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Abstract
To bring more intelligence to edge systems, Federated Learning (FL) is proposed
to provide a privacy-preserving mechanism to train a globally shared model by
utilizing a massive amount of user-generated data on devices. FL enables mul-
tiple clients collaboratively train a machine learning model while keeping the
raw training data local. When the dataset is horizontally partitioned, existing FL
algorithms can aggregate CNN models received from decentralized clients. But,
it cannot be applied to the scenario where the dataset is vertically partitioned.
This manuscript showcases the task of image classification in the vertical FL
settings in which participants hold incomplete image pieces of all samples, indi-
vidually. To this end, the paper discusses AdptVFedConv to tackle this issue and
achieves the CNN models’ aim for training without revealing raw data. Unlike
conventional FL algorithms for sharing model parameters in every communica-
tion iteration, AdptVFedConv enables hidden feature representations. Each client
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fine-tunes a local feature extractor and transmits the extracted feature represen-
tations to the backend machine. A classifier model is trained with concatenated
feature representations as input and ground truth labels as output at the server-
side. Furthermore, we put forward the model transfer method and replication
padding tricks to improve final performance. Extensive experiments demon-
strate that the accuracy of AdptVFedConv is close to the centralized model.

Keywords: Federated learning, Transfer learning, Convolutional neural network, Machine
learning

1 Introduction
Along with the rapid development of mobile edge computing technology, more intel-
ligence is brought to edge systems which can significantly bridge the capacity of the
cloud and the requirement of devices and thus can boost the response performance of
devices and improve the quality of mobile services. While the successful applications
of intelligence in mobile edge computing, more concerns have been raised about pri-
vacy problems. Federated Learning (FL) has been coined to help decentralized data
sources to jointly train a machine learning model while keeping privacy data local.
In the scenario where a single organization or user cannot collect adequate data, FL
can help improving accuracy. According to different application scenarios, FL can be
categorized as horizontal FL, vertical FL, and federated transfer learning [1].

Horizontal FL has been used in scenarios where datasets share the same (or, sim-
ilar) feature space from various space sample. For example, two hospitals in one city
serve different patients and record similar body information. They can use horizontal
FL approaches to collaboratively train a medical image classification model. Whereas
in vertical FL, datasets of different clients share the same sample space from differ-
ent feature space. For example, an e-commerce company and a bank in one city may
serve the same users, but the feature space of their collected datasets is different. The
e-commerce company records the users’ online shopping behaviors while the bank
has the users’ deposit and loan information. Training a model through a vertical FL
method can assist in better evaluation of users’ credit ratings.

Numerous techniques have been discussed in the literature in the context of
privacy-preserving vertical FL such as [2, 4–9]. Vertical FL algorithms are based
mainly on security mechanisms because each participant cannot achieve the local
training objective independently. Common security mechanisms include homomor-
phic encryption and secure multi-party computation.

The core issue of FL is how to improve the performance of machine learn-
ing models through communication. Existing algorithms average uploaded model
parameters to get a global model. However, such algorithms suffer from these
disadvantages: (i) Modern ML models, especially artificial neural networks, may
memorize arbitrary information. Sharing model parameters may also take the risk of
revealing some information about the raw training data. Recent works have demon-
strated that FL may not always provide sufficient privacy guarantees, as sharing
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model parameters can nonetheless reveal sensitive information [10–15]. (ii) Each
client sample from a unique data distribution making the datasets heterogeneous, i.e.,
non-independent identically distributed (non-iid). Work [16] showed that, with non-
iid datasets, the performance of conventional FL algorithms degrade significantly.
(iii) With neural networks becoming deeper, the communication cost of exchanging
model parameters increases.
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Fig. 1: The Pipeline of AdptVFedConv. Each sample in the dataset is divided into a 2*2 grid.
These 4 tiles are held by 4 different participants. The server owns the ground truth label. First,
the server trains a base model and shares it with clients. Each client fine-tunes the local fea-
ture extractor with local data and uploads their hidden feature representations. The server will
collect and concatenate them to train a server classifier.

To overcome these disadvantages, we seek inspiration from human behavior.
Human beings can learn new knowledge through communication in a different way
from FL. When communicating with others, we neither share raw information we
received nor aggregate the brain’s “parameters”. In contrast, we transform received
information into language that can be understood by others. In artificial neural net-
works, the model is similar to a human’s brain and we can regard hidden layer outputs
as language. Thus, in the proposed framework, participants share the hidden feature
maps instead of model parameters. Hidden feature maps carry feature information of
training data so that other models can also take it as inputs. But it is hard to restore
the training data without knowing model parameters.

Let hidden feature maps take the function of language, one challenge is to esti-
mate which layer’s output is optimal. Taking image recognition as an example, when
we see a painting and try to describe objects in it, the content expressed by differ-
ent people is always similar and can be understood by others. But when we discuss



Springer Nature 2021 LATEX template

4 Adaptive Vertical Federated Learning via Feature Map Transferring in Mobile Edge Computing

the idea the painting wants to convey, different people often come to different con-
clusions. Human beings always get similar conclusions on common sense problems
which means the model used in this step is similar for different people. Inspired by
these, we divide a neural network into a shallow model and a deep model. The shal-
low model, also called the local feature extractor, can extract feature maps from input
data. The deep model, also called the server classifier, can take feature maps collected
from all participants as input to predict the correct label.

Figure 1 illustrates how AdptVFedConv works. The dataset is vertically parti-
tioned into several grids and each client owns one of them. We succeed the case
study presented by Yang [1] when a single positive participant owns labels and can’t
reveal them to anyone. The proposed model architecture is based on VGG. The later
is broken up into the server part and the client part.

To this end, the key contributions of this manuscript are the following:

1. Present a novel adaptive vertical federated learning algorithm called AdptVFed-
Conv. In the algorithm, the feature extractor can be used to train a global feature
classifier at the server-side or train a personalized feature classifier to adapt to
local data distribution. When clients get the base feature extractor from the back-
end, they train a local autoencoder and adaptively fine-tune the feature extractor
with local data. By reducing the loss between input image and generated image,
the feature extractor adapts to local data distribution.

2. Compare AdptVFedConv with the centralized model and analyze the causes of
accuracy loss. We then propose several optimization methods. We rely on the
model transfer method to resolve the issue of feature space alignment and use the
replication padding trick to reduce convolution errors in a distributed environment.

3. Study the transferability of different layers in the model. We demonstrate by
experiments how to split a CNN model such that the produced features represen-
tation is in a better generalization.

The paper is organized as follows. After an overview of related works in section
2, we present details of AdptVFedConv in section 3. Experimental setup and results
are described in section 4. We finally make a conclusion of this paper and discuss
about future works in section 5.

2 Related Works

2.1 Convolution Neural Networks
The convolution neural network, short as CNN, is a type of deep neural network.
Unlike the traditional full-connected models, each layer of the CNN consists of a
rectangular 3D grid of neurons. The neurons of a layer are only connected to the
neurons in a receptive field, which is a small region in the immediately preceding
layer, rather than the entire set of neurons. By using receptive fields, CNNs exploit
the spatially-local correlation of input data.

VGG[3] is a classical CNN model. A convolution block in VGG consists of a
convolution layer, a Batch Normalization layer, and a ReLU activation function. The
kernel size of the convolution layer is often set to (3 × 3). By stacking two (3 × 3)



Springer Nature 2021 LATEX template

Adaptive Vertical Federated Learning via Feature Map Transferring in Mobile Edge Computing 5

convolution layers, the model can achieve comparative performance with one (5 ×
5) convolution layer, but the number of learnable parameters is smaller. After several
convolution layers, there is a max-pooling layer to reduce the size of the input image.
An input image will be finally flattened into a vector representation, which is used to
predict the true label by full-connected layers.

2.2 Federated Learning
Federated learning is a decentralized learning approach that enables multiple partic-
ipants to collaboratively train machine learning models while keeping the training
data on local devices. Existing works on federated learning, such as FedAvg [17],
FedOpt [18], and FedMA [19], mainly focus on the horizontal settings . These meth-
ods share model parameters during training and aggregate them at the server-side.
FedGKT[20] applies the horizontal FL setting but works differently by exchang-
ing hidden features representations. They also introduce the knowledge distillation
technique into FL. FedGKT has several advantages compared with conventional FL
algorithms such as it requires less (i) edge computation, (ii) communication, and (iii)
asynchronous training.

There is no paradigm for vertical federated learning and each conventional
machine learning algorithm has a unique version for vertical federated learning sce-
nario. Existing works [6–8, 21] designed their algorithms based on tree models. Work
[22] proposed a privacy-preserving SVM classifier over vertically partitioned data.
Work in [5] proposes a platform for distributed features by gathering local outputs
into a final one using nonlinear and linear transformations. Nonetheless, none of these
methods are applicable to CNN models.

2.3 Transfer Learning
Fine-tuning is a popular technique which can accelerate training and transfer knowl-
edge from pre-trained model. The transferability of different layers in a neural
network raise our attention when designing the algorithm. The researchers in [23] dis-
cuss the transferability of various layers in CNNs. The work presented in [24] focus
on the transferability of RNNs in natural language processing applications. These two
works reached similar conclusions that initializing a network with pre-trained model
parameters can provide support for generalization whilst deep layers are not adequate
for a model transfer. This paper discusses and evaluates scenarios through which we
found the ideal model for transferability of features in deep neural networks.

3 Proposed Framework

3.1 Problem Setup
In the scenario of vertical FL, datasets share the same sample space but different
feature space. Each image is split into several pieces, and different participants own
different pieces, i.e., the number of participants and image pieces are equal. In all
participants, we choose one, called positive participant, to hold the label data and
cannot share the label with others during training. The positive participant also plays
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Table 1: Summary of symbols
Symbols illustration

Dk dataset stored in the kth client
xk
i the ith input image of the kth client

Hk
i hidden representations of input xk

i
yi labels of input xi

Wk
e feature extractor in the kth client

Ws classifier in the server
lce(·) corss-entropy loss
lmse(·) mean square error loss

the role of server while other participants play like the client. In this paper, we call the
positive participant the server and other participants clients to distinguish their role.

Assuming that there are K participants and the positive participant is the 1st. D
represents the entire dataset, with the sample number of N and category number of
C. LetXk

i denote the piece of the ith sample held by participant k. For server, it owns
dataset D1={(X1

i , yi)}Ni=1 where yi is the corresponding label of sample Xi, yi ∈
{1,2,...,C}. For clients, Dk={Xk

i }Ni=1, k ∈ {2,...,K}.
A complete CNN model W is split into two parts: a feature extractor We and a

server classifier Ws. Each participant creates a local feature extractor W k
e . They are

similar but not the same, and all initialized with W 1
e . Each client also needs to train

a generator W k
g to fine-tune the W k

e . The server creates two classifiers, a smaller one
Wclst used in the base feature extractor training step and a larger one Ws to classify
aggregated hidden feature maps.

In the prediction step, clients need to send their hidden feature maps Hk
i , the

output of W k
e , to the server. The server will aggregate Hk

i by position information to
get Hi and take it as the input of Ws to predict the correct label.

The symbols used in the algorithm are summarized in Table 1.

3.2 Vertical Federated Learning for CNNs
There are three steps in our proposed approach. In the first step, the server trains a
feature extractor through supervised training and broadcasts it to all clients. Second,
each client fine-tunes the received model with local data using the architecture of
an auto-encoder. Then they calculate the feature representations of local data and
upload them to the server. Finally, the server collects extracted feature representations
and concatenates them. The server then trains a classifier to predict the true label.
The implementation steps of the proposed framework will be discussed in the below
sections.

3.2.1 Server Pre-training

The first problem we need to solve is how to get a local feature extractor with
high generalization. The hidden feature maps extracted by different clients should be
structurally similar and aligned so that the server classifier can take them as input.
If all clients train their own feature extractors with local data, extracted features will
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Algorithm 1 AdptVFedConv
Input: Datasets D1, D2, ..., DK

Output: Distributed models W 1
e ,W

2
e , ...,W

K
e , server classifier Ws

1: ServerTrain():
2: for (x1i , yi) ∈ D1 do
3: // train base feature extractor
4: W 1

e ←W 1
e − η ∗ 5lce(x1i , yi; w);

5: end for
6: for each client k=2,3,...,K do
7: // broadcast W 1

e and receive returned feature maps
8: Hk ← ClientTrain(k, W 1

e );
9: end for

10: H ← concatenate(H1, H2, ...,HK)
11: for (hi, yi) ∈ (H,Y ) do
12: // train server classifier Ws with feature map H
13: Ws ←Ws − η ∗ 5lce(h1i , yi; w);
14: end for
15: return Ws

16:

17: ClientTrain(k, W):
18: Initialize W k

e with W 1
e

19: for xki ∈ Dk do
20: W k

e ←W k
e − η ∗ 5lmse(x

k
i ; w);

21: end for
22: Hk ← fkc (W

k
e , X

k)
23: return Hk to server

not be aligned in channels. To solve this problem, we use the method of model-based
transfer.

It is expected that all clients train their local model with the same initialized
model parameters. Therefore, we need one to broadcast its local feature extractor
to others. Generally, supervised learning provides better performance compared to
unsupervised learning. So, we let the server play this role. The server first trains a
complete CNN model with local data. Several shallow layers, denoted as W 1

e , of the
model will be treated as a shared feature extractor to initialize other clients’ local
models. The rest of the model, denoted asWclst will be dropped and not be used in the
prediction step. It should be noted that there are a few structural distinctions between
Wclst and Ws. Let fp represents the pre-training model, lce refers to cross-entropy
loss function. The aim of this step is optimizing this objective:

argmin
(W 1

e ,Wclst)

N∑
i=1

lce(fp((W
1
e ,Wclst); X

1
i ), yi) (1)
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3.2.2 Model Transfer

When clients get the base feature extractor from the server, they train a local autoen-
coder and fine-tune the feature extractor with local data. An autoencoder is a type of
neural network used to learn efficient representations of unlabeled data. The autoen-
coder works by attempting to reconstruct the input from the hidden representation.
The purpose of fine-tuning is to improve the performance of feature extractors in
extracting local features. Furthermore, making a difference among different client
models is more resistant to hidden vector reconstruction attacks.

Client k initializes its feature extractor W k
e with W 1

e , k ∈ {2, 3, ...,K}:

W k
e ←W 1

e (2)

The W k
e works as an encoder. We then construct a decoder W k

g with inversion
structure to the encoder to form an autoencoder. To fine-tune the W k

e , the learning
rate of W k

e is small while that of W k
g is normal. By reducing the loss between input

image and generated image, the feature extractor adapts to local data distribution.
The optimization of the following objective represents the main goal of this step:

argmin
(Wk

e ,Wk
g )

N∑
i=1

lmse(f
k
c ((W

k
e ,W

k
g ); X

k
i ), X

k
i ) (3)

where fkc represents the autoencoder model held by client k, lmse represents mean-
square loss function.

3.2.3 Feature Map Aggregation

After getting a local feature extractor, each client calculate representations of local
data and updates them to the server. As shown in Figure 1, the server will concatenate
these feature representations according to the position:

Hi = concatenate(H1
i , H

2
i , ...,H

K
i ) (4)

Here Hk
i = fkc (W

k
e , X

k
i ) means representations uploaded by clients. We assume

that the position information of all image pieces is known and fixed.
The server necessitates training a classifier with adjacent feature maps as an

input to predict the class of the input. The optimization of the following objective
represents the main goal of this step:

argmin
Ws

N∑
i=1

lce(fs(Ws; Hi), yi) (5)

where fs represents the server model.
The pseudo-code of all steps is shown in Algorithm 1.



Springer Nature 2021 LATEX template

Adaptive Vertical Federated Learning via Feature Map Transferring in Mobile Edge Computing 9

3.3 Cause of Accuracy Loss and Optimization
Since FL algorithms work in the distributed scenario and the communication of raw
data is forbidden, a pixel can only get information locally. Compared with the cen-
tralized scenario, less information makes it hard to train a good feature extractor.
We observe in preliminary experiments that there is an accuracy loss in distributed
scenarios compared with centralized scenarios. Analyzing the training process of
convolution in the two scenarios, we find that when calculating the convolution value
of points located on the cutting boundary, the value of some adjacent points cannot
be obtained anymore. The image cutting makes these points no longer adjacent and
weakens the ability of convolution layers to collect information from surrounding
points. The accuracy loss caused by this problem is hard to remove under the condi-
tion that exchanging raw data is forbidden. However, by adjusting the padding value
to make it closer to the original value, the accuracy loss can be reduced.

(a) Conv(3, 3) on a 
complete image

(c) Replication padding mode(b) Zero-padding mode

a11 a12 a13

a21 a22 a23

a31 a32 a33

0

0

0
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a13

a23

a33

a11 a12

a21 a22

a31 a32
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a23

a33

a12

a22

a32

Cut along the red line

Fig. 2: Convolution on Cutting Boundary. (a) shows the normal convolution calculation on
a complete image. When cutting along the red line, the adjacent point pairs (ai2, ai3) are
assigned to different pieces. (b) and (c) respectively show how the two padding mode works.
Replication padding mode is to take the value of the nearest point as the padding value.

In the procedure of calculating convolution values, padding is a common practice
to keep the image size while zero-padding is the default mode. As shown in Figure
2, assuming the convolution kernel is fixed, when calculating the convolution value
of points on the cutting boundary using the zero-padding mode, the result differs
in the two scenarios because the padding value is far different from the original.
Empirically, the pixel value of two adjacent points is closer which inspired us to use
the replication padding mode to reduce error. Later in Section 4, we will prove the
correctness of our analysis by experiment.
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3.4 Security Discussion
In our work, we let the server share their feature extractor as a base model, and other
clients fine-tune it with local data. Note that, the server is also the owner of labels,
which collects hidden feature maps from other clients without sharing its own. This
means none of the participants share the parameters of their own feature extractor and
hidden feature maps simultaneously, which is necessary for protecting the privacy of
training data.

On the other hand, a sharing feature extractor is quite necessary for the algorithm.
An input image can be separated into three dimensions: RGB channels, height, and
width. For example, a sample in the CIFAR-10 dataset has 3 RGB channels, with
height and width set to 32 pixels. We denote the size of the input image as (3 × 32 ×
32). A convolution layer is to calculate new feature maps and expand the channels.
A max-pooling layer can upsample the value in a small region and reduce the size of
the input. Several convolution blocks, which are composed of convolution layers and
max-pooling layers, will finally flatten an image into a vector. In this process, each
channel represents a unique feature representation. If each client train their local fea-
ture extractor without communication, the feature representation is of high possible
not aligned. By model transferring and local fine-tuning, each client owns a similar
feature and can avoid the problem of feature align.

The number of convolution layers in the local feature extractor is one of the
focuses of our study. As shown in Section 4.3, in a convolution neural network,
hidden features transition from general to specific by increasing of convolution lay-
ers. Fewer layers in the local feature extractor can bring better performance while
the security degrades. Therefore, we need to achieve a balance between model
performance and data security.

The hidden vector reconstruction attack is a potential threat to our model. Empiri-
cally, hidden features after the max pool layer are more resistant to attack than before
because the amount of data is halved. In our standard experiment, we take outputs
of the first max pool layer as hidden feature maps. More research on the security of
exchanging hidden feature maps is needed and we believe that existing methods such
as differential privacy and secure multi-party computation can protect data security
from the hidden vector attack.

4 Experiments

4.1 Experiments Structure
Task and Dataset
The training task of image classification. We perform experiments on tree different
datasets, CIFAR-10, CIFAR-100, and CINIC-10, which is common in FL research.
During generating data for each client, we split a complete input image into four
small pieces and assign them to four different clients. All image pieces owned by one
participant locate in a fixed position and are the same size. For various methods, we
record the top 1 test accuracy as the metric to evaluate the performance of the model.
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Model Architecture
We employ the architecture of the VGG-16 net to design our model. We divide the
VGG-16 net into two parts. A shallow model which consists of several convolution
blocks works as the feature extractor. A deep model which consists of both convolu-
tion blocks and full-connected layers works as the classifier. Each client trains a local
feature extractor and shares representations of local data with the server. The server
classifier is trained with adjacent hidden feature representations as input and ground
truth labels as the target. In the experiment, as shown in Figure 1, we take the first
two convolution layers with the first max pool layer as the feature extractor. The rest
of the VGG-16 model serves as the server classifier. The size of the feature extractor
and server classifier is adjustable. We can increase the number of layers in the fea-
ture extractor and reduce the number of layers in the server classifier synchronously.
This may lead to a change in the transferability of feature maps. We will later design
more experiments to study it in the ablation study.

In our experiment, the size of the convolution kernel always sets to (3 × 3) to
capture the information of adjacent pixels and facilitate optimization. For local fea-
ture extractors, the input is an image piece of size (3 × 16 × 16) and the output is
feature maps having a size of (64 × 8 × 8). The server will collect feature maps and
concatenate them to a complete feature map having a size of (64 × 16 × 16). For
server classifier, the size of hidden feature maps changes in turns: (64 × 16 × 16)
→ (128 × 8 × 8) → (256 × 4 × 4) → (512 × 2 × 2) → (512 × 1 × 1). As the
size of an input image decreases, the number of channels increases. An input image
is finally converted into a vector of dimension 512. Then, we apply three fully con-
nected layers of dimensions 4096, 4096, and 10 respectively to get the output. In the
fully connected layers, we set the dropout rate to 0.5.

When fine-tuning with local data, an auxiliary generative model is needed. The
generative model is designed to reconstruct the input, so it has the opposite structure
to the feature extractor. For a (Conv, BN, ReLU) block in the feature extractor, there
is a (ConvTrans, BN, ReLU) block corresponding to it in the generative model. Con-
vTrans is the reverse operation of Conv, recovering the input image from its hidden
representation. Similarly, we use the upsampling layer to correspond to the max pool
layer. The local feature extractor and the generative model work together to form an
autoencoder. The feature extractor only needs fine-tuning as mentioned before, so
the learning rate of the feature extractor is set to 1e-5 while the learning rate of the
generative model is set to 1e-3. The client can learn better feature representations by
closing the distance between input and generated image.

We also use simulated annealing, image flipping, and random crop to improve the
performance, which is the same in all experiments.

Baseline.
VFL is a distributed machine learning paradigm for the scenario where features
are separated across decentralized clients. For each conventional machine learning
algorithm (or model), there is a VFL version. To the best of our knowledge, no exist-
ing works study the problem of how CNN models work with vertically partitioned
datasets.
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Methods CIFAR-10 CIFAR-100 CINIC-10
AdptVFedConv(ours) 91.30 69.72 80.69
Centralized(VGG-16) 94.04 73.24 84.73
Non-cooperation 65.85 37.88 53.75
No model transfer 87.73 63.87 76.65
Zero-padding mode 90.79 67.55 79.69

Table 2: Test Accuracy of Different Methods on Three Datasets

The centralized scenario and the non-cooperation scenario are used as compari-
son groups in our experiments. In the non-cooperation scenario, we train the model
only with local data. We prove that collaborative training can effectively improve
model performance when clients do not have sufficient local data. In the central-
ized scenario, we train a VGG-16 net with a complete dataset as input, meaning that
transmitting raw data is allowed. This is the upper bound of our experiments.

To further study the influence of key factors on the experimental results, we
design serveral ablation experiments:

1) The first group of ablation experiments aims to study to effectiveness of model
transfer. We consider the situation that all clients train their own feature extractor
with local dataset independently, i.e., cancel the step (2) in Figure 1.

2) The second group of ablation experiments aims to verify the optimazation method
proposed in section 3.3. We record the top 1 accuracy of two different padding
modes, zero-padding mode and replication padding mode.

3) The third group of ablation experiments studies the transferability of different lay-
ers. In deep neural networks, the hidden representation of different layers carries
different information. The output of shallow layers is more similar to the raw input
and may leak more information while can train a model for better performance.
We want to achieve a trade-off between security and performance through this
group of experiments. We adjust the number of convolution blocks in the feature
extractor and classifier. Adding a convolution block to the feature extractor means
removing one from the classifier and vice versa.

4.2 Results Discussion
Figure 3 illustrates the accuracy of the conducted test on three datasets. It includes
the result of AdptVFedConv, the centralized model, and the non-cooperation model.
We also list all achieved results in Table 2.

It can easily be seen that compared with the non-cooperation model, collaborative
training can hugely enhance accuracy of prediction. If we check the image pieces held
by each participant, we can find that the information contained in many image pieces
is not enough to support predicting the label. Some image pieces even contain only
the background. AdptVFedConv can help concatenate decentralized hidden feature
maps to form a complete feature representation. It can be seen from the compari-
son of AdptVFedConv and Non-cooperation curves in Figure 3 that AdptVFedConv
improves about 25% to 31% test accuracy on three different datasets.
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Fig. 3: Test Accuracy on Three Datasets.

Compared with the centralized model, the proposed AdptVFedConv achieves
very close performance. As analyzed in section 3.3, in the convolution process, accu-
racy loss is unavoidable since the edge points cannot take values from the adjacent
pixels normally. The accuracy of the centralized model is the threshold of our exper-
iment since exchanging raw data is allowed. This work is to make the performance
of the distributed model closer to the upper bound. The amount of accuracy loss is
related to the number of Conv layers in the feature extractor. In the ablation study,
we will demonstrate that the test accuracy degrades as the number of Conv layers in
the feature extractor increases.

4.3 Ablation Study
We design several ablation experiments to verify the effectiveness of key factors on
experiment results.

Effectiveness of Model Transfer.
As mentioned in the above sections, all clients fine-tune a shared feature extractor
locally. In this group of ablation experiments, we prove that starting training with a
model initialized with the same parameters can boost model performance. We omit-
ted step 1 in Figure 1, making all clients train their local feature extractor with
local data independently. Since most participants have no label data, they can only
use an autoencoder to train the feature extractor. The row of ’No model transfer’
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Layers CIFAR-10 CIFAR-100 CINIC-10
1C 92.30 70.75 83.10
2C 91.07 69.37 80.49
2C+1M 91.30 69.72 80.69
3C+1M 89.63 67.28 77.59
4C+1M 87.06 63.20 74.06
4C+2M 85.47 60.85 70.43
5C+2M 81.42 54.64 67.08
6C+2M 77.13 50.94 62.62
7C+2M 69.67 47.10 60.18
7C+3M 73.11 45.62 59.83

Table 3: Accuracy vs Layer Numbers in the Feature Extractor. The first column represents the
composition of the feature extractor. 1C represents a convolution block while 1M represents a
max-pooling layer. On the whole, the accuracy decreases with the increase of layer numbers.

in Table 2 demonstrates that, without model transferring, the test accuracy degrades
significantly. We can see that model transfer is of great help to train a better model.

Effectiveness of the Replication Padding Trick.
Table 2 shows the results of the efficacy of using replication padding mode. We record
the top 1 accuracy in the scenario that all participants using zero-padding mode as a
comparison. We observe that the accuracy of zero-padding mode is always lower than
that of replication padding mode, which proves the effectiveness of our optimization
method. This group of experiments also prove the correctness of our analysis on
accuracy loss. To eliminate the accuracy loss, it is necessary to exchange the values
of edge points in each convolution calculation step, which is forbidden in our setting.
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Fig. 4: Accuracy Test for Various Layer Numbers in the Feature Extractor.
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Transferability of Different Layers.
We change the splitting position of the VGG-16 model and record the top 1 accu-
racy of each splitting position. We take a complete convolution process, including a
convolution layer, a batch normalization function, and an active function, as a base
convolution unit. We also record the effect of the max pool layer, since it can effec-
tively reduce the communication cost and make the communication more secure.
From Table 3, we foresee that there is an indirect relationship between accuracy
and layer numbers in the feature extractor: accuracy decreases whilst layer numbers
increases. This is because of features transition from general to specific by the deep-
ening of convolution. Note that, in all three datasets, adding the first max pool layer
into the local feature extractor has no negative impact on the accuracy. This is of help
for us to achieve a balance between performance and security.

5 Conclusion and Future Work
In this work, we presented a new image classification algorithm through a vertical
FL scenario. Unlike the conventional algorithms for sharing model parameters, the
proposed algorithm enabled sharing hidden feature representations which is more
similar to human behavior. AdptVFedConv is the first vertical FL algorithm to sup-
port CNNs and introduced multiple advantages over other state-of-the-art approaches
such as less demand for edge computation and communication cost. Although there
is an accuracy loss compared with the centralized model, we proposed several
optimization methods to reduce it and the experiments proved the efficacy.

In this study, image pieces owned by one participant are always located in a fixed
position and are all the same size. This follows the scenario of vertical federated
learning but is too idealistic. In future research, we plan to relax the restriction to
make our method more practical.
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Jakub Konečnỳ, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated
optimization. International Conference on Learning Representations, 2020.

[19] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and
Yasaman Khazaeni. Federated learning with matched averaging. International
Conference on Learning Representations, 2019.

[20] Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge
transfer: Federated learning of large cnns at the edge. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[21] Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi.
Privacy preserving vertical federated learning for tree-based models. Proc. VLDB
Endow., 13(11):2090–2103, 2020.

[22] Hwanjo Yu, Jaideep Vaidya, and Xiaoqian Jiang. Privacy-preserving svm clas-
sification on vertically partitioned data. In Pacific-asia conference on knowledge
discovery and data mining, pages 647–656, 2006.

[23] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transfer-
able are features in deep neural networks? In Advances in neural information
processing systems, pages 3320–3328, 2014.

[24] Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. How
transferable are neural networks in nlp applications? EMNLP, 2016.


	Introduction
	Related Works
	Convolution Neural Networks
	Federated Learning
	Transfer Learning

	Proposed Framework
	Problem Setup
	Vertical Federated Learning for CNNs
	Server Pre-training
	Model Transfer
	Feature Map Aggregation

	Cause of Accuracy Loss and Optimization
	Security Discussion

	Experiments
	Experiments Structure
	Task and Dataset
	Model Architecture
	Baseline.


	Results Discussion
	Ablation Study
	Effectiveness of Model Transfer.
	Effectiveness of the Replication Padding Trick.
	Transferability of Different Layers.



	Conclusion and Future Work
	Acknowledgments

