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Summary

Federated Learning(FL) is naturally in line with the application scenarios of dis-
tributed edge collaboration of the Internet of Things(IoT), and has the ability to
protect data security and privacy, so it is widely used in the IoT applications such as
Industrial IoT. Due to the distributed nature of FL, each participant is independent
and confidential, and training samples are not sent to trusted institutions for inspec-
tion. Therefore, FL cannot guarantee that all clients are honest and are vulnerable to
malicious attacks. In this paper, we focus on edge-cloud synergistic FL clean-label
attacks. Different from the backdoor clean label attack, in order to ensure the con-
cealment of the attack, we add a small perturbation to realize the clean label attack
by judging the cosine similarity between the gradient of the adversarial loss and the
gradient of the normal training loss. In order to improve the attack success rate and
robustness, we choose the attack timing when the model is about to converge. The
experimental results verified that 1% of poisoned data can achieve an attack with
high probability. Our method maintains stealth while performing model poisoning
attacks, and the average PSNR of poisoned images reaches over 60, and the average
SSIM is close to 0.93. Most importantly, our attack method can bypass Byzantine
aggregation defense.
KEYWORDS:
IoT, Edge-cloud collaboration, Federated Learning, Clean label attack

1 INTRODUCTION

Edge computing nodes have faster response speed, less bandwidth requirements, more secure local data transmission, storage
and computing capabilities, which meet the requirements of industrial Internet of things in aspect of real-time reponse, security
and privacy protection, and better provide intelligent services for local users1,2,3,4. In order to alleviate the limited computing
power of the edge (the training of a single edge device is time-consuming and computational power) and the problem of data
island (the edge data is local), multiple edges need to be trained together5,6. The distributed Federated Learning (FL) framework
is naturally in line with the application scenarios of IoT edge collaboration, and has the ability to protect data security and
privacy, so it is widely used in Industrial IoT7,8,9,10. FL is a novel distributed data security learning framework, which can be used
to collaboratively train a deep learning model of multiple edge devices to meet a wider range of needs11,2. Figure 1 shows the
FL framework for edge-cloud collaboration. This is a secure distributed training method, that is, the cloud server jointly trains
a global model by aggregating parameters uploaded by multiple edge nodes. And,edge devices only share model parameters to
the server without exposing their private training data12.
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However, the distributed nature of FL and the independence of each participant, participants can join and leave the alliance
freely, which makes the client easy to be hacked and manipulated local data and model parameters. In particular, in deep learning
models, the central server only has access to local model updates uploaded by edge nodes, which makes detection of malicious
updates very difficult because it is challenging to distinguish a well-behaved model from a benign one. They are all trained on
locally inaccessible data. So FL is not always safe and robust13,14,15.

The existing FL poisoning attack methods mainly inject malicious samples into the dataset or tamper with the labels of
specific samples, causing the model to output malicious labels specified by the attacker for specific samples in the inference
stage16,17. Poison-like data essentially destroys the training process of the model, making it impossible for the model to learn
the correct discriminative ability. Backdooring is achieved by adding patch-style triggers with the aim of making patches as
salient classification features of backdoor samples. Label reversal attacks make the model deviate from the given predictions
by reversing the training data labels. Both methods assume that the labels of the target samples are also poisoned. This greatly
reduces the stealth of the attack, as samples with inconsistent content and labels can be distinguished from benign training
samples by human visual inspection of the training set, defense methods, or running a pre-classification step.

We focus on FL clean label attacks in the edge-cloud collaboration framework. A clean label poisoning attack is to add fine-
tuned samples that look normal and correctly labeled into the training set18,19,20,21. The poisoned model will classify a specific
sample into the class chosen by the attacker, while maintaining good performance on the main task. Unlike the usual backdoor
clean label attack, we do not add triggers, do not invert labels, but add tiny perturbations by judging the cosine similarity between
the adversarial loss gradient and the normal training loss gradient to implement the clean label attack. Simultaneously minimize
the distance between the poisoned client model and the global model during the training phase. Double insurance ensures the
concealment of the attack, and achieves the same backdoor patch effect.

As we all know, the backdoor attack of FL needs to create many adversarial examples, and the attack effect will offset the
contribution of most malicious models with the aggregation of the model, and the joint model will soon forget the backdoor.
In order to achieve the robustness and concealment of the attack effect, we chose a different attack timing than before. Inspired
by the pretraining-retraining idea of transfer learning, we choose the phase where FL tends to converge as the pretraining stage
to obtain the parameters of the global model. Then the attacker adds poisoned samples locally and participates in subsequent
model training until the model fully converges. The choice of attack timing has a great impact on the success of the attack and
does not disappear too quickly or even forget as the model converges.

FIGURE 1 The federated learning framework for edge-cloud collaboration
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In this paper, we choose unprecedented timing for label poisoning attacks inspired by transfer learning. The contributions of
this paper are as follows.

• We adopt matching to minimize the negative cosine similarity of the target gradient and the toxicity gradient, so that they
are distributed in the same direction to achieve clean label attacks, while minimizing the distance between the poisoning
model and the global model. The stealth goal of the attack is achieved.

• By observing the change trend of the loss value of the federated learning training process and combining the pretraining-
retraining idea, we choose to implement clean label poisoning attacks in the convergence stage of the model during the
federated learning training process. Mainly because the gradient updates of benign clients reflect the special characteristics
of their local data. When the global model aggregates client-side gradient updates, these updates are mostly canceled out,
resulting in less impact on the weights of clean label attacks.

• We implement a clean-label poisoning attack on federated learning using 1% poisoned data. Meanwhile, the accuracy of
the main task has little effect on the poisoning model. The images before and after poisoning cannot be distinguished by
human eyes. The average peak signal-to-noise ratio is more than 60 dB and the structural similarity is about 0.93.

• We implement a clean label poisoning attack that can bypass the defense of the Byzantine aggregation rule for FL.
The rest of the paper is structured as follows. Section 2 discusses the related work starting with related work on FL followed by
Poisoning attacks on FL. Section 3 gives the threat model in the FL attack. Section 4 describes the detail the clean label attack
method we proposed and the attack timing in FL. Section 5 is describes the experimental environment and the evaluation of
experimental results The last section is conclusion and future work.

2 RELATED WORK

2.1 Federated Learning
Federated Learning(FL) as a distributed paradigm, collaboratively learns a shared predictive model, and the training data is
kept locally on each client to preserve privacy12. During the FL process, the client trains the local model based on the local
datasets, and uploads the updated model parameters to the server for secure aggregation, repeating multiple times until the
learning process converges. We employ an average FL aggregation rule with one server and N clients, and disjoint private
datasets. We employ a standard FL setup with one server 𝑆 and 𝐶 = {𝐶1, 𝐶2,… , 𝐶𝑛} clients, and disjoint private datasets
𝐷𝑖, 𝑖 ∈ 𝑛. Figure 2 shows the process of FL. Initially, the server randomly selects m clients from C and delivers the initialized
global model parameters to the selected clients. Then, selected clients are trained locally using local data and global model
parameters. Compute stochastic gradients 𝑓𝑎𝑟𝑔(Δ𝑡,𝑖∈𝑛) ,send stochastic gradient updates to the server. The server enforces the
security aggregation rules Δ = 𝜕𝐿(𝑏,𝜃𝑡)

𝜕𝜃𝑡
and SGD computes a new model 𝜃𝑡+1 and distributes it to randomly selected clients in

the next round. For privacy reasons, the server is designed to be unable to view the client’s local data and training process.
𝜃𝑡+1 = 𝜃𝑡 −

𝜂
𝑛
∑

𝑛∈𝐼𝑡

𝑊 𝑛
𝑡 (1)

where,𝜃𝑡+1 is the model update,𝜂 is the learning rate, and 𝑊 1
𝑡 ,𝑊

2
𝑡 ,… ,𝑊 𝑛

𝑡 is the update returned by N clients. When 𝜂 = 1, the
aggregation rule of FL is weighted average. Finally, the client updates each local model with the aggregated gradient information.
Repeat the above steps until the loss function converges, i.e. has a lower loss 𝐿(𝐷𝑣𝑎𝑙, 𝜃) on the validation data 𝐷𝑣𝑎𝑙. The FL
output is the most accurate 𝐷𝑣𝑎𝑙 global model.

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐹 (𝐷, 𝜃) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃∈Φ
|𝐷𝑖|

𝐷
∑

𝑖∈𝑛
𝐹 (𝐷𝑖, 𝜃) (2)

where,𝐹 (𝐷𝑖, 𝜃) is the 𝑖-th client’s objective function.

2.2 Poisoning attacks on FL
In the FL distributed learning process, compared centralized attacks, a single attack is easier to implement, so FL is easily
attacked by poisoning. Below we are separately expanded from the target and capabilities of the enemy.
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FIGURE 2 Training process of federated learning

According to the adversary’s goals, poisoning attacks include non-targeted and targeted attacks. The goal of an non-targeted
poisoning attack is to maximize the error rate of the global model for any test input, making the learned model unusable,
ultimately leading to a denial of service attack. For example, a Byzantine attack, which arbitrarily uploads malicious gradients
to the server, causing the global model to fail. The goal of target poisoning attacks is to minimize the accuracy of the target test
input while maintaining the high accuracy of other test inputs. The learned model produces predictions expected by the attacker
for a specific test example. For example backdoor attack and label reversal attack.

According to the opponent’s ability, the attack methods include model poisoning attack and data poisoning attack. During FL
training, model parameters are shared instead of data, which can lead to model poisoning attacks. Model poisoning attacks can
directly manipulate gradients on malicious devices, which are then shared to the server every epoch. In FL, model poisoning
attacks are a natural and powerful class of attacks where attackers can directly manipulate updates to central servers16,17. Data
poisoning attacks indirectly affects the gradient on the malicious device by manipulating the training dataset of the malicious
client, which ultimately affects the performance of the global model16. Poisoned data samples can be generated directly by
simple label flipping methods or by adding backdoor triggers to the training dataset to create poisoned data that trick image
classifiers into assigning an attacker-chosen label to images with certain characteristics.

Among them, backdoor attack is a specific attack that attempts to compromise the integrity of data by adding specific trigger
behaviors to samples. In FL, Bhagoji22improves the concealment of poisoning attacks by estimating local updates of benign
actors, and employs an alternating minimization strategy to make the visual interpretation of model decisions indistinguishable
between benign and aggressive models. Bagdasaryan13 used a model placement strategy to inject backdoor patterns into fed-
erated models. The label flip attack is to modify the labels of the training data while maximizing the classification error of the
model. Tolpegin14used label inversion attack for targeted attack in the FL scenario, and proved that poisoning attack can also
be achieved with less poisoning data.

From the above analysis, we can know that whether adding patch triggers or label flipping attacks is to modify the label of
the target sample. This seriously reduces the concealment of the attack, because samples with inconsistent content and labels
can be easily found and eliminated by manually checking the training set or running a pre-trained model.

New approaches to clean label attacks have recently emerged in transfer learning and have achieved very good results. The
clean label attack involves injecting the indistinguishable image of the toxic image with the correct mark into the training data,
and the poisoning model will misclassify the specific target image19.
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FIGURE 3 Data poisoning attack in FL

Shafahi et al18 proposed a "poison frog" clean label attack, where the authors retrain the model by injecting clean label
Poisoned data to misclassify a given test instance with a high success rate. It also tells us that "clean label" attacks are very
effective on neural networks. Mahloujifar et al21 proposed to replace the original training samples with correctly labeled poisoned
samples and their variants with independent probability p, called p-tampering attack.

In this paper, we do not add patches and invert the labels of the target samples, but only add minor perturbations to the cosine
similarity between the adversarial loss gradient and the normal training loss gradient to achieve clean label attack. At the same
time, the distance between the poisoned model and the global model is minimized during the attack phase. The double insurance
guarantees the concealment of the attack and realizes the target of the attacker’s attack.

3 THREAT MODEL

In this paper, we agree that an attacker cannot modify the aggregation rules of cloud servers. Based on the existing experience,
attackers have to find the opportunity of rapid convergence of the model, and need to increase the influence of malicious data. We
assume that attacker cannot manipulate the labeling process of the target image, that is, the attacker cannot perform mislabeling
behavior. The attacker does not need complete knowledge of the whole training set, but only needs to know the poisoning subset
and a trained model parameter. In FL, the attacker pretends to be a benign client, and we endow the attacker with the ability to
know the local data, the number of local training rounds, the number of global model iteration rounds, and the learning rate.

Furthermore, we assume that the attacker controls only one benign actor to launch a targeted attack. Only by adjusting the
proportion of poisoned data, the number of local training rounds, attack timing and other parameters to achieve the attack. During
training time attack, there may be multiple attackers, and we do not consider the case of collusion attack.

3.1 Attacker’s goal
In our paper, the attacker needs to achieve 3 goals. The most important goal is to classify errors on specific images while achieving
high accuracy between the main and target tasks. Specifically, the attacker attempts to manipulate the federated FL model to
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maintain high accuracy on the main task while misclassifying specific images. We use two metrics to evaluate: 1) Attack success
rate: mainly by judging the classification confidence of the target image in the global model, that is, classifying the target sample
into the specified category. 2) Basic task accuracy: the global model should have high accuracy for non-target samples.

𝐿𝑎𝑑𝑣(𝜃) =∶ 𝐿(𝐹 (𝑥𝑡, 𝜃), 𝑦𝑎𝑑𝑣) (3)

𝐿(𝜃) =∶ 1
𝑁

𝑛
∑

𝑖=1
𝐿(𝑥𝑖, 𝜃), 𝑦) (4)

Secondly, the attacker needs to achieve the concealment of the attack effect. While realizing the main target of attack, we
minimize the distance between the operation poisoning model and the global model, so that it will not be found by manual or
other methods, so as to ensure its concealment.

Finally, in order to achieve the durability of the attack and good attack effect, we chose an unprecedented attack opportunity.
We found that even traditional data poisoning attacks can have a great impact on the federal learning model as long as the timing
of poisoning is appropriate. When the fl model tends to converge, the attacker generates a poisoning sample data set on the
client side and enhances the poisoning sample data. Continue FL training on the enhanced data set until convergence. Make the
retrained model incorrectly classify a specific test sample from one class to another class selected by the attacker. At the same
time, the expected prediction results of other main tasks achieve high accuracy.

4 PROPOSED METHOD

4.1 Problem Formulation
Clean label attack is that an attacker can only add correctly labeled samples to the training set. The clean label poisoning attack is
not a simple data pollution attack by adding incorrectly labeled samples to the training set, but adding correctly labeled but fine-
tuned samples to the training set. This attack essentially builds a finely tuned and correctly annotated image that looks normal,
with no impact on the training and general performance of the neural network. But for a specific sample it will be classified into
the class chosen by the attacker.

In a FL poisoning attack, there are 𝑀 malicious clients, 𝐵 benign clients, 𝑁 is the total number of clients, and 𝑀 +𝐵 = 𝑁 .
For the convenience of operation, select Client 1 as the malicious client. We assume that by poisoning 5% of the client’s local
data, the learned model is biased towards the target 𝐿𝜃() Specifically, during the attack training, the benign client trains the
local type and updates the model 𝜃𝑖,𝑖 ∈ 𝐵 upload to the server. the malicious client uploads the malicious model update 𝜃𝑖′ ,
𝑖′ ∈ 𝑀 . The server aggregates the local model parameters through the averaging rule to obtain new global model parameters.
The aggregation model parameters are expressed as:

𝜃 =
∑

𝑖∈𝐵
⋅
|𝐷𝑖|

|𝐷|

⋅ 𝐹 (𝐷𝑖, 𝜃) +
∑

𝑖∈𝑀
⋅
|𝐷𝑖′ |

|𝐷|

⋅ 𝐹 (𝐷𝑖′ , 𝜃) (5)
Due to the existence of attackers, the performance of aggregation model will be poor. Therefore, the attacker’s goal is to find
poisoned examples that minimize the objective function 𝐿𝜃(). We express the training goal of each round of attacker as an
optimization problem:

�̄� = 𝑎𝑟𝑔𝑚𝑖𝑛𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜃)

𝑠.𝑡.𝜃 = 𝑎𝑟𝑣𝑒𝑟𝑎𝑔𝑒(𝜃′

𝑖 ; 𝜃𝑖), 𝑖
′ ∈ 𝑀, 𝑖 ∈ 𝐵

(6)

Where,average()represents the aggregation rule,�̄�represents the optimal poisoning models. We substitute equation (5) into the
optimization objective (6) to obtain the fl optimization formula of the attack:

�̄� = 𝑎𝑟𝑔𝑚𝑖𝑛𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜃)

𝑠.𝑡.𝜃 =
∑

𝑖∈𝐵
⋅
𝐷𝑖

𝐷
⋅ 𝐹 (𝐷𝑖, 𝜃) +

∑

𝑖∈𝑀
⋅
𝐷𝑖′

𝐷
⋅ 𝐹 (𝐷𝑖′ , 𝜃)

(7)
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4.2 Poison Data Generation Using Negative Cosine Similarity
We focus on a clean label attack based on gradient orientation. That is, the attacker can only trick the learner into misclassifying
specific test samples by adding carefully crafted but correctly labeled samples to the training set. Figure 4 shows the process
of cleaning label poisoning attack in FL. The target is a cat and is identified as a dog by the attacker. The detailed process of
poisoning attack is given below. First, pre training is needed in federated learning to find the stage of convergence. Secondly, the
negative cosine similarity is used to add the minimum disturbance to the image of the target sample dog, so that the characteristic
image of the target image is similar to that of the aircraft. Third, put the clean non target image and the poisoned dog sample into
the model for training to get the poisoning model. Finally, in the verification stage, the clean and specific cat image is input into
the poisoning model, the dog category is output, and the clean dog, frog and other non target images are input into the model
to get the correct classification. In the process of FL, as long as the global model is poisoned, all clients will be polluted and
classified incorrectly.

In order to increase the concealment of attack, we give a double insurance strategy. First, we generate poisoning samples.
Specifically, in our attack, instead of adding patches and reversing the label of the target sample, we propose an anti cosine
similarity strategy, which minimizes the cosine similarity between the poisoning gradient and the target gradient, generates
small disturbances, and adds them to the target sample as the poisoning sample. On the one hand, this method ensures that the
accuracy of main tasks does not decline, on the other hand, it ensures that the model makes wrong prediction on poisoning
samples. We call this part of the loss 𝐿𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑠𝑠. Here, 𝐿𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑠𝑠 just corresponds to the loss of equation (5),including the loss
of poisoned sample and the loss of clean sample. Poisoning disturbance range is ‖Δ𝑖‖

∞ ≤ 𝜖

𝐿 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐿𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑠𝑠)

= 𝑎𝑟𝑔𝑚𝑖𝑛(1 −
< 𝐿(𝐹 (𝑥𝑡, 𝜃), 𝑦𝑎𝑑𝑣),

∑𝑃
𝑖=1 𝐿(𝐹 (𝑥𝑖 + Δ𝑖, 𝜃), 𝑦𝑖) >

‖𝐿(𝐹 (𝑥𝑡, 𝜃), 𝑦𝑎𝑑𝑣)‖ ⋅ ‖
∑𝑃

𝑖=1 𝐿(𝐹 (𝑥𝑖 + Δ𝑖, 𝜃), 𝑦𝑖)‖

(8)

We enhance the robustness of the attack method. After minimizing the generated poisoning disturbance, data enhancement
techniques such as clipping and horizontal flipping are carried out on the poisoning data. Finally, the changed data is restored
to the original resolution and re sampled by bilinear interpolation technology.

At the same time, the distance between the poisoned model and the global model 𝐿𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑙𝑜𝑠𝑠 is minimized, so that the
poisoned model will not be detected due to a large deviation from the global model.

𝐿 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐿𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑠𝑠 + 𝐿𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑙𝑜𝑠𝑠)
= 𝑎𝑟𝑔𝑚𝑖𝑛𝛼(𝐿𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑠𝑠_𝑐𝑙𝑛 + 𝐿𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑠𝑠_𝑎𝑑𝑣) + (1 − 𝛼)𝐿𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑙𝑜𝑠𝑠

= 𝑎𝑟𝑔𝑚𝑖𝑛𝛼(1 −
< 𝐿𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑠𝑠_𝑐𝑙𝑛 ⋅ (𝐿𝑐𝑙𝑎𝑠𝑠𝑙𝑜𝑠𝑠_𝑎𝑑𝑣) >

‖(𝐿𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑠𝑠_𝑐𝑙𝑛)‖ ⋅ (‖𝐿𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑠𝑠_𝑎𝑑𝑣)‖
) + (1 − 𝛼)𝐿𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑙𝑜𝑠𝑠

(9)

Where, super parameter 𝛼 as a scale factor to avoid anomaly detection, it controls the scope of attacker model update to ensure
that the poisoned model update parameters survives in the aggregation process of the server.

4.2.1 Attack Timing About Federated Learning
Poisoning attacks can be performed at any time during the FL training phase. The traditional FL poisoning attack is that the
attacker adds the poisoning data to the training from the first round of FL model training, and uploads the poisoning local update
to the central server, so as to destroy the global model. However, with the increase of the number of training rounds of the global
model, the attack effect will aggregate with the model, offsetting the contribution of most malicious models, and even the model
will soon forget the back door.

By observing the training process of FL (as shown in Figure 5), it is found that the total number of rounds of FL model training
global model training is 100 epochs, the loss will decrease rapidly before the 20th epoch, and the change speed of loss will slow
down after the 20th epoch. Between the 80th and 100th epochs, the loss convergence of the model tends to be stable and the
change is very small. In the early stage of model training, the FL updates the model with a large change range, and the change is
relatively small in the later stage until the convergence does not change. We combine the observed change speed of model loss
with the idea of pre-training and retraining, and select the convergence stage of the model for poisoning attack. The main reason
why the model tends to converge is that the gradient update of benign clients reflects the special characteristics of their local
data. When the global model aggregates client gradient updates, most of these updates will be offset, which has little impact on
the weight of clean label attacks. Specifically, the training process before the FL model tends to converge is taken as the model
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FIGURE 4 Poisoning attack of clean labels based on negative cosine similarity

pre-training stage. At this time, the attacker selects client 1 as the malicious client and generates poison to the randomly selected
target image of local data according to formula (8), so as to construct a poisoned image that looks correct but has been carefully
disturbed. Put the poisoned image and the clean image into the pre trained model and train again until the model converges. This
can prevent the poisoning attack effect from being offset or forgotten, and ensure that the local update of poisoning remains alive
in the model average. Therefore, the choice of attack timing can not only ensure the poisoning effect after model convergence,
but also effectively enhance the persistence of attack effect Figure 6 shows the attack timing of FL when the model tends to
converge. The client uses formula 8 and formula 9 to poison 1% of the local target data set. Then participate in the follow-up
training process of FL.

5 EXPERIMENTAL EVALUATION

In this section, we use pytorch to implement attack validation on image classification data and provide detailed experimental
results to evaluate our method. We mainly verify the effectiveness of our method through four experiments. 1) The attack method
in this paper is verified by judging the attack success rate and benign sample accuracy. 2) Analyze the concealment of the attack
method in this paper by judging the similarity between the poisoned data and the original data. 3) By comparing the attack
methods of other clean samples, the efficiency of this method is proved. 4) The attack effect of this paper is verified by the
Byzantine robust aggregation rule.
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FIGURE 5 Loss change process in federated learning

Algorithm 1 Poison Data Generation Using negative cosine similarity
Require: : Pretrained FL 𝑒𝑝𝑜𝑐ℎ = 80 and obtains the global model parameters𝜃,training samples𝐷 = (𝑥𝑖, 𝑦𝑖)𝑁𝑖=1,target(𝑥𝑡, 𝑦𝑎𝑑𝑣),

perturbation bound 𝜖,optimization steps m, P is the number of poisoning samples.
1: Begin Select 𝑃 training samples with label 𝑦𝑎𝑑𝑣.
2: for i do= 1,...10 epoch:
3: Randomly initialize perturbations Δ𝜅

𝑖
4: for j do=1,...m optimization steps:
5: poisoned samples 𝑥𝑖 + Δ𝜅

𝑖
6: poisoned samples 𝑥′

𝑖 = (𝑥𝑖 + (Δ𝜅
𝑖 ))

7: data augmentation to 𝑥′

𝑖
8: Update the perturbation Δ on all poisoned samples using Equation 8, and ‖(Δ𝜅

𝑖 )‖
∞ ≤ 𝜖

9: Take the smallest Δ𝜅 as the final perturbation
10: end for
11: return Poisoned samples (𝑥𝑖 + Δ𝜅

𝑖 , 𝑦𝑖)
𝑁
𝑖=1

12: end for

5.1 Environment settings
5.1.1 Datasets
We use three basic data sets, including MNIST, fashionmnist and cifar10 to evaluate our approach. These data can be downloaded
from the official website. In this experiment, we use Resnet18 neural network model to train local data. Different clients use the
same model. We use Cifar-10 as our image classification task, training a global model with 10 participants, with 5 randomly
selected per round. We use the lightweight ResNet18 model. When training the attack model, the poisoned images are mixed
with benign images in each training batch. This helps the model learn the target task without affecting its accuracy on the
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FIGURE 6 The attack timing of federated learning when the model tends to converge

main task. The training data of the participants is very diverse, and the poisoned images represent only a small fraction, so the
introduction of the backdoor has little effect on the main task accuracy of the joint model.

5.1.2 Attack settings
Our experimental environment includes 𝐶𝑚

𝑖=110 clients, of which, 𝐶𝑀 is a malicious client, and the rest are normal clients.
Each round randomly selects five clients to train a global model. It is assumed that the total training data set is evenly and
randomly distributed among all participants, and each participant receives a unique subset of training data. That is, keep the
data independent and identically distributed (IID).When training the attack model, the poisoned images are mixed with benign
images in each training batch. This helps the model learn the target task without affecting its accuracy on the main task. The
training data of the participants is very diverse, and the poisoned images represent only a small fraction, so the introduction of
the backdoor has little effect on the main task accuracy of the joint model. According to common practice, the first client can be
selected as the client. When the d perturbation size on the CIFAR-10 data is 𝜖 = 16, the time required for the successful attack
on the FL framework and the attack success rate of the poison datasets with budgets of 1, 0.1, 0.01, and 0.05 are calculated
respectively.

5.1.3 Evaluation Metrics
To illustrate our proposed label poisoning attack method, we evaluate it with the following 3 objectives: Attack success rate.
We verify the attack success rate on the global model. The attack success rate includes the target attack success rate and the
main task success rate. The target attack accuracy rate refers to the percentage of the success rate of the attacker’s target sample
being classified as the specified label to the total number of the attacker’s target records. We use the attack success rate (ASR,
𝐴𝑆𝑅 = 𝑁𝑎𝑡𝑡∕𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡) to express. Main task accuracy is the success rate of non-target samples being classified as correct labels,
denoted by recognition accuracy(ACC, 𝐴𝐶𝐶 = 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡∕𝑁𝑡𝑜𝑡𝑎𝑙). Where,𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the number of benign samples correctly
classified by the target model, 𝑁𝑡𝑜𝑡𝑎𝑙 is the number of all samples, 𝑁𝑎𝑡𝑡 is the number of samples misclassified as target labels
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Algorithm 2 FL clean label attack algorithm
Require: : The number of clients is 𝑛, randomly select 𝑚,𝑚 ≤ 𝑛;local training datasets 𝐷𝑖, 𝑖 = 1, 2, ..., 𝑛; Global iteration

number 𝑅𝑔; Local iterations number 𝑡; batch size 𝑏; learning rate 𝛼;Poisoning time𝑅𝑔 = 𝜏;
1: Output: Global model 𝐺.
2: Random initialization global model 𝐺0.
3: The server sends the global model 𝐺0 to 𝑚 randomly selected clients.
4: //Client side excution.
5: Client training local models
6: for i do= 1,...t:
7: 𝐿𝑤= 𝑤0
8: By using algorithm 1 manufacture poisoning data (𝑥𝑖 + Δ𝜅

𝑖 , 𝑦𝑖)
𝑁
𝑖=1

9: for j do= 1,...t do:
10: Randomly sample a batch 𝐷𝑏𝑎𝑐𝑡ℎfrom 𝐷𝑖
11: 𝐿𝑡+1

𝑖 =𝐿𝑡
𝑖 − 𝛼Δ𝐿𝑜𝑠𝑠(𝐷𝑏𝑎𝑡𝑐ℎ, 𝐿𝑤) return 𝐿𝑡+1

𝑖
12: end for
13: end for
14: Upload the client param 𝐿𝑡+1

𝑖 to server.
15: //Server side excution
16: Update global model parameters by aggregating local model gradients.
17: for i do= 1,...𝑅𝑔:
18: 𝐺𝑡+1 = 𝐺𝑡+ 𝜆

∑𝑚
𝑖=1 𝐿

𝑡+1
𝑖 − 𝐺𝑡 return 𝐺𝑡 + 1

19: end for

TABLE 1 Model training structure of local edge device.

Layer Size

Input 28×28×1
Convolution +ReLU 3×3×30
Max Pooling 2×2
Convolution +ReLU 3×3×50
Max Pooling 2×2
Full Connected + ReLU 100
Softmax 10

by the target model after the attack. At the same time, the proportion of malicious samples and the number of malicious clients
can also affect the attack success rate.

The experiment was carried out 10 times, each time a different test set sample was used as the target image, and the attack result
was 100% success rate. As can be seen from the table above, the method in this paper only needs 1% of the poisoned data to
implement clean-label poisoning attacks on federated learning.When the poisoning ratio of the target image of the local client
is 100%, the attack can be realized very quickly. Main task Evaluation on performance Another goal of ours is to ensure
that the main task maintains a high accuracy rate on the poisoning model. The main task accuracy is the accuracy with which
benign samples are classified to the correct label, denoted by the benign accuracy (BA). 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the number of benign samples
correctly classified by the target model and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of samples. We compare the accuracy of the main task
before and after model poisoning. Figure 7 shows the comparison of the accuracy of the main tasks before and after model
poisoning. Figure 7 shows the main task accuracy, we can see that the clean label attack has little effect on the main task accuracy
and achieves good performance on all three datasets. The accuracy of the main task is almost unaffected by poisoning, which
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TABLE 2 Comparative analysis of attacks with different attack methods.

attack method Poisoned client num Proportion of poisoning Globalepoch Localepoch ASR

Proposed 1 1 100 5 100
Proposed 1 0.1 200 5 100
Proposed 1 0.05 250 5 100
Proposed 1 0.01 800 10 100
Poison Frog 1 1 200 39.193 33
Poison Frog 1 0.1 300 1111111 2
Poison Frog 1 0.05 400 11111 2
Poison Frog 1 0.01 500 1111111111 2

FIGURE 7 Accuracy of main tasks before and after model poisoning

has been reduced by 0.2% from 95% before poisoning. This is mainly due to the inclusion of poisoned and benign images in
each training batch during the attack. The model learns the poisoning task without compromising its accuracy on the main task.

The Stealthiness of Clean-label Poison. We verify the stealth of poisoning attacks by visualizing the generated poisoning
samples and judging the similarity of images before and after poisoning. The indicators used to judge similarity are Peak Signal-
to-Noise Ratio (PSNR) and (Structural SIMilarity) SSIM. PSNR is an objective standard to measure image distortion or noise
level. The larger the value, the smaller the distortion. SSIM is measured based on the brightness, contrast and structure of the
samples. The value calculated by SSIM is between [0 − 1]. The larger the value, the better. The larger the value, the closer it is
to the original two images, and the more details of the original two images are preserved.

Figure 7 visualizes a sample of the target image with the corresponding poisoning instance. It can be seen that there is little
change in the image before and after poisoning. Attacking the Byzantine Aggregation Rule Byzantine federated learning
allows the presence of a certain percentage of attackers while hoping the global model converges and maintains high accuracy
for its task. We adopt KRUM instead of the federated average aggregation rule to demonstrate the effectiveness of our attack
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TABLE 3 Concealment of poisoned images.

Before and after pic PSNR SSIM

Original 0.9 0.9
Poison 0.7 0.6

FIGURE 8 The FL framework for edge-cloud collaboration

TABLE 4 Attack Byzantine aggregation rule.

Aggregation rules Proportion of poisoning Globalepoch Localepoch Accuracy of main tasks ASR

krum 0.1 1 100 5 100
mkrum 1 0.1 200 5 100
trum 1 0.05 250 5 100
bluy 1 0.01 800 10 100

method. Krum selects a model that is similar to other models among several local models as the global model. Specifically, the
sum of the norm distances of the gradient and other gradients is taken as the score of the gradient, and then the gradient with the
lowest score, that is, the gradient that is similar to most gradients, is selected as the aggregated gradient. The Krum algorithm
will not affect the normal convergence of the model, and can ensure the robustness of the model when the proportion of attackers
controlling clients does not exceed 50%.

6 CONCLUSION AND FUTURE WORK

By observing the change trend of the loss value in training process of the FL and combined with the idea of pre training in
training, we chooses to implement the clean label poisoning attack in the convergence stage of the model in the federal learning
and training process. We use the method of negative cosine similarity to generate poisoning samples, and minimize the distance
between the local poisoning client model and the global model to realize covert attack. Through experimental analysis, our
method implements the attack when the FL and training process model tends to converge. Only 1% of the poisoning data can
achieve the target poisoning attack without affecting the accuracy of the main task. At the same time, we can bypass the defense
of Byzantine aggregation rules. Next, we will make targeted defense against the attack methods in this paper.
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