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Summary: Indoor positioning systems based on WiFi Round-Trip Time (RTT) measurement were 
reported to deliver sub-metre level accuracy using trilateration, under ideal indoor conditions. 
However, the performance of WiFi RTT positioning in complex, non-line-of-sight environments 
remains an open research question. To this end, this paper investigates the properties of WiFi RTT 
in several real-world indoor environments on heterogeneous smartphones. We present a large-
scale dataset containing both RTT and received signal strength (RSS) signal measures with correct 
ground-truth labels for further research. Our results indicated that RTT fingerprinting system 
delivered an accuracy of below 0.75 m which was 98% better than RSS fingerprinting and 166% 
better than RTT trilateration, which failed to deliver sub-metre accuracy as claimed. 

Introduction 
One of the most popular approaches for indoor positioning is WiFi fingerprinting (Bahl & 
Padmanabhan, 2000). Such systems used the WiFi received signal strength (RSS) as signal 
feature, and were known to achieve an accuracy of a few metres on average (Abbas et al., 
2019; Xue et al., 2017). 
Since the release of the WiFi IEEE 802.11-2016 standard, WiFi Fine-Timing Measurement 
(FTM) protocol has been a competitive signal feature for WiFi-based indoor positioning. 
RTT is an estimate of the distance between an initiating station (e.g., a smartphone) and a 
responding station (e.g., a WiFi Access Point (AP)) which offers a more accurate distance 
measure for trilateration and avoids the hassle of constructing and maintaining the 
fingerprinting database. However, despite its promise in achieving sub-metre positioning 
accuracy in ideal line-of-sight (LoS) condition, the performance of WiFi RTT in real-world 
complex, non-line-of-sight (NLoS) indoor environments remained unexplored. 
Therefore, this paper will perform a thorough investigation of the properties of the WiFi 
RTT signal in large, complex, and realistic NLoS indoor experiments that include office, 
corridor and floor with different smartphones. We will also assess the positioning accuracy 
of WiFi RTT, RSS, hybrid RTT-RSS fingerprinting and trilateration systems in the above 
challenging environments. 

The paper’s contributions 
• A large-scale real-world WiFi RTT & RSS dataset with correct ground truth labels. To 

support the development of future RTT positioning systems, we contribute a dataset 
containing both WiFi RTT and RSS signal measures on a testbed of more than 92 × 15 m2 
of a campus floor with ground truth labels meticulously marked by post-it notes and 
manually verified by several human testers. The dataset contains 77,040 location samples 
from 642 reference points recorded over 3 days and was pre-processed so that the training 
points and testing points do not overlap. 

• Thorough WiFi RTT analysis in challenging NLoS indoor environments. We analysed the 
most relevant WiFi RTT signal properties on three smartphones to investigate the true 
nature of the measurement. We also considered challenging scenarios such as AP 
interference, body blockage, wall attenuation, reflections, etc.   

• Performance ranking of WiFi RTT, RSS, hybrid RTT-RSS fingerprinting and trilateration. 
We conducted a comparative analysis on RTT- and RSS-based indoor fingerprinting 
systems that use different Machine Learning algorithms, and trilateration. 
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Related work 
Systems that leverage WiFi RTT were reported to achieve sub-meter accuracy indoors 
(Dümbgen et al., 2019; Gentner et al., 2020; Han et al., 2019; Yan et al., 2019). Many have 
conducted researches to verify the accuracy of the systems based on WiFi RTT with 
different positioning algorithms, including trilateration (Choi et al., 2020), traditional 
machine learning (Hashem et al., 2021), and deep learning (Seong et al., 2021). However, 
the challenges for RTT and RSS in Non-Line-of-Sight (NLoS) environments were also 
highlighted (Nguyen & Luo, 2015; Nguyen et al., 2021). To make the best of WiFi signals 
and achieve better positioning accuracy, systems supporting both WiFi RTT and RSS 
measurements were proposed (Dong et al., 2021; Guo et al., 2019; Hashem et al., 2021). 
Furthermore, systems were proposed to identify Line-of-sight (LoS) scenarios in which to 
gain a promising positioning result (Cao et al., 2020; Sun et al., 2020). 
Some have further studied some general properties of WiFi RTT and discovered an offset 
in RTT measurements (Guo et al., 2019; Horn, 2020; Gentner et al., 2020; Feng et al., 
2022). The biases of such offset in different devices (Choi & Choi, 2020) and in different 
distances (Sun et al., 2020) were also analysed. Calibration models were leveraged to 
compensate for such offset: fixed offset (López-Pastor et al., 2021), double exponential 
(Horn, 2020), linear polynomial, quadratic polynomial (Choi & Choi, 2020). However, to 
the best of our knowledge, there is still a lack of comprehensive analysis of WiFi RTT 
measurements in challenging environments. 

RTT background 
This section overviews the underlying mechanism of WiFi RTT technology. 

RTT protocol  

 
Fig. 1: Overview of FTM protocol. The dash lines show the control messages before the measure-

ment took place. 

WiFi RTT is a handshaking FTM protocol standardised by IEEE 802.11-2016 to estimate 
the distance between an initiating station (e.g., a smartphone) and a responding station (e.g., 
a WiFi AP), using round trip time measurements. 
As shown in Fig. 1, the RTT measurement starts with an FTM request sent by the 
smartphone to the AP. The AP will then respond with an acknowledgement (Ack) message 
indicating whether it agrees with the request. Next, the AP will send an FTM message 
FTM1 to the smartphone and receive back an acknowledgement (Ack). The timestamps 
(e.g., t1, t4) of the process will be stored and transmitted back to the smartphone through 
the next FTM2 message.  
Therefore, the RTT measurement is defined as: 
       

𝑅𝑅𝑅𝑅𝑅𝑅 = (𝑡𝑡4 − 𝑡𝑡1) − (𝑡𝑡3 − 𝑡𝑡2)  (1) 

where (𝑡𝑡4 − 𝑡𝑡1) is the time it takes for a single RTT measurement, (𝑡𝑡3 − 𝑡𝑡2)  is the time 
delay inside the smartphone. The distance is then calculated as: 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑅𝑅𝑅𝑅𝑅𝑅

2
 ∙ 𝑐𝑐      (2) 

where c  is the speed of light.  
On Android phones, each measuring burst contains 8 RTT measures and their average is 
recorded as the final RTT measure to represent the distance estimation. Note that the whole 
process does not require any connection between the AP and the smartphone. 

Table 1: The three smartphones used in the experiments. 

Name Year  
Manufactured 

Operating 
System 

CPU Chipset WiFi Standards 

Google 
Pixel 3 2018 Android 9 

Qualcomm 
Snapdragon 

845  

802.11ad multi-gigabit,  
802.11ac 2x2, 

802.11k/r/v 
LG 

G8X 
ThinQ 

2019 Android 
11 

Qualcomm 
Snapdragon 

855  

802.11ax-ready, 802.11ac Wave 2, 
802.11a/b/g, 802.11n 

Nokia 
8.5 5G 2020 Android 

11 

Qualcomm 
Snapdragon 

765G 5G 

802.11ax-ready, 802.11ac Wave 2, 
802.11a/b/g, 802.11n 

Analysis of the RTT properties 
This section details the analysis of the WiFi RTT measures, in comparison to RSS, in a 
complex office environment, filled with furniture, electrical devices and electromagnetic 
signal transmitters (e.g., WiFi, BLE, etc.), one of the most common indoor enviroments for 
WiFi-based indoor positioning. The RTT-enabled smartphones included in this analysis 
were LG G8X ThinQ (LG), Google Pixel 3 (Pixel) and Nokia 8.5 5G (Nokia) (see Table 1). 
The Google WiFi router was used as the Access Point for these experiments. We recorded 
300 WiFi samples per reference point. 

  

 
Fig. 2: The WiFi RSS data distribution under LoS, AP interference, and body blockage scenarios. LG 
G8X ThinQ was further tested with a phone case. The smartphones were set 3 metres away from the 

Google WiFi AP. Overall, the RSS could be significantly attenuated by the human body. 
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Body blockage and AP interference 
In order to observe the stability of the RTT and RSS signal, we recorded the measures in 3 
different situations, including LoS, body blockage and AP interference, as follows. 

• To create a LoS, we set the smartphone 3 m away from the AP with no obstacles in-
between, while keeping them both at the same height to minimise potential interference. 

• To create body blockage, a person stood 20 cm right next to the smartphone. This was to 
imitate the scenario where the user accidentally blocks the signal transmission. 

• To observe the influence of AP interference, we introduced 2 more Google APs in the 
environment. Furthermore, we put the phone inside a plastic case. 

 

 
Fig. 3: The comparison of RSS distribution under LoS, AP interference, body blockage and phone 

case blockage on three smartphones. Longer bar illustrates signal instability. Overall, the RSS could 
be significantly affected by the human body. 

Fig. 2 demonstrates that in the LoS scenario, LG and Nokia had more stable RSS 
measurements. LG had stronger signals than the other two. We observe that both Pixel and 
Nokia phones were more vulnerable with AP interference and that they had weaker and less 
stable RSS. The influence of the human body as an obstacle was noticeable. Not only 
would the RSS measures be unstable, but the signal strength would also be reduced 
drastically. It was also observed that the plastic phone case only had a minor impact on the 
RSS measures (see Fig. 3). Thus, the phone case condition will not be further considered.  
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Fig. 4: The raw WiFi RTT data distribution and CDF plot under LoS, AP interference, and body 

blockage scenarios. LG G8X ThinQ was further tested with phone case blockage. The smartphones 
were set 3 metres away from the Google WiFi AP. Overall, the RTT could be significantly affected 

by the human body and the LG phone was more robust to interference. 

 
Fig. 5: The comparison of RTT distribution under LoS, AP interference, body blockage and phone 

case blockage on three smartphones. Longer bar illustrates signal instability. Overall, the RTT 
measures were much more robust than the RSS counterpart. 

 



 6 
 

 

 

The results from the RTT measurement are shown in Fig. 4. We observed that in the LoS 
scenario, LG had the most stable RTT measure, while Pixel had the worst measures which 
are consistent with their RSS performances. It was also observed that each smartphone had 
its own RTT offset due to the impact of the complex indoor environment, which is 
consistent with previously reported research (Guo et al., 2019; Gentner et al., 2020). Nokia 
had the most surprising offset of more than 6.5 m. Under AP interference, LG and Nokia 
were more robust than Pixel, and RTT measures were more stable than RSS. When the 
human body blocked the signals, all three smartphones generated larger RTT measures (see 
Fig. 5).  
 

  

  

 
Fig. 6: The WiFi RTT and RSS distributions with different gestures. The smartphones were set 2 

metres away from the AP. The scenarios are detailed in Table 2. Overall, the RTT and RSS measures 
could vary significantly depending on the phone’s orientation. 

Placement and orientation 
To further investigate the influences caused by different placements and orientations of the 
smartphone, we performed the following experiments. 
Firstly, we evaluate the RTT and RSS distributions when the smartphone was held in 
different ways. In this scenario, the smartphone was set 2 metres away with a clear LoS and 
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at the same height as the AP. Then, we introduced different scenarios to place the 
smartphone (see Table 2). The distributions of RTT and RSS are shown in Fig. 6. The 
variance of the RSS measure could be up to -20 dBm and that on RTT could be up to 0.65 
m. In general, RTT was more sensitive to the phone placement as it travels at the speed of 
light and any minor delay would cause a considerable estimation error. 

Table 2: The different placements of the smartphone. 
Placement Description 

LoS The back of the phone faces to the AP and is set at the 
same height as the AP. 

NLoS A 16 cm thick wall blocks the signal 

Face to The back of the phone faces directly to the AP 

Face back The screen of the phone faces directly to the AP 

Face up The screen of the phone faces up to the sky 

Face down The screen of the phone faces down to the floor 

Set high  The phone is held higher than the AP 

Set low The phone is held lower than the AP 

Next, we changed the heading directions of the phone and took the corresponding RTT 
measures (see Fig. 7). The results demonstrated significant influences on the RTT measure.. 
with LG and Nokia both produced an offset of up to 0.4 m. 
 

   
Fig. 7: The WiFi RTT distribution of the smartphone with different heading directions. The 

smartphone was set 2 metres away and at the same height as the AP with its screen facing up to the 
ceiling. At angle 0°, the top of the smartphone was aiming right at the AP. The average RTT 

measures are the blue dots. The orange dots indicate the average LoS RTT measures while the phone 
is in the LoS scenario. Overall, the RTT measures could vary significantly with different phone’s 

orientations. 

Large scale variation 
To observe the spatial impact on the signal measurements, we perform ranging experiments 
under three different environments as shown in Fig. 8. They were office LoS, office NLoS 
and corridor LoS. The length of the testing area of the three ranging tests was 3 metres, 2 
metres and 10 metres, respectively. The smartphone was moved across the testing area 
away from the AP at 20 cm intervals. To construct an NLoS testbed, we set the AP at one 
side of a 16 cm thick wall while recording WiFi measurements on the other side. Note that, 
in all these ranging tests, the smartphone was set at the same height as the AP. We recorded 
the WiFi signals for 30 seconds per reference point.  
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Fig. 8: Overview of the ranging testbeds. The orange dots indicate the location of the AP. The grey 

area shows the experimental testbed. 

The ranging tests’ results showed that within 10 metres, the RTT measure will have some 
constant offset from the true distance, which may be caused by the signal attenuation (see 
Fig. 9, Fig. 10 and Fig. 11). Such offset varies from one smartphone to another, which is 
consistent with our findings in previous section Body blockage and AP Interference. The 
NLoS also affects the constant offset pattern of the RTT measure (see Fig. 9 and Fig. 10). 
In the corridor LoS, where the signals suffered from much more reflections, RSS measure 
becomes unpredictable as shown in Fig. 11. It was surprising that locations 5 and 8 metres 
away had the same RSS measure. It could be concluded that the RTT measure was more 
robust and showed a clear positive correlation to the true distance, compare to RSS 
measures. 
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Fig. 9: RTT measures as a function of the true distance and scaled RTT/RSS at different distances 
from the AP in office LoS scenario. The term scaled means the data was pre-processed, so all of its 

values are between 0 and 1. Boxplots of RSS measures are in red while those of RTT are in blue. The 
bigger the scaled RSS is, the weaker the signal is.  
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Fig. 10: RTT measures as a function of the true distance and scaled RTT/RSS at different distances 

from the AP in office NLoS scenario. Boxplots of RSS measures are in red while those of RTT are in 
blue. The bigger the scaled RSS is, the weaker the signal is.  

  

  

  
Fig. 11: RTT measures as a function of the true distance and scaled RTT/RSS at different distances 

from the AP in corridor LoS scenario. Boxplots of RSS measures are in red while those of RTT are in 
blue. Note that the bigger the scaled RSS is, the weaker the signal is.  

Summary of signal properties 
Table 3 summaries the properties of RTT and RSS. In short, RTT measures were more 
stable and more reliable than RSS in most situations. Furthermore, RTT measures had an 
offset in ranging which should be taken into consideration. The robustness towards interior 
changes makes RTT a better measure to leverage for indoor positioning fingerprinting. 
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Table 3: Comparisons of RTT and RSS properties. The RTT measures were more stable and reliable 
than RSS in most cases. 

Property RTT RSS 
Less severely affected by body blockage Yes No 

More robust when interfered Yes No 
Less affected by phone case Yes No 

More sensitive to placements and heading 
directions of the smartphones No No 

Has an obvious offset in ranging Yes No 
Stable in LoS Yes No 

Stable in NLoS No No 
More sensitive to interior changes  Yes No 

RTT indoor fingerprinting 
To validate the performance of WiFi RTT-based indoor positioning system, we performed 
experiments in two real-world environments including an office room and an entire floor of 
a campus building. The performance of WiFi RSS-based indoor positioning, measured at 
the same training locations, was used as the baseline. 

Fingerprinting 
Fingerprinting, one of the most popular techniques in WiFi-based positioning system, 
consists of an off-line training phase and an on-line positioning phase (Bahl & 
Padmanabhan, 2000). During the off-line phase, WiFi measurements are collected in an 
indoor environment into a dataset. In the on-line phase, the positioning estimate of the user 
will be made based on the matching results of the reported unknown WiFi measurements 
with those in the dataset. 

Experimental setup and data collection 
We present a dataset (https://github.com/Fx386483710/WiFi-RTT-RSS-dataset) of the 
whole fifth floor of the Cockcroft building at the University of Brighton, alongside ground 
truth coordinates and the LoS APs at each reference point (see Fig. 12). The details of the 
dataset are shown in Table 4. 

 
Fig. 12: Layout of the building floor testbed. The orange dots show the locations of RTT-enabled 

APs. All measurements are taken in the grey area. 

Table 4: The details of the proposed dataset. 
Dataset features Details 

Area 92 × 15 m2 
Grid size 0.6 × 0.6 m2 

Reference points  642 
Samples per reference point 120 

Data samples 77,040 
Training samples 57,960 
Testing samples 19,080 
Signal measure WiFi RTT, WiFi RSS 
Collection time 3 days 

 
We use three different splits of training and testing sets when assessing the system 

https://github.com/Fx386483710/WiFi-RTT-RSS-dataset
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performance and the training points and testing points do not overlap. 13 RTT-enabled 
Google APs were set up with respect to real-world placements of the building’s APs. The 
LG G8X ThinQ smartphone, the most reliable device as shown in previous experments, 
was used to collect the WiFi signals. A human holds the phone at chest height during the 
whole recording process.  

Table 5: A Snapshot of the WiFi RSS dataset. 

X Y AP1 RSS 
(dBm) 

AP2 RSS 
(dBm) … AP13 RSS 

(dBm) LoS APs 

1 15 -200 -200 … -73 12 
1 16 -200 -200 … -70 12 
2 0 -200 -200 … -71 None 
2 1 -200 -200 … -63 12 

… … … … … … … 
125 15 -74 -47 … -200 2 3 

Table 6: A Snapshot of the WiFi RTT dataset. 

X Y AP1 RTT 
(mm) 

AP2 RTT 
(mm) … AP13 RTT 

(mm) LoS APs 

1 15 100,000 100,000 … 5,958 12 
1 16 100,000 100,000 … 4,893 12 
2 0 100,000 100,000 … 8,716 None 
2 1 100,000 100,000 … 10,062 12 

… … … … … … … 
125 15 10,585 598 … 100,000 2 3 

 
Table 7 shows a snapshot of the dataset. Measurements recorded in column AP1 RSS to 
AP13 RSS are the signal measures received from each AP. The value -200 dBm indicates 
that the AP is not visible from the current reference point. The columns X and Y specify the 
ground-truth label of the location, while column LoS APs shows what APs have LoS to this 
point. Similarly, an example of the RTT training data is demonstrated in Table 8. The value 
100,000 millimetres (mm) indicates that no RTT signal is received from the AP. 
The same procedure was taken for the second dataset in a 5.46 × 4.45 m2 office, with a 
much finer grid size of 0.455 × 0.455 m2 (see Fig. 13). Three APs were used to cover the 
whole area. 

 
Fig. 13: Layout of the office testbed. The orange dots show the locations of the RTT-enabled APs. 

Empirical results 
To evaluate the performance of RTT and RSS fingerprinting based systems, we adopt 5 
popular Machine Learning algorithms to estimate the location, namely K-Means, K-Nearest 
Neighbours (KNN), Linear Regression (LNR), Random Forest (RF) and Gradient Boosting 
(GB). We also used trilateration on RTT data as the baseline accuracy. An MSI GP66 
laptop with Intel i7-10870H @ 2.20GHz CPU and 24GB DDR4 3200MHz memory was 
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used to perform the positioning algorithms using the Python Scikit-learn package. Note 
that, we took into account the offset of the LG smartphone RTT measurement when 
calculating trilateration estimations. Root Mean Squared Error (RMSE) is used as an 
evaluation metric accompanied by the Cumulative Distribution Function (CDF) plot. 
Furthermore, we applied scaling methods, Standard Scaler (std) and Min Max Scaler (mm), 
on the signal measures. The RMSE results are presented in Tables 7 and 8, while Fig. 14 
and Fig. 15 demonstrate the CDF results. 

Table 9: RMSE results of WiFi-based indoor positioning in the building floor dataset. The term mm 
and std indicate that the features are pre-processed with Standard Scaler (std) and Min Max Scaler 

(mm), respectively. RTT-based fingerprinting could achieve an accuracy of below 1 metre. 
 Method RTT+RSS RTT RSS 

KNN 0.781 0.781 1.470 
KNN mm 0.971 0.791 1.470 
KNN std 0.930 0.791 1.463 
K-means 0.786 0.777 1.547 

K-means mm 1.028 0.791 1.533 
K-means std 0.984 0.785 1.551 

LNR 2.999 3.532 3.699 
LNR mm 2.995 6.562 8.012 
LNR std 3.000 6.646 8.079 

RF 0.688 0.751 1.382 
RF mm 0.688 0.752 1.379 
RF std 0.688 0.751 1.380 

GB 0.735 0.634 1.359 
GB mm 0.735 0.634 1.360 
GB std 0.737 0.634 1.359 

Trilateration N/A 1.971 N/A 
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Fig. 14: CDF of WiFi-based indoor positioning with the building floor dataset. Note that in (a) and 
(b), the RTT+RSS line overlaps with the RTT line. RTT-based system could achieve an accuracy of 

below 1 metre, 80% of the time. 

It was observed that WiFi RTT-based fingerprinting achieved an accuracy of below 1 metre 
under all testing conditions, except for LNR based ones, because LNR is limited to linear 
relationships. RTT trilateration struggled at 2-metre accuracy in our indoor environments. 
The reason fingerprinting was better than trilateration was that the signals were heavily 
attenuated. Such phenomenon had an impact on RTT measures but benefits the 
performance of fingerprinting. Using hybrid RTT-RSS measurements as input features was 
not as helpful as expected. The RMSE results indicated that introducing RSS features to 
RTT data had a minor impact on the accuracy most of the time. Also, applying Standard 
Scaler and Min Max Scaler on WiFi measurements did not improve the preformance. This 
was because raw RTT measurements already contained sufficient information for 
fingerprinting. 
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Table 10: RMSE results of WiFi-based indoor positioning for the office room dataset. The term mm 
and std indicate that the features are pre-processed with Standard Scaler (std) and Min Max Scaler 
(mm), respectively. RTT-based fingerprinting could achieve an accuracy of below 1 metre in LoS 
office scenario. 

 Method RTT+RSS RTT RSS 
KNN 0.394 0.394 0.590 

KNN mm 0.593 0.394 0.629 
KNN std 0.554 0.399 0.591 
K-means 0.406 0.408 0.624 

K-means mm 0.631 0.418 0.663 
K-means std 0.583 0.418 0.628 

LNR 0.860 0.939 0.599 
LNR mm 0.619 0.946 0.606 
LNR std 0.609 0.944 0.599 

RF 0.379 0.372 0.607 
RF mm 0.381 0.372 0.606 
RF std 0.380 0.372 0.605 

GB 0.356 0.376 0.650 
GB mm 0.357 0.376 0.654 
GB std 0.356 0.376 0.653 

Trilateration N/A 1.040 N/A 
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Fig. 15: CDF of WiFi-based indoor positioning for the office room dataset. Note that in (a) and (b), 
the RTT+RSS line overlaps the RTT line. The RTT-based system could achieve an accuracy up to 1 

m, 98% of the time. 

From the CDF plots, we observe that RTT-based system could get an accuracy of below 1 
metre up to 80% of the time in complex building floor environment, and up to 98% in LoS 
office scenario. The hybrid RTT-RSS-based system has similar results to the RTT-based 
one by showing its overlapping CDF curve. On the contrary, the RSS-based system gets an 
accuracy of below 1 m less than 60% of the time in the building floor dataset, and only 
80% in the office room. RSS, due to its less robust nature to the interior changes was giving 
twice the positioning error, compared to RTT. 

Conclusions 
In this paper, we performed comprehensive experiments to analyse the properties of WiFi 
RTT measurement. The experiments were carried out in multiple complex but everyday 
indoor environments.  
We observed that different smartphones have different robustness in RTT and RSS 
measures with respect to AP interference, phone placement, human blockage, heading 
directions and NLoS scenario. Among those, human body blockage, the most common 
issue in real-world indoor positioning, had the worst impact on WiFi signal measures. A 
constant offset was found in RTT measurement, which also varied across smartphones and 
could be unpredictable in NLoS scenario. The building interior had a huge impact on RTT 
measurement, making it less stable than RSS. Furthermore, the offset in smartphone RTT 
measures should be considered carefully before being applied into indoor positioning. 
To evaluate the positioning accuracy of WiFi RTT-based system, we collected two real-
world datasets with manually verified ground truth labels.  We demonstrated that RTT-
based fingerprinting achieved an accuracy of below 0.75 m, which is 98% better than RSS 
fingerprinting and 166% better than RTT trilateration. 
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