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1. Introduction 

Engineering systems comprise a series of interconnected elements, which behave in a complex 

but integrated manner to perform their intended function. As an example, a bridge is a vital 

element within a transport system, and is itself comprised of relatively smaller elements e.g. 

beams, deck slab, abutments, etc. Due to their exposure to harsh environmental conditions, and 

owing to their critical position within the transport infrastructure, effective management of 

bridges is vital for the availability and reliability of the overall transport system. Deterioration of 
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bridge elements and sub-elements may lead to a reduced level of service and, potentially, a lower 

safety level. Traditionally, element level management approaches have been extrapolated in 

managing system performance, especially in dealing with changes due to wear and deterioration. 

Predicting deterioration is a vital component of modern bridge management systems. It is 

generally established for individual bridge elements, often with the aid of inspection records, 

thus leading to an approximate prediction of bridge performance over time. Currently available 

methods for this purpose include Markov Chain models, Fault Tree models, Fuzzy System 

models and more recently Bayesian Belief Networks (BBN).  Fault and event tree approaches 

have found applications in the bridge sector over a decade ago, particularly for propagating 

element failure probabilities to estimate system failure probabilities (treating the bridge as a 

system) e.g. Sianpur and Adams (1997) and LeBeau and Wadia-Fascetti (2000). These 

approaches are based on classical system connectivity leading to series, parallel or mixed 

systems. However, they become computationally cumbersome when applied to large systems 

and demand input that is not often available (e.g. Khakzad, Khan, and Amyotte, 2011). 

Moreover, event tree and fault tree models are typically developed for catastrophic failure 

events, hence may not be appropriate for those bridges that may fail over an extended period of 

time (Attoh-Okine and Bowers, 2006), primarily due to deterioration and aging effects. On the 

other hand, causal probabilistic networks have been proposed since the early 1990’s for use in 

infrastructure engineering, as providing a powerful framework for systems analysis (Casciati and 

Faravelli, 1992). In particular, BBN’s offer a compact representation of a joint probability 

distribution, together with a rigorous formalism for the construction of models relying on 

probabilistic knowledge. They can be used to calculate system reliability with due consideration 

to the associated uncertainties (Langseth and Portinale, 2007; Marquez, Neil and Fenton, 2010). 



They have also been used to formally take account of qualitative data and expert opinions for 

maintenance management purposes (e.g. Celeux, Corset, Lannoy, and Richard, 2006). Moreover, 

they are capable of handling complex inter-element relationships by means of conditional 

probabilities. They can address the variation of performance with time and are efficient in 

updating of performance with new information, all important considerations in a bridge 

management context, e.g. Rafiq, Chryssanthopoulos, and Onoufriou, (2004) and Straub (2009). 

BBNs have also been successfully used in risk-based decision support tools for the marine 

industry (e.g. Friis-Hansen, 2000; Faber, Kroon, Kragh, Bayly and Decosemaeker, 2002).  

An extension of the BBN, called Dynamic Bayesian Network (DBN), may be used to 

analyse problems with time varying domains, e.g. Murphy (2002) and Weber and Jouffe (2003). 

Straub (2009) developed a DBN based generic framework for stochastic modelling of 

deterioration processes and demonstrated its advantages in terms of computational efficiency and 

ease of model updating through its application to fatigue crack growth problems in steel 

structures. Nielsen and Sorensen (2011) have demonstrated the use of this approach in risk-based 

inspection planning of offshore wind turbine foundations. This approach is effective when the 

location of deterioration is spatially fixed at certain locations on the structure, e.g. cracks at 

critical joints. However, these so called ‘hot spots’ are not apparent in other structural types, e.g. 

stone / masonry arch bridges. In such structural systems, the deterioration, which is typically 

assessed through condition indicators, is more diffuse and spatially spread, with the structural 

elements working in an integrated manner (with complex interdependencies) to deliver a holistic 

system performance. This paper presents the development of a condition-based deterioration 

model for such structural systems using a BBN/DBN methodology. Inspection results from a 

sample group of UK masonry arch railway bridges serve as input for the BBN model, which is 



used to obtain the distribution for the overall condition of the bridge group. Using DBN the 

model is then extended to incorporate time dependent characteristics in order to obtain 

deterioration profiles for the group under different environmental exposure conditions. These 

profiles together with a risk ranking strategy for the bridge group, as presented in Sathananthan, 

Onoufriou, and Rafiq, (2008), can be utilised to develop group/stock level risk-based inspection 

plans (Sathananthan, 2010). The sensitivity of the results towards various assumptions and input 

parameters is also discussed in this paper. 

2. Bayesian Belief Networks 

2.1. Definition of BBN 

BBN is a special case of causal networks, that encodes a multivariate statistical distribution 

function of a set of n random variables (Ai ; i = 1...,n) into a compact yet concise formalism 

(Pearl, 1988 and Jensen and Nielsen, 2007). The main features of the formalism are a graphical 

encoding of a set of conditional independence statements and a compact way of representing a 

joint probability distribution between the random variables. In essence, a BBN consists of a 

qualitative and a quantitative part.  

The qualitative part of the BBN is a directed acyclic graph (DAG) consisting of a set of 

nodes (corresponding to the random variables, Ai, respectively) connected through a set of 

directed links. The variables preceding a link are termed ‘parent’ variables. The variables at the 

other end of the link are called ‘child’ variables. In cases where more than one parent variables 

(Ai) are associated with a child variable (Aj), these are denoted as pa(Aj).  

The conditional independence statements between the nodes are captured through the 

directed links using the rules of d-separation (Pearl, 1988). Three connection types are defined 



for this purpose, shown in Fig. 1. The serial connection (Fig. 1a) encodes the statement that 

variable C is independent of A given B; however, these are not independent marginally. For 

example, let A represent the amount of vegetation on an abutment wall, B represent the extent of 

cracking of the wall and C represent the condition of the bridge support (which is dependent on 

abutment wall deterioration). The encoded conditional independence statement implies that in 

the absence of information regarding the extent of cracking of the abutment wall, the amount of 

vegetation on the wall can inform the overall support condition, i.e. A and C are not independent. 

However, as soon as the extent of cracking of the wall is known, the amount of vegetation 

becomes irrelevant to the support condition, i.e. C becomes independent of A given B.    

Fig. 1b represents a diverging connection, encoding the conditions that B and C are 

independent given A, but are not independent marginally. For example, if A represents the 

environment surrounding a bridge, B and C represent the condition of bridge deck and its 

supporting beams respectively. The diverging connection encodes that a known condition of the 

bridge deck can support an inference about the surrounding environmental exposure, leading to 

an inference regarding the condition of beams, hence B and C are not independent marginally. 

However, if the environmental condition becomes available, the bridge deck and beams may be 

considered independent of each other, i.e. B and C become independent given A. 

Fig. 1c represents a converging connection, encoding the condition that A and B are 

marginally independent, however they are not independent given C. Similar to the previous 

examples, let variables A and B represent two abutment walls of a bridge, and C represent the 

overall support condition. The converging connection dictates that the condition of wall A and B 

are marginally independent. However, if knowledge about the overall support condition (C) 



becomes available, the condition of wall A can be inferred from knowledge about wall B and 

vice versa, hence A and B are not independent given C.  

The quantitative part of the BBN consists of the conditional probabilities between the 

parent and child variables. In most applications, the random variables are discretely defined 

using a set of mutually exclusive condition states together with their associated probabilities. 

Although continuous random variables have been used in some recent studies, this paper is 

limited to the use of discrete random variables representing the nodes of the BBN. For each child 

variable, a conditional probability table (CPT) needs to be defined linking condition states of the 

child to the parent variables.  

The set of conditional independence statements allow calculation of the joint probability 

distribution using recursive factorisation (Pearl, 1988) as follows 
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 Eq. 1 

where U is the set of variables (A1,…,An) within a BBN. The prior probability distribution of any 

variable (i.e. probability of a variable in the absence of evidence), A, can be calculated by 

marginalizing other variables out of the joint probability function in Eq. 1. The method of 

variable elimination can be used for this purpose as described in Jensen and Nielsen (2007). 

Starting from a set of ‘n’ probability tables (describing all the probabilities associated with the 

variables of a BBN), each variable except A is marginalised out in turn by multiplying all tables 

from the set with marginalising variable in their domain and placing the resulting table in the set. 

The results are unaffected by the sequence of variable marginalisation. This can be expressed in 

a generic form as follows 
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 Eq. 2 

where ∑ ܲሺܷሻ௎\ሼ஺ሽ  represents recursive marginalisation of each BBN variable (in this case 

variable A which is excluded from the right-hand-side operation). In many cases, the process of 

marginalizing variables can be made computationally efficient without having to deal with the 

full joint probability function (Jensen and Nielsen, 2007). 

Bayesian networks are computationally efficient in updating the model when new 

information regarding the condition state of any variable becomes available, e.g. through 

inspection, testing or structural health monitoring. Given that a set of new evidence, ej, where j = 

1,….,m, regarding variables in a BBN becomes available, the joint probability distribution of Eq. 

1 becomes P(U, e). The updated BBN model of Eq. 1 will become (Jensen and Nielsen, 2007) 
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 Eq. 3 

and the updated probability for any variable A, given the evidence, e, will become 

ܲሺܣ|݁ሻ ൌ 	
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 Eq. 4 



2.2. Dynamic Bayesian Networks (DBN) 

A DBN is a special type of BBN, which deals with domains containing recurring networks that 

evolve over time. In such cases, discrete units of time are introduced and a model is defined for 

each unit of time. This local model for each unit of time is called a ‘time slice’. In turn, these 

time slices are connected through temporal links to form the complete model. If the time slices 

are identical and the temporal links stay the same, then such models are termed as DBN. More 

details on the DBN and various algorithms for use with DBN are presented in detail in Murphy 

(2002). For this study, the probabilities associated with the temporal links (also termed transition 

probabilities), as well as the conditional probabilities of the variables in all time slices of the 

DBN model, are considered constant, leading to a homogeneous DBN model.   

An example DBN is shown in Fig 2. The basic network, which consists of variables A, B 

and C at time ti (i.e. A(ti), B(ti) and C(ti)), repeats over time. Since the DBN is assumed 

homogeneous, P[A(ti+1)|A(ti)] should be equal to P[A(ti)|A(ti-1)], etc. Thus, each time slice model 

is treated as a separate BBN, and the probabilities of the child variables within the time slice are 

calculated using the chain rule outlined above.  

3. A BBN model for Masonry Arch Bridges 

For the purpose of maintenance management, most bridge management systems around the 

world sub-divide a bridge into components (major elements) and sub-components (minor 

elements). A bridge is generally divided into three major elements, namely, deck, superstructure, 

and substructure. These are further subdivided into minor elements (also called basic elements), 

such as deck slab, girders, abutment walls, piers, etc. Regular inspections are carried out to 

establish their condition / performance over time; typically, the information from such 



inspections is stored within the management system at the basic element level. This information 

is later used to assess the condition / performance at a bridge level (for maintenance planning), or 

at a group and/or stock level (for estimating maintenance budgets). Since the relation between 

the basic elements, the major elements, and that of the bridge or group of bridges is complex, a 

BBN framework has potentially much to offer, since inter-dependencies can be modelled 

through conditional probabilities.  

In this study, a BBN model is developed for masonry arch bridges (Fig. 3), which 

represent the majority of the UK’s rail bridge population. For these bridges, minor elements of 

the sub-structure (supports) include wing walls and abutments. Minor elements of the deck 

comprise the barrel arch, spandrel walls, face rings, and parapets (Network Rail, 2004a). 

3.1. Directed Acyclic Graph 

The minor and major elements can be treated as the nodes (variables) of a BBN. Since a major 

element’s condition is dependent on the condition of its minor elements, the major elements are 

treated as ‘child’ variables of its associated minor elements (‘parent’ variables). Similarly, a 

bridge condition is a function of the condition of its major elements. Hence, another variable 

node is introduced in the BBN representing the bridge condition, which is a ‘child’ of the 

variables representing the major elements of the bridge. The resulting BBN model is shown in 

Fig. 4. For a single span bridge, it consists of 9 variables and 8 links. 

The converging connection linking the major and its associated minor elements encodes 

that minor element conditions are marginally independent, though not if information about the 

major element condition becomes available. Although the condition of some minor elements can 

be correlated due to their dependence on some common factors, e.g. surrounding environment 



and live loading, the assumption of marginal conditional independence is not unreasonable as a 

first approximation on the grounds that:  

a) the method of determining the initial distributions for the condition of parent variables 

through inspection data captures implicitly the dependence on common external factors;   

b) there exist micro-climate and spatial effects that can be as important in breaking down 

the dependence on such common factors; 

Each variable of the BBN is represented through a set of finite condition states. At a 

single bridge level, such as that proposed by Attoh-Okine and Bowers (2006), a variable can 

only attain one such state at any given point in time (since the states are mutually exclusive). 

However, due to the uncertainty in describing the actual condition state, a probability density 

function can be introduced in a ‘degree of belief’ approach. At a bridge group/stock level, the 

probability density function assigned to a variable has a frequency interpretation and can be 

obtained by collecting inspection results from a sampled group of similar bridges.  

3.2. Condition states for variables of the BBN 

In the UK, the condition of bridges owned by Network Rail is represented through a condition 

marking index, known as Structures Condition Marking Index (SCMI) (Network Rail, 2004a), or 

more recently termed as ‘Bridge Condition Marking Index’. During a detailed inspection of a 

bridge, typically at 6 year intervals, information on the condition of each minor element is 

logged by the inspector. An SCMI score, ranging from 0 to 100, can be derived for the elements 

using the logged condition (SCMI, 2001). The score of ‘0’ is assigned to an element in extremely 

poor condition whereas ‘100’ is assigned to an element in perfect condition. In general, an 

element having an SCMI score above 80 is considered to be in good condition, with no remedial 

or repair action required. On the other hand, an element with an SCMI score below 45 is 



considered to be in a poor state, typically in need of some essential maintenance action. Based on 

this information, each element condition is modelled as a three-state variable, namely: Poor 

(SCMI range of 0 to 45), Fair (SCMI range of 46 to 80), and Good (SCMI range of 81 to 100).  

3.3. Conditional Probability Tables (CPT) for directed links 

Generally, CPTs for a BBN are derived through the use of expert elicitation, especially where 

data availability is limited. However, the large number of variables and states in the proposed 

BBN (Fig. 4) make this task difficult and subjective. For example, 27 conditional probabilities 

need to be specified for the CPT of the ‘support condition’ given its parent variables ‘abutment 

condition’ and ‘wing wall condition’, each with three (or more, see later) possible condition 

states. Altogether, 297 conditional probabilities need to be specified for the three CPTs required. 

Attempts to reduce these cumbersome requirements have been made, e.g. Celeux et al. (2006) 

through the adoption of log-linear models and simplifying constraints. An alternative 

methodology has been devised herein to establish the CPTs for each major element given minor 

element condition state, based on the knowledge embedded in the creation of a bridge-level 

SCMI from the scores of minor elements. 

Specifically in the SCMI system, each minor element is assigned an element factor in 

order to reflect its importance in relation to the condition of the linked major element (Network 

Rail, 2004b). These element factors reflect the background expert knowledge regarding the 

relative importance of minor elements in defining the condition of a major element and, in turn, a 

bridge. The element factors currently used for masonry arch bridge elements, and their 

interpretation as weighting factors, are shown in Table 1.  

A conditional probability also captures the strength of the link between a child and its 

parent variables. Thus, it can be interpreted as a relative weighting factor representing the 



importance of each parent variable condition in establishing the condition of their child variable. 

For example, in the BBN model of Fig. 4, the support condition depends on the condition of its 

minor elements, namely abutment and wing walls. Table 1 suggests that the condition of 

abutment wall matters twice as much as the condition of wing walls in establishing the support 

condition. Since this is the exhaustive pair of variables affecting support condition, their relative 

weighting factors will become 2/3 (or 0.67) and 1/3 (or 0.33) respectively. Hence, in terms of the 

numerical SCMI scale (0 to 100), the support condition can be expressed as a function of the 

abutment and wing wall condition as follows 

SS = 0.67 SA+0.33 SW   Eq. 5 

where the variables SS, SA, and SW represent the SCMI score for the condition of supports, 

abutments, and wing walls respectively.  

Since the parent variables, SA and SW, can attain any SCMI score from 0 to 100, it was 

decided to assign a uniform distribution function ranging from 0 to 100 as a non-informative 

prior for these variables, and used this to derive the CPT for SS, i.e. 

 P(SS|SA,SW) = P(SS,SA,SW)/P(SA,SW)                                                               Eq. 6 

where the joint probability distribution functions P(SS,SA,SW) and P(SA,SW) are estimated 

through Monte Carlo simulation. The CPT for the support node in the BBN is shown in Table 2. 

Similarly, the conditional probabilities for other variables, i.e. deck and bridge group, 

have been derived using the relative weighting factors given in Table 1, leading to the 

relationships shown below 

 

SD = 0.51 SB + 0.18 SF + 0.13 SP + 0.18 SSW                                                                  Eq. 7 

SBG = 0.5 SS + 0.5 SD                                                                                                     Eq. 8 



where, SD = Deck condition, SF = Face ring condition, SP = Parapet condition, SB = Barrel arch, 

SSW = Spandrel wall condition, SS = Support condition and SBG = Bridge condition. 

4. Case Study  

4.1. Input conditions for masonry arch bridges 

A sample of 50 notionally similar masonry arch bridges was selected to demonstrate the 

methodology in representing group level condition-based deterioration. The condition state of 

each element was obtained from the detailed inspection reports of the sampled bridges, yielding 

a probability distribution for the SCMI score of each minor element in the bridge group. This 

was used to establish the probabilities associated with each of the three discrete states for the 

parent variables (minor elements) of the BBN, i.e. P(‘poor’) = P(0 < SCMI ≤ 45), P(‘fair’) = 

P(46 < SCMI ≤ 80), and P(‘good’)= P(81 < SCMI ≤ 100) as shown in Table 3. 

4.2. BBN model for masonry arch bridges 

A BBN model representing condition-based deterioration for this group of masonry arch bridges 

is shown in Fig. 5. The commercially available software ‘Hugin Researcher v6.9’ is used for the 

set-up and the ensuing calculations related to this BBN (Jensen and Nielsen, 2007). Since the 

majority of the minor elements of the chosen sample are in the ‘fair’ state, the BBN model 

estimates a higher probability for the major elements (support and deck condition) to be in this 

state. Similarly, the probability of the bridge group to be in a ‘fair’ state is significantly higher 

than the corresponding values for the other two states. 

The BBN model was verified through simple checks, using arbitrary extreme input 

conditions for the minor elements. For example, when all the minor elements are in a single 



state, both the major elements and the bridge group should be expected to be in that same state 

(Sathananthan, 2010). Moreover, a refined BBN model with five states per element was also 

constructed by dividing the SCMI 0 to 100 scale into five equal intervals. The results are shown 

in Fig. 6, and as expected, a more graded condition performance is revealed. 

The results of the BBN models were then compared with the computed SCMI distribution 

for the bridge group using the currently adopted methodology presented in Network Rail 

(2004a). As shown in Fig. 7, a good overall agreement was observed even with the three-state 

model, with the small differences (for the lower and upper SCMI ranges) attributed to the 

assumptions introduced whilst establishing the conditional probability tables between the parent 

and child variables. It is worth noting that the five-state model requires additional input for the 

conditional probabilities, which may potentially be difficult to obtain (herein the same 

methodology was adopted, based on Monte Carlo simulation of uniform non-informative priors). 

Hence, the number of states in the BBN model should be specified considering the level of 

precision required, together with any practical constraints in terms of effort and data availability. 

For illustration purposes, the three-state BBN model is used in the following sections to 

investigate sensitivities and ‘what if’ scenarios. 

4.3. Sensitivity Analysis 

A sensitivity analysis was carried out using the BBN model to assess the impact of each minor 

element on the bridge group condition. The ‘what-if’ feature described above was used for this 

purpose. With the BBN model shown in Fig. 5 selected as a reference point, each minor element 

was assigned, in turn, a probability of ‘1’ for being in the ‘poor’ state, i.e. 0 < SCMI < 45, 

keeping the remaining elements in their existing state and the resulting changes in the bridge 

group condition were calculated. The sensitivity of bridge group condition on the minor elements 



is computed by normalizing the individually calculated change in the group condition over the 

total change (i.e. sum of the changes in bridge group conditions from each minor element), and is 

presented in Fig. 8.   

It may be observed that the abutment and barrel arch have the greatest influence in 

changing the particular bridge group condition corresponding to the input data associated with 

the BBN in Fig. 6, followed by the wing wall and finally the remaining three minor elements. 

This ranking is in tune with the prior weightings given to various elements (see Table 1). 

However, in performing this sensitivity analysis, the initial condition of the minor elements (as 

recorded on the sample of 50 bridges) also plays a part. It is therefore possible to differentiate 

between elements that have been assigned nominally equal weightings (e.g. abutment and barrel 

arch) and thus reveal sensitivities in the light of actual inspection information about a given 

bridge stock. However, the major limitation of this sensitivity analysis is that the influence of 

each minor element is investigated separately, which can be misleading in situations where 

decisions need to be made about the group/stock as a whole. This is demonstrated below. 

4.4. Examples of ‘What if’ analysis 

A major advantage of the BBN model is that it can be used effectively to analyse ‘what-if’ 

scenarios. For example, the expected change in the bridge group condition when new evidence 

regarding a minor element becomes available, such as new inspection data following a 

maintenance campaign. The updating methodology described in Sec. 2.1 is used for this purpose. 

Fig. 9 shows the result from a hypothetical improvement program targeted exclusively on 

abutments. As can be seen, given the relatively high weighting attributed to this element and its 

relatively high fraction in ‘poor’ condition, the effect is to reduce fourfold the fraction of bridges 



falling in ‘poor’ condition. However, such an exclusive maintenance action is also likely to be 

unrealistic in actual field situations. 

The real power of the BBN as a decision-support tool is in enabling reverse ‘what if’ 

analysis to be undertaken, which can lead to the formulation of maintenance plans given desired 

targets at system (herein group) level. For example, Fig. 10 presents the results for a case where 

the bridge group condition has been set to a distribution with no ‘poor’ states and a relatively 

small percentage of ‘good’ states. This could be a realistic plan for the infrastructure owner, 

given the initial condition depicted in Fig. 5. As can be deduced by contrasting the two figures, 

all minor elements will require improvement, though the relative degree (and hence required 

effort/resource commitment) is not the same. Wing walls and barrel arches are identified as the 

two minor elements for which most effort will be required. Comparing this result with what was 

previously presented in Fig. 8, it is evident that traditional sensitivity analysis can be misleading. 

5. Time dependent condition assessment 

The BBN model discussed in the previous sections serves as a ‘snapshot’ model to estimate the 

bridge group condition based on its constituent element conditions at a given point in time.  

However, deterioration is a time dependent process, hence it is important to be able to model the 

variation in the bridge condition with time. A useful tool to model such a process is the Dynamic 

Bayesian Networks (DBN). In a DBN, the basic Bayesian model (termed as ‘time slice’) is 

connected to its successive ‘time slices’ through temporal links to form the time varying model. 

The relationships between the variables in successive time slices are expressed through 

conditional probabilities for the temporal links (also known as transition probabilities). The BBN 

model presented in Sec. 4.2 is transformed schematically into a DBN model as shown in Fig. 11.  



It is worth noting that since only the parent variables are independent variables in a given 

time slice, only these are linked between successive time slices through the temporal links. The 

condition for all the child variables, i.e. major elements and the overall bridge condition, are 

computed using the standard BBN model, developed in Sec. 4, using the condition of parent 

variables at each time slice.  

5.1. DBN Model for Masonry Arch Bridges 

The input required to define a DBN model, in addition to the information needed to develop a 

BBN model, is the transition probabilities related to successive time slices for each minor 

element. In the absence of any field data, Markov chain principles are introduced to quantify the 

transitional probabilities. Thus, starting with the BBN model having five discrete states for each 

variable, a hypothesized scenario is considered that there is a 10% probability that a variable 

shifts from its current condition state to the immediately lower condition state at the next time 

step, e.g. P(61<Sw(ti+1)≤80 | 81<Sw(ti)≤100) = 0.1 (This is referred to as Pii).  Hence, according 

to the Markov chain principle, the probability of wing wall remaining in the same state is 0.9 (i.e. 

1 - Pii). Since, in the absence of interventions, the deterioration process is irreversible, the 

transition probabilities will, over time, monotonically shift elements from higher to lower states. 

It is further assumed that when an element reaches the worst possible condition state 

(0<Sw(ti)≤20), it can stay in that state indefinitely. 

In this process, it is also necessary to specify the transition interval, i.e. the time interval 

between two successive time steps (i.e. ti+1 – ti).  This has been set to six years in order to align 

with the current practice with respect to the intervals between successive ‘principal inspections’ 

followed by many UK bridge authorities but also bearing in mind the variation of SCMI scores 

with time for the particular type of bridge considered herein. 



The output from the DBN model is the distribution of bridge group condition at various 

points-in-time. For example, the histograms of SBG at time slice 0 (i.e. current condition), and at 

time slice 1 (i.e. after 6 years), assuming that no maintenance intervention or inspection updating 

has taken place during this period, are presented in Fig. 12. It clearly illustrates the ‘downwards’ 

shift of the distribution of bridge group condition from a mean value of 58.6 (at time slice 0) to 

50 (at time slice 1), given the deterioration proceeds without any maintenance intervention.  

5.2. Sensitivity analysis 

From the histograms obtained using the DBN model (e.g. Fig. 12), any chosen fractile value for 

the bridge condition can be used to establish associated condition profiles. As an example, the 

condition profiles of mean SBG are plotted in Fig. 13. Clearly, other fractiles of the overall 

distribution could also have been selected hence a judicious choice can be made depending on 

the importance of the particular group on the transport network.  

An assumption in the above DBN model is that all minor elements are deteriorating at the 

same rate, i.e. probabilities for each minor element to maintain their initial state at the next time 

step, Pii, is the same. This is not a limitation in the DBN itself but, rather, reflects the lack of 

available information in this regard. Selective cases have been analysed to demonstrate the 

DBN’s ability to model the scenarios where the deterioration rates are different for various minor 

elements. These include, e.g. the Pii for the abutment as 0.75 whilst maintaining the Pii for the 

rest of minor elements at 0.95. Similar other cases are analysed for the barrel arch and wing wall 

and the results are presented in Fig. 13. 



5.3. Updating Prediction using Inspection Results and Maintenance Effects 

As stated earlier, the BBN model can update the predicted bridge condition when additional 

information becomes available on the element conditions. The methodology presented in Sec. 2 

can be used in the DBN model to identify the expected change in the rate of bridge condition 

deterioration due to inspection findings and/or any maintenance activities. For example, a 

scenario may be considered that structural health monitoring or an inspection programme has 

revealed the abutments to be in ‘poor’ condition (i.e. P(0 < SA < 20) = 1.0) at year 18 (time slice 

4). This additional evidence can be formally utilised through Eq. 3 and Eq. 4 to obtain the 

posterior probability for the bridge condition. Fig. 14a depicts the drop in the mean bridge group 

condition should the inspection/monitoring outcomes reveal this condition.  

Similarly, the effect of a potential maintenance activity can be explored using the DBN 

model. For example, Fig. 14b indicates the improvement in mean bridge group condition given 

that the abutments of the group are to be restored to a ‘good’ condition (i.e. P(81 < SA ≤ 100) = 

1.0). Other similar scenarios can be readily investigated to aid with management decisions using 

the modelling techniques presented herein. 

6. Conclusions 

This paper presents the development of a Bayesian Belief Network model aimed at representing 

bridge condition deterioration. It has been shown that the BBN models are capable of handling 

complex relationships between bridge elements and the system by means of conditional 

probabilities specified on a fixed model structure. 

The application of the methodology is presented through a case study on the UK’s railway 

masonry arch bridges. The condition of elements obtained from a sample bridge group is used as 



input in the BBN, together with a set of conditional probabilities derived from inspection 

experience, to yield, in probabilistic terms, the overall group condition. The results from the 

BBN model are verified using actual data from the sampled bridge group. 

A desirable feature of the BBN models is their ability to analyse ‘what-if’ scenarios. This 

is particularly helpful for the prioritization of assessment and maintenance activities. This feature 

has been demonstrated though a sensitivity analysis to obtain the relative importance of each 

minor element on the overall bridge group condition. This ‘what if’ capability also makes the 

BBN approach particularly useful in the context of structural health monitoring, as it would help 

quantify the value of introducing such tools under different spatial or temporal assumptions. 

It is also evident from the results presented that initial element conditions are crucial in 

determining not only the condition of the particular group of bridges but also in understanding 

the maintenance/intervention priorities. This, in turn, leads to the question of what 

inspection/monitoring techniques should be used, how often and with what priority. Once more, 

the usefulness of the BBN approach lies in its ability to deal with a wide range of scenarios both 

readily and transparently. 

The BBN has been extended to Dynamic Bayesian Network model by introducing the 

temporal relationship between the parent variables. These are shown to effectively model with 

time variant deterioration profiles for the group of bridges. It has been demonstrated that the 

DBN models have the potential to capture the variation in initial conditions of various elements, 

along with their varying deterioration rates, thus leading to predictions for the deterioration rates 

for the group of bridges. Their ability to update the deterioration predictions, in the light of data 

obtainable from inspection, monitoring or maintenance activities, has also been highlighted. 
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Fig. 1: Connection types in a BBN 
 

 

 

Fig. 2: A DBN example 

 

 

 

Fig. 3: Typical minor elements of a masonry arch bridge 
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Fig. 4: A BBN for masonry arch bridges 

 
Fig. 5: Three-state BBN model for deterioration of masonry arch bridge group. 
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Fig. 6: Five-state BBN model for deterioration of masonry arch bridge group. 

 

 

 

Fig. 7:  Comparison of three- and five-state models with SCMI distribution 

 

 

 

 

 

 

Five State BBN Model Results 

Sample Structure Results 

Three State BBN Model Results 



 

 

 
Fig. 8: Sensitivity of a given bridge group condition on minor elements. 

 

 

 
Fig. 9: An example of forward ‘what-if’ scenario 
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Fig. 10: An example of reverse ‘what-if’ scenario 

 

 

Fig. 11: A DBN model for masonry arch bridge condition  
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Fig. 12: Change in SBG from ‘time step 0’ to ‘time step 1’ 
 

 

 

 

Fig. 13: Change in SBG with different element deterioration rates 
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Fig. 14: Updated deterioration profiles  

 

 

 

 

Table 1: Element factors for minor elements (SCMI, 2001) 

Major Element Minor Element 
Element 
Factor 

Relative 
Weighting 

Support 
Abutment 10 0.67 (=10/15) 

Wing wall 5 0.33 (=5/15) 

Deck 

Barrel Arch 10 0.51 (=10/19.5) 

Face Rings 3.5 0.18 (=3.5/19.5) 

Parapets 2.5 0.13 (=2.5/19.5) 

Spandrel wall 3.5 0.18 (=3.5/19.5) 
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Table 2: CPT for the Support node 

Wing wall 
Condition 

Abutment 
Condition 

Support Condition 

Poor Fair Good 

Poor 

Poor 1 0 0 

Fair 0.33 0.67 0 

Good 0 1 0 

Fair 

Poor 0.79 0.21 0 

Fair 0 1 0 

Good 0 0.44 0.56 

Good 

Poor 0.50 0.50 0 

Fair 0 0.85 0.15 

Good 0 0 1 

 
 

 

 

Table 3: Probabilities for minor elements being in any given condition state. 

Element type Poor Fair Good 

Wing wall 0.21 0.50 0.29 

Abutment 0.21 0.63 0.16 

Barrel Arch 0.22 0.67 0.11 

Face Ring 0.15 0.68 0.17 

Parapets 0.12 0.69 0.19 

Spandrel wall 0.19 0.63 0.18 

 


