave independently.
Among the three regions, the queuing region is more important
for signal planning, since the queuing vehicles are stopped and
’waiting’ while the goal of signal plan is to minimize the time
of ’waiting’ in the intersection. To simplify the problem, in
each intersection, the input of the learning model is the number
of queuing vehicles of each phase and the delay time of all
vehicles under the current signal planning stage. Each agent
aims to output the signal plan for the intersection to minimize
the average delay of passing vehicles. We assume the traffic
light on each phase has only two states: red light and green
light.

B. Proposed Method
We model the signal planning of the N-intersection area as

a multi-agent reinforcement learning problem. As shown in
Fig. 4, our method is composed of a simulator and a multi-
agent RL model. In the simulator, we gain the road conditions
at each time step, which is regarded as the environment of RL
model at each training episode. In the RL model, we set N
agents according to the N-intersection area. The set of agents is
Agents = {Agent1, . . . , AgentN}, the signal plan in the ith
intersection is controlled by Agenti. Each agent observes the
environment and executes its action ai, which is corresponding
to the signal plan of the ith intersection in the simulator. The
signal plan for all intersections will be written back to the
simulator as the beginning of the next signal planning cycle.

The observation, action and reward in our method are
defined as follows:
• Observation.

The state of an intersection is presented by the traffic
condition of the intersection in real world. As the portion
of the equipped vehicles is less than 95%, each agent
cannot get the trajectory data of all vehicles. Thus,
the observation describes the traffic data which can be
observed by agents, which is part of the state set.
The observation space is O = {o1 × . . . × oN},
in which oi is the observation of Agenti. oi =
{V i, . . . ,V N}T is composed of a 9 tuple, V i =
{nqi1, nqi2, . . . , nqi8, delayi} is the traffic data of
Agenti, where nqik is the number of queuing vehicles
in the phase k, and delayi is the average of delay for
vehicles to pass in the ith intersection.

• Action.
A = {a1 × . . .× aN} is the action space, in which ai =

[SP ]2×4 is the action of Agenti recording the signal plan
in the ith intersection. SP ij is the green light duration
of 8 phases under the order shown in Fig. 3.

• Reward.
The reward is calculated by Eq. 6, which is defined as a
weighted sum of the following factors:

1) Delay time (D). Di is the sum of delay time of
vehicles in the ith intersection.

2) Queuing time (Q) Li is the total number of queuing
vehicles in the ith intersection, Qij is the queuing
time of vehicle j in the ith intersection. A vehicle
with a speed of less than 0.1 m/s is considered
as queuing, `ij = 0, 1 denotes whether vehicle
j is queuing. Thus, the queuing time in the ith
intersection is defined as Eq. 4.

Qi =

Li∑
j=1

Qij ∗ `ij , where

`ij =

{
1,vehiclespeed ≤ 0.1

0,vehiclespeed > 0.1

(4)

We define P i as the total time consumption in the ith
intersection and the Ri = −P i as the reward of the ith
intersection:

Ri = −P i = −(ω1 ∗Di + ω2 ∗Qi) (5)

Hence, by optimising the signal plan according to the obser-
vation oi, each agent aims to minimize the time consumption
P i and thus get the highest local reward Ri. The global reward
R is calculated by R =

∑N
i=1 R

i

N . In this situation, the global Q-
value function is defined to encourage all agents to get higher
long-run reward with sharing parameter:

Q =

N∑
i=1

(Ri +
∑
i 6=j

αjR
j) (6)

Where Qi is the Q-value function of Agenti,
∑
i 6=j αjR

j

is the contribution from other agents except Agenti itself. αj
is the attention weight. The attention weight αj passes the
similarity value between embedding ei and ej into a softmax:

αj ∝ exp(eTj W
T
k Wqei) (7)

We set N attention heads focusing on different weighted
mixture of other agents. Each attention head, using a separate
set of parameters (Wk,Wq, V ), gives rise to an aggregated
contribution from all other agents to the Agenti. Thus, each
head can focus on a different weighted mixture of agents.

Algorithm 1 illustrates the policy updating process in each
epoch.
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Algorithm 1 Policy updating progress

Input: Intersection number N , optimization steps T , policy
{πti}i=1,...,N

Output: Policy {πt+1
i }i=1,...,N

1: Initialize signal plan SP 0, signal plan period ST 0

2: for t = 0 to T do
3: V ehicleData← Simulator(SP t, ST t)
4: for i = 1 to N do
5: oti = {qli1, ..., qli8, delayi} ← Preprocessing

(V ehicleData)
6: end for
7: Ot = {ot1, ...,otN}
8: for i = 1 to N do
9: {(st+1

i , at+1
i , rt+1

i )} ← roll(Ot, πti)
10: πt+1

i ← optimize policy({(st+1
i , at+1

i , rt+1
i )}, πti)

11: end for
12: At+1 = {at+1

1 , ..., at+1
N }

13: SP t+1, ST t+1 ← SignalController(At+1)
14: end for
15: return {πt+1

i }i=1,...,N

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, first, we define metrics for the traffic control
and the environmental protection performance. Then, we eval-
uate different methods under the normal traffic conditions and
the congestion attacks and give analysis on their performance
in environmental protection.

A. Evaluation Metrics

In our evaluation, we evaluate the green transportation
system in two aspects: (1) the traffic efficiency, which indicates
the ability of reducing delay time. (2) the energy consumption,
which evaluates the performance in sustainable development
and environmental protection.

1) Traffic Efficiency: For the traffic efficiency, we focus
on the single intersection and the multi-intersection region
whole region in the meanwhile. Traditional evaluation metrics
in traffic area are no longer suitable for our work. Thus,
for a region which contains K intersections, we propose the
following novel evaluation metrics:
• Volume-to-Capacity Ratio (V/C) [33]. Vehicle capacity

of an intersection is the maximum number of vehicles that
could theoretically pass through. For the kth 8-phase in-
tersection, the vehicle capacity is Cmaxk =

∑8
p=1 C

max
p .

Nk is the total number of vehicles passing through the kth
intersection. Thus, the Volume-to-Capacity Ratio (V/C)
of the kth intersection is (V/C)k = Nk/C

max
k .

• Delay Time (DT). vehnk is the nth vehicle passing the
kth intersection in all Nk vehicles, then ATnk is the actual
time cost for vehnk , FTnk is the free-flow travel time
for vehnk . Thus, the average delay time for each vehicle
passing the kth intersection is DTk =

∑Nk
n=1(ATnk −

FTnk )/Nk
• Intersection Congestion Degree (ICD). ICD reflects

the congestion degree for a single intersection. Qkp is
the vehicle number of queuing in the pth phase in

the kth intersection and Qnormal is a constant that
we set Qnormal = 10. Thus, the congestion degree
for the kth intersection is calculated as ICDk =∑8
p=1Q

k
p/Q

k
normal.

• Region Congestion Degree (RCD). RCD reflects the
congestion degree for the whole region. ¯ICD is the
average number of queuing vehicles in each intersection,
N̄ is the average vehicle number of each intersection, then
the global congestion degree for the whole region is cal-
culated by RCD =

∑K
k=1(ICDk− ¯ICD)(Nk− N̄)/K.

2) Energy Consumption: For energy consumption in the
green transportation, we focus on the fuel consumption and
the exhaust emissions. As the proportion of CO2 in the car
exhaust gas is about 95% or even higher, we only analyze the
CO2 emissions of vehicles in all of our experiments. Thus, we
compute the following metrics:
• Fuel Consumption (FC). The fuel consumption cost of

vehicle is related to vehicle type k, driving speed v,
mileage l, and fuel prices P . Thus, the fuel consumption
of the traffic region is calculated as: FC =

∑
kNk ∗ l ∗

ok(v̄), where Nk is the number of the k type vehicles,
ok(v̄) is the fuel consumption of the k type vehicles at
the average speed v̄.

• CO2 Emission (CE). The CO2 Emission is calculated as:
CE = Nk ∗ l ∗ ek(v̄), where ek(v̄) is the CO2 emission
factor of the k type vehicles at the average speed v̄, Nk
is the number of the k type vehicles, l is the mileage.

B. Experimental Setup
To make the RL training more compatible with real-time

scenario, we consider a novel training framework. The train-
ing process are implemented under the real-time interaction
between training and simulation, based on multi-agent particle
environment framework and the simulator VISSIM. The multi-
agent particle environment is introduced by [34], which is
useful for creating environments involving complex interaction
between agents, while keeping the control and perception
problems simple, as we are primarily interested in addressing
agent interaction.

Considering a traffic region containing N 8-phase intersec-
tions, the topological structure of the traffic region contains
direct and indirectly traffic-flow relationships. Referring to the
traffic capacity of medium-scale intersections in Beijing City,
in our experiments, the traffic volume of in-directions of each
traffic region is set to be 2500 ± 300. Accordingly, there are
N agents for this task and each of them is set to have N/2
attention heads. In each training episode, we input the traffic
flow data V N from simulator into the model. For a region
with N intersections, the output of the model is a N ∗ 2 ∗ 8
signal control scheme for current episode and will be sent
to the simulator again for continuous simulation. When the
simulation finished, the reward value RN and the vehicle data
V N as the input of the next stage are fed back to RL training
process. All the experiments are trained with 6 random seeds.

C. Results and Analysis
1) Traffic Efficiency Analysis: In this section, we compare

the traffic efficiency of our methods and the conventional COP
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algorithm based on the proposed metrics in Section IV-A1. Un-
der the same initial traffic inputs, we analyze the performance
of different methods under normal traffic condition after 60-
minutes simulation. It’s clearly that our methods gets lower
and more stable value of V/C and DT (see Fig. 5), which
denotes that our method reduced the queuing number, and thus
reduced the time costs for vehicles to pass the intersection. We
further evaluate the ICD and the RDV to intuitively compare
the variance in difference between intersection (see Fig. 6).
Both of the ICD and the RDV are lower on average, which
shows the stability of our method for the whole region.

Fig. 5: Volume-to-Capacity Ratio (V/C) and Delay Time (DT)
under normal traffic condition after 60-minutes simulation.
The x-axis of (a) and (b) is the intersection denoted as A,
B, C, D. The y-axis of (a) is the Volume-to-Capacity Ratio
(V/C), y-axis of (b) is the Delay Time (DT)(seconds).

Fig. 6: Intersection congestion degree (ICD) and Region
Congestion Degree (RCD) under normal traffic condition
after 60-minutes simulation. The x-axis of (a) and (b) is the
intersection denoted as A, B, C, D. The y-axis of (a) is
the Intersection congestion degree (ICD), y-axis of (b) is the
Region Congestion Degree (RCD).

We found that, our method uniform the traffic flow in the
whole region by relieving the congestion in local intersections
to the global intersections. Thereby, our method get lower DT
value in average. For the traditional method COP, since the
signal planning between the intersection is independent, the
congestion in a certain intersection is easy to spread to their
neighbor intersections, resulting in a larger area of congestion.
However, under the same traffic flow input, our approach can
also gain a stability under large traffic flow.

2) Energy Consumption Analysis: In this section, we imple-
ment the energy consumption analysis of our method and the
conventional COP algorithm based on the proposed metrics

in Section IV-A2. As the fuel consumption and the CO2
emission are different in different vehicle types, we consider
the composition of traffic flow under normal traffic conditions,
detailed settings are shown in TABLE I.

TABLE I: The proportion of different vehicle types and cor-
responding CO2 emissions per kilometre in our experiments.

Vehicle type Proportion CO2 emissions (kg/kilometre)

Car 0.800 0.207
Bus 0.120 0.069

HGV 0.075 0.143
Tram 0.015 0.042

We compare our method and the COP algorithm under the
same traffic flow scale and traffic composition. The simulation
duration is set to be 60 minutes. As TABLE II shows, under
the same number traffic flow input, our method transported
15172 passing vehicles totally during 60-minutes simulation,
higher than the COP by 2.4%, however, the CO2 emission
of our method is lower than the COP. As the goal of green
transportation is to increase traffic efficiency with lower energy
consumption and exhaust emissions, our method increased the
traffic efficiency by transporting more vehicles, and mean-
while, reduced the CO2 emissions with the fuel consumption
are at the same level.

TABLE II: The proportion of different vehicle types and cor-
responding CO2 emissions per kilometre in our experiments.

Vehicle Number Fuel consumption (l) CO2 emissions (kg)

COP 14816 1958.18 2924.63
Ours 15172 1986.26 2946.80

Fig. 7: The fuel consumption comparison of our method and
the COP algorithm. The x-axis is the intersection denoted as
A, B, C, D. The y-axis is the average of fuel consumption in
60-minutes simulation for each vehicle.

We further compared the average fuel consumption of each
passing vehicle (see Fig. 7) and the CO2 emission of each
passing vehicle (see Fig. 8), from which we found that our
method reduced both of the fuel consumption and the CO2
emission. With the same number traffic flow input, the fuel
consumption and the CO2 emission of our method show more
stability in each intersection and get lower value in total.
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Fig. 8: The CO2 emission comparison of our method and the
COP algorithm. The x-axis is the intersection denoted as A, B,
C, D. The y-axis is the average of CO2 emission in 60-minutes
simulation for each vehicle.

3) Safety Analysis: The goal of the congestion attack is
to disturb the signal plan and increase the total delay of all
vehicles in the intersection. It causes a series of environmental,
economic, and social problems, such as the increasing of
CO2 emission and fuel consumption, the raising of travel
costs, and the occurrence of traffic congestion and accidents.
Recent work has shown that the congestion attack called the
last vehicle attack may cause the failure of COP algorithm,
and increase the total delay by as high as 68.1%, which
completely reverses the benefit of using the I-SIG system
(26.6% decrease). Fig. 9 shows the attack strategy of the last
vehicle attack.

Fig. 9: Attack strategy of the ’last vehicle’. As shown, the
spoofing vehicle was set on the phase 2, and in the end
prolonged the green light duration of phase 2.

In the attack model, a spoofing vehicle is set to stop at the
end of a phase. It will extend the green light duration of the
attacked phase (phase 2), and thus delay the green light start
time of all the following phases (phase 3,4,7,8). After a period
of continuous attack, these phases will be growingly congested
with more queuing vehicles. To maximize the impact of the

Fig. 10: Volume-to-Capacity Ratio (V/C) and Delay Time
(DT) under congestion attacks after 60-minutes simulation.
The x-axis of (a) and (b) is the intersection denoted as A, B, C,
D. The y-axis of (a) is the Volume-to-Capacity Ratio (V/C), y-
axis of (b) is the Delay Time (DT)(seconds).The attack vehicle
is put on the Intersection C.

Fig. 11: Intersection congestion degree (ICD) and Region
Congestion Degree (RCD) under congestion attacks after 60-
minutes simulation. The x-axis of (a) and (b) is the intersection
denoted as A, B, C, D. The y-axis of (a) is the Intersection con-
gestion degree (ICD), y-axis of (b) is the Region Congestion
Degree (RCD). The attack vehicle is put on the Intersection
C.

attack, the attacker tends to add spoofing vehicles when the
number of vehicles in the target phase is large. The behind
intuition is that, under the last vehicle attack, the cumulative
time delay will be greater when there are more vehicles in the
road, causing more massive congestion.

In this section we analyze the traffic efficiency of our
method and the COP algorithm under data spoofing attacks.
Fig. 10 and Fig. 11 show the result. It’s clear that even under
the congestion attack, our method gets lower and more stable
CV , DT , ICD and RCD values than the COP algorithm, in
which the DT is at the same level of the condition without
attacks. However, as the attack vehicle is set at the 1th phase of
the intersection C, the COP shows obvious abnormal traffic in
both Intersection C and its neighbor D, the DT in intersection
C increased 156.62% compared to normal traffic especially.
Our method gets higher traffic efficiency and shows more
general performance in the whole region. It shows robustness
against the congestion attacks and stability under large traffic
flow.
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V. RELATED WORK

A. Reinforcement Learning for Traffic Light Control

As the widely using of the CV technology in transportation
systems, conventional signal planning algorithms are no longer
suitable due to its inefficiency and potential risks. More
works try to use reinforcement learning algorithms to solve
the traffic light control problem [10], [35]. Typically, RL-
based algorithms take the traffic on the road as state, and the
operation on light as action. Methods in [35] designed the
state as discrete values like the location of vehicles or number
of waited cars, in which the discrete state-action pair value
matrix requires However, the discrete state-action pair value
matrix requires huge storage space.

To solve the unmanageable large state space of previous
methods, recent studies [11], [36] propose to apply Deep Q-
learning methods using continuous state representations. These
studies learn a Q-function (e.g. a deep neural network) to
map state and action to reward. These works vary in the state
representation including hand craft features (e.g., queue length,
average delay) and image features) They are also different
in reward design, including average delay, the average travel
time, and queue length.

However, all these methods assume relatively static traffic
environments, and hence far from the real case. Therefor,in this
paper, we try to train the model under a novel framework, in
which the training process are implemented under the real-time
interaction between the RL model and the simulator. What’s
more, all of these works ignore the traffic flow relationship
between intersections, which can be used in traffic forecast.By
introduce the attention mechanism, Our method is adjusted to
different region scale, which is important in the global signal
plan scenario.

B. Traffic Signal Control Algorithm Security

The security problems of the intelligent traffic signal system
based on CV technology have been being revealed in several
recent works [7], [37]. Such attacks can use message falsifica-
tion (modification), spoofing (masquerading), or replay attacks
to maliciously affect the vehicle stream, leading to rear-end
collisions in severe cases.

Prior to our study, Laszka et al. performed a theoretical
analysis to estimate the potential congestion an attacker can
create assuming that she can arbitrarily compromise multiple
signal controllers [38]. A follow-up study was then performed
for the same attack goal but with a weak assumption, in which
the attacker can only compromise the sensors that collects
traffic flow information [39], [40]. In comparison, neither of
these works analyzes the CV-based signal control scenario
targeted in our work. Compared to existing studies, our work
valuates the performance in different region scales. The multi-
intersection signal control scenario, in which the number of
intersections is adjusted to the RL model, is much more
realistic.

For traditional traffic control, our first objective should
be safety, followed by mobility and other objectives such
as sustainability [41]. Safety is traditionally guaranteed by
design: including the dual-diagram design scheme [42] and

other associated techniques such as the conflict monitor em-
bedded in traffic controllers. Mobility is usually considered
by minimizing the total delays or travel times of all vehicles
passing the intersection (e.g., for optimizing the timing of a
single intersection), or maximizing the throughput or other
related measures (for coordinating multiple intersections). The
sustainability objective is often defined as the total energy con-
sumption or emissions of vehicles passing the intersection [8],
which is significant in green transportation nowadays. In CV-
based systems, traffic data from road side and the infrastructure
side are collected together by the net, it is a kind of the Cloud-
assisted Internet of Things (IoT), thus, a Privacy-Enhanced
Retrieval Technology for Cloud-assisted IoT is proposed to
preserves data privacy in CV-based system [43]. Furthermore,
as the Industry 5.0 is on the way, recent work also discussed
the future of the Industry 5.0.cloud encrypted storage model
[44], meanwhile, with lower time cost.

C. Congestion Costs Estimation in Green Transportation

In green transportation, traffic congestion increases the
delay time and travel time of vehicles, thus leads to envi-
ronmental problems. As a tool to quantitative analysis the
results, estimation of the environmental impact of congestion
is performed using different modelling approaches. Important
distinction among the various methods applied worldwide is
the spatial and temporal resolution they offer. In general,
available methods can be divided between microscopic and
macroscopic ones [45], [46]. Microscopic emission models can
estimate the instantaneous emissions on a second-by-second
basis and are more suited to assess interventions on single
roads or junctions. In such approaches, fuel consumption and
exhaust emissions calculation require the exact speed profile
of the vehicles as an input. The speed profiles are provided in
most cases by micro traffic simulation models and assumptions
on gear changes are made to predict the engine operation [47].

Macroscopic models, on the other hand, have been devel-
oped to estimate fleet emissions over a region or on a country-
wide scale, and are mostly utilizing average speed as an input.
Models of this type, such as COPERT [48], ARTEMIS [49]
and NAEI [50], use the average speed to predict fuel consump-
tion and emissions, with the produced factors being expressed
in mass of pollutant per unit of distance travelled (e.g. g/km).
Two main factors have contributed to the widespread usage
of the average speed models: they are easy to use, and they
do not require detailed input data, such as second-by-second
vehicle trajectories [51].

VI. CONCLUSION AND FUTURE WORK

In this paper, we focus on both of the traffic efficiency
and the energy efficiency in green transportation. For the
traffic efficiency, we model the signal planning of multi-
intersection region as a multi-agent reinforcement learning
problem; for the energy efficiency, we aim to improve the
traffic efficiency meanwhile reduce the fuel consumption and
CO2 emission. In our RL model, we introduce the attention
mechanism considering the relationship of traffic flow between
intersections. We conduct extensive experiments using a novel
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framework, in which the training process are implemented
under the real-time interaction between the RL model and the
simulator. In addition, we compared the performance of our
method with the traditional signal plan algorithms under the
congestion attacks. To evaluate the performance of RL model
in signal plan scenario, we propose metric based on the multi-
intersection environment. The results shows that our method is
not only fixable to different scale of multi-intersection region,
but also robust and stable to the attack conditions.

This work severs as a first step to explore the multi-
intersection collaborative signal planning in the next-
generation CV-based transportation systems. It is expected to
inspire a series of follow-up studies, including but not limited
to 1) more extensive evaluation with larger traffic network and
more intersections, 2) more energy-efficiency communication
strategies among agents of different intersections, 3)safety
guarantees and balance of multiple agents.
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