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Abstract The SIR (susceptible-infectious-recovered) model is a well known
method for predicting the number of people (or animals) in a population who
become infected by and then recover from a disease. Modifications can include
categories such people who have been exposed to the disease but are not yet
infectious or those who die from the disease. However, the model has nearly
always been applied to the entire population of a country or state but there is
considerable observational evidence that diseases can spread at different rates
in densely populated urban regions and sparsely populated rural areas. This
work presents a new approach that applies a SIR type model to a country or
state that has been divided into a number of geographical regions, and uses
different infection rates in each region which depend on the population density
in that region. Further, the model contains a simple matrix based method for
simulating the movement of people between different regions. The model is
applied to the spread of disease in the United Kingdom and the state of Rio
Grande do Sul in Brazil.

Keywords Epidemic modelling · Space-kinetics SICRD model · Population
density driven infection rate · Population mobility distance law · Geographical
disease spread maps

1 Introduction

The global spread of infections with the recently emerging coronavirus SARS-
CoV-2, henceforth denoted COVID-19, was declared a pandemic by the World
Health Organisation on March 11, 2020. The risk of infection is strongly de-
pendent on individual behaviour and can be reduced by following simple rules
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such as distance keeping recommendations, hygiene with alcohol gel and wear-
ing of a face mask. In addition to the rules there are some factors that play
a further role in the spread of the infection such as the regional population
density distribution and circumstances such as living conditions. Contact with
other individuals, both in the private sphere with family members and friends,
and in the professional environment can lead to an increased risk of transmis-
sion of the infection both in- and outdoors, even over a distance larger than
1 m. Depending on the country, national and/or regional political decisions
for limiting the spread of COVID-19 were based on risk assessments obtained
by considering the number of and trends in reported cases and in accordance
with the appropriate national Infection Protection Acts. A further source of
information for decision making came from monitoring the proportions of the
populations with mild, severe and fatal outcome after becoming infected with
the disease and evaluating long-term consequences of the pandemic.

Statistics and findings from model calculations provided some information
relevant for the spread of the disease, such as the incubation time being be-
tween 0−14 days and that the transmission time was found to be in an interval
between 5 − 7 days. However, a method for determining what are the condi-
tions for a mild or severe outcome of the infection has remained elusive [11,
16]. One of the criteria for measuring the spread of the disease established
in the literature is the number of people infected by a previously infected
person, known as the base reproduction number R. This estimates how fast
the disease spreads and whether political decisions and measures are sufficient
to limit its growth of the disease [6,8,10,12,14,18,20,21,23,25,28–32,34]. For
R > 1 the situation turns supercritical and the total number of infected indi-
viduals rises exponentially and without control. In order to be able to predict
the time evolution of the pandemic we can make use of mathematical models
that were developed for other epidemics, and the following describes some of
the more common models. The SI model considers the spread of a contagion
without recovery, the SIS model takes into account the spread of an infectious
disease without a build-up of immunity, the SIR model considers the spread of
the infectious disease together with immunity response and the SEIR model
simulates the spread of the contagious disease an immunity response and an
initial period where infected people are not immediately infectious. It is note-
worthy that most models are simply based on the number of individual who
are infected, are immune or have died without considering further details such
as differences in transmission probabilities within the regions due to differ-
ent population densities in different regions, or the movement of individuals
between regions.

The model presented in this paper addresses these issues by developing a
mathematical model of how a disease spreads through a population which is
distributed over multiple geographical regions and with a different population
density in each region. There is evidence in the literature that the population
density influences how quickly a disease can spread through a population.
Alirol et al [1] discuss how urbanisation affects the spread of an infectious
disease as the global population becomes more concentrated in large cities.
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Neiderud [24] discussed the challenges presented by the more rapid spread of
infectious diseases as the global population becomes more urbanised and are
further discussed by Reyes et al [27]. These, and more recent studies, indicate
that any model of an infectious disease through a population must take the
differences in population density between urban and rural regions into account.

Mathematical models for simulating the spread of a disease through a pop-

ulation in a single geographical region have been developed since the early 20th

century [17]. Most of these have been based on the SIR (susceptible-infectious-
recovered) models which utilise a system of differential equations to describe
the number of individuals in each SIR category. Variations of the SIR model
can simulate phenomena such as deaths from the disease, or the number of
people who are exposed to the disease but not yet infectious (see [4,2,5,9,13,
36] for example). A summary of the SIR model and its variations is given in
Hethcote [15].

Models of the spread of a disease through a country or state divided into
a number of different regions have been developed in recent years. Mao and
Bian [22] present a statistical model of the spread of the influenza virus through
an urban environment which accounted for the way in which individuals move
through the urban area considered. Rakowski [26] presents an individual based
statistical model of the spread of influenza in Poland. Lau et al [19] present a
spacial-temporal model for simulating the spread of the Ebola virus in West
Africa, and critically compare their model to an SEIR (susceptible-exposed-
infectious-recovered) model. However, none of these models are based on an
SIR differential equation model of the spread of a disease.

Yin et al [35] present a SIR model which includes the movement of people
between a number of cities and which includes the spread of disease from
one city to another. However, this paper only considers movement of people
between different cities which have high population densities but does not
include the surrounding rural areas which have low population densities, and
there is observational evidence that a disease will spread faster in dense urban
population when compared to the spread though a sparse rural population.
A stochastic SIRS (susceptible-infectious-recovered-susceptible) model which
includes the mobility of the population has been developed by Wanduku [33].

This paper presents a mathematical model for simulating the spread of a
disease through a country or state that is divided into a number of geographical
regions. We derive a system of differential equations that can be solved for the
number of people in each category in each region where the infection rate is
inversely proportional to the area of each region. This means a region with a
small area will have a larger infection rate than one with a large area, but if
both regions initially have approximately the same number of susceptible and
infectious people then the disease will spread quicker in the smaller region due
to its larger population density. The model will also simulate the movement
of people between the different regions by including a matrix term in the
differential equations which will account for the proportion of the population
in one region which move to each of the other regions. This matrix can be set
up such that the total population of each region remains the same, and that
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the proportion of people who move to an adjacent region is much greater than
the proportion who move to a region which is further away.

2 Mathematical Modelling

2.1 Population Kinetics Model

Consider a single region when an individual within the population can be
classified as susceptible (never had the disease), infected with the disease,
recovered from the disease (and who is assumed to be immune) or having died
from the disease. Let S, I, R, and D to denote the total number individuals
in the population who are susceptible, infected, recovered or who have died
respectively, then [15]

dS

dt
= −λSI

dI

dt
= λSI − µIRI − µIDI

dR

dt
= µIRI

dD

dt
= µIDI

(1)

where λ is the infection rate, µIR is the rate at which infectious people recover
and µID is the rate at which infectious people die. We note that the sum of
the right-hand sides of the differential equations in (1) is zero, indicating that
there will be no change in the size of the population.

However, this model is not applicable to diseases where people may be
infected with the disease but have no symptoms and so are unaware that they
are infected. Here, we will refer to these people as carriers. Hence, the spread of
a disease may be more rapid and widespread in a population than is indicated
by the number of infected people. This can be incorporated into the basic
SIRD model with the inclusion of an additional class, C, of carriers who are
either infected with the disease but do not have any symptoms or who have
very mild symptoms and so do not get tested for the disease. It is important to
note and emphasize here that both infected individuals and carriers can infect
other people as both are infected with the disease and the only difference is
that carriers are unaware that they are infected. Including the carrier category
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leads to the modified system of differential equations

dS

dt
= −λS(I + C)

dI

dt
= λβS(I + C)− µIRI − µIDI

dC

dt
= λ(1− β)S(I + C)− µCRC − µCDC

dR

dt
= µIRI + µCRC

dD

dt
= µIDI + µCDC

(2)

where µCR is the rate at which the carriers recover from the disease and cease
to be infectious, µCD is the death rate for carriers and β is the proportion
of the population who become infected with the disease, have symptoms and
are diagnosed as having the disease. It follows 1 − β is the proportion of the
population who become infected with the disease but who are not diagnosed as
having the disease, either because they do not have symptoms, they have mild
symptoms and mistake the disease under consideration for another disease, or
they simply refuse to get a diagnosis.

Systems of differential equations, such as (1) and (2) can be applied to
model the evolution of a disease through an entire population. However, these
models do not make distinction between rural and urban areas which can have
widely differing population densities and which may in turn affect how quickly
the disease is transmitted. A disease which is spread by person-to-person con-
tact will spread much more quickly in an urban area as each individual in an
urban area will come into close contact with many more other people than
someone who is living in a sparsely populated rural area (see [1,27,24] for
example). In order to consider this aspect we propose a new model which
describes the spread of a disease through different geographical regions of a
country. An example which shows the importance of considering population
density rather than just the population is given in Section 3 which discusses
the numerical results.

2.2 Regional Kinetics Model

A large population may be divided into a number of smaller populations ac-
cording to the geographical region in which the people live. In this case it is
likely that the rates at which people recover or die from a disease is the same
in every region but the infection rate λ may be different in each region and
may depend on quantities such as population density.

The model will also need to include the effect of people moving between
the different regions. Here we will assume that the movement of the people
does not produce any change in the population of any one region. That is, the
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number of people who leave region A will be the same as the number of people
who enter region A.

Assume that the country or state under consideration is divided into N
geographical regions, where it is also assumed that if the country is divided
into small enough regions any inhomogeneities in the population distribution
within each region can be neglected. Let Si, Ii, Ci, Ri and Di denote the
number of people who are susceptible, infected, carriers, recovered or who
have died in the ith region respectively; and let S, I, C, R and D denote the
vectors which list the values of the corresponding category in each region. For
simplicity of notation, introduce the vector valued function F defined by

Fi = Si(Ii + Ci) .

The differential equations (2) for a single region can be extended to the multi-
region case and can be expressed as

dS

dt
= −λF + TS

dI

dt
= λβF− µIRI− µIDI + T I

dC

dt
= λ(1− β)F− µCRC− µCDC + TC

dR

dt
= µIRI + µCRC + TR

dD

dt
= µIDI + µCDC

(3)

where T is a matrix which models how the population moves between the dif-
ferent regions. Note that since the people who have died cannot move between
regions there is no transport term in the last equation.

In the model presented here the matrix T is constructed so that the total
population of living people in each region remains the same, and the total
number of people in each category is not changed by the transport terms.
Let M be a symmetric matrix with zeros on the diagonal and where the off
diagonal element Mij gives the proportion of people who move from region i
to region j. In the work presented here

Mij = αmax

(
1− dij

dmax
, 0

)
i 6= j (4)

where dij is the geographical distance between regions i and j; dmax is the
maximum distance that people move from their original location and α is a
scaling parameter. However, there are some exceptions to this as there can be
large numbers of people moving between cities which are a long way apart.
In such cases we can simulate the greater movement of people by setting the
distance between the appropriate regions to be smaller than the geographical
distance. The converse is also true. There can be parts of a country where
fewer people move between the different regions. For example, there may be
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islands which are not served by a ferry every day and which have no airport or
landing strip. In these cases we can reduce the simulated movement of people
by setting the distance between the appropriate regions to be bigger than
the geographical distance. We note that generally only moderate values of α
should be used in (4). In most countries and states only a small proportion
of the population of a region moves into an adjoining region and even fewer
move to regions that are further away.

Let P be the diagonal matrix

Pii =
Si + Ii + Ci +Ri∑N

i=1 (Si + Ii + Ci +Ri)
.

Then the matrix T appearing in the differential equations (3) is defined as

Tij =


(PM)ij i 6= j

−
N∑

k=1,k 6=i

(PM)ki i = j

where the notation (PM)ij denotes the (i, j) element of the matrix product
PM and the normalisation is the sum over the N regions. It is important to
note at this point that the matrix T is not constant in time since it is formed
from the matrix P which will change as the number of people in each category
change.

However, a problem with the system of differential equations (3) is when
two regions have similar populations but significantly different areas. For ex-
ample, if a state has two regions with the same population where one region
is twice the area of the other we would expect the disease to spread more
rapidly in the region with the smaller area as the population density is bigger.
A better approach to modelling the spread of a disease in a multi-region state
is to consider the population densities rather than the populations.

Let Ai be the area of the ith region and let

S̃i =
Si

Ai
Ĩi =

Ii
Ai

C̃i =
Ci

Ai
R̃i =

Ri

Ai
D̃i =

Di

Ai

be the densities of the people who are susceptible, infected, carriers, recovered
and who have died in each of the N regions. Assume that the population
densities rather than the actual populations will satisfy a system of differential
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equations similar to (3). That is

dS̃

dt
= −λF̃ + A−1TAS̃

dĨ

dt
= λβF̃− µIRĨ− µID Ĩ + A−1TAĨ

dC̃

dt
= λ(1− β)F̃− µCRC̃− µCDC̃ + A−1TAC̃

dR̃

dt
= µIRĨ + µCRC̃ + A−1TAR̃

dD̃

dt
= µID Ĩ + µCDC̃

(5)

where A is the N×N diagonal matrix with areas of the regions on the diagonal
and F̃i = Ũi(Ĩi + C̃i). Replacing S̃ by A−1S, Ĩ by A−1I and so on in (5) gives

A−1
dS

dt
= −λ(A−1)2F + A−1TAA−1S

A−1
dI

dt
= λβ(A−1)2F− µIRA

−1I− µIDA
−1I + A−1TAA−1I

A−1
dC

dt
= λ(1− β)(A−1)2F− µCRA

−1C− µCDA
−1C + A−1TAA−1C

A−1
dR

dt
= µIRA

−1I + µCRA
−1C + A−1TAA−1R

A−1
dD

dt
= µIDA

−1I + µCDA
−1C.

(6)

Multiplying both sides of the equations in (6) by A gives

dS

dt
= −λA−1F + TS

dI

dt
= λβA−1F− µIRI− µIDI + T I

dC

dt
= λ(1− β)A−1F− µCRC− µCDC + TC

dR

dt
= µIRI + µCRC + TR

dD

dt
= µIDI + µCDC

(7)

It is worth noting that the system of equations (7) is the same as the system
(3) except that the infection rate in each region is now inversely proportional
to the area of the region. Hence the spread of the infection will be slower in a
region with a smaller population density.
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2.3 Time Integration

The system of ordinary differential equations (7) have to be integrated through
time using a numerical method. Let Sn, In, Cn, Fn, Rn and Dn denote the
quantities at the nth time-step. We will assume that the initial values of the
quantities (denoted by subscript 0) are known, although the exact values will
depend on the country under consideration and the scenario for how the spread
of the disease starts.

Here we apply the Crank-Nicholson method [7] to solve the system of dif-
ferential equations (7) which uses the known quantities at the current time
step (which have subscript n) to calculate the unknown quantities at the new
time-step (which have subscript n+ 1). However, this leads to an implicit set
of equations and so we adopt the iterative predictor-corrector scheme

S
[0]
n+1 = Sn I

[0]
n+1 = In C

[0]
n+1 = Cn R

[0]
n+1 = Rn D

[0]
n+1 = Dn

S
[i+1]
n+1 = Sn +

h

2

[
−λA−1Fn − λA−1F[i]

n+1 + TnSn + T
[i]
n+1S

[i]
n+1

]
I
[i+1]
n+1 = In +

h

2

[
λβA−1Fn − µIRIn − µIDIn

+λβA−1F
[i]
n+1 − µIRI

[i]
n+1 − µIDI

[i]
n+1

+
(
TnIn + T

[i]
n+1I

[i]
n+1

)]
C

[i+1]
n+1 = Cn +

h

2

[
λ(1− β)A−1Fn − µCRCn − µCDCn

+λ(1− β)A−1F
[i]
n+1 − µCRC

[i]
n+1 − µCDC

[i]
n+1

+TnCn + T
[i]
n+1C

[i]
n+1

]
R

[i+1]
n+1 = Rn +

h

2

[
µIRIn + µCRCn + µIRI

[i]
n+1 + µCRC

[i]
n+1

+TnRn + T
[i]
n+1R

[i]
n+1

]
D

[i+1]
n+1 = Dn +

h

2

[
µIDIn + µCDCn + µIDI

[i]
n+1 + µCDC

[i]
n+1

]
where h is the time-step and the superscript [i] on the unknown quantities
denotes the corrector iteration.

The iterative process is stopped when

max(‖∆Sn+1‖, ‖∆In+1‖, ‖∆Cn+1‖, ‖∆Rn+1‖, ‖∆Dn+1‖)
max(‖S[i+1]

n+1 ‖, ‖I
[i+1]
n+1 ‖, ‖C

[i+1]
n+1 ‖, ‖R

[i+1]
n+1 ‖, ‖D

[i+1]
n+1 ‖)

≤ τc (8)

where
∆Sn+1 = S

[i+1]
n+1 − S

[i]
n+1
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(and the other terms on the numerator of (8) are similarly defined) and τc
is some predetermined accuracy level. Additionally, the iterations will also be
stopped when the maximum number of iterations is reached. The choice of
norm to use in (8) is not significant and in the the results presented here
we have used the uniform or ∞-norm with τc = 10−10. For further details
of predictor-corrector schemes see any text on numerical methods, such as
Atkinson [3].

The accuracy of the calculated solution is further controlled by using an
error checking time-stepping algorithm. The solution at each new time-step is
calculated using a sequence of time-steps h0 > h1 > h2 > · · · until the solutions
calculated using two consecutive values of h agree to a predetermined accuracy.
In the examples presented in this work we use h0 = 1/24 (giving an initial
time-step that is equivalent to one hour) and hi+1 = hi/2. The difference in
the solution using two different time-steps is measured using (8) where the
index i in (8) is now the same index as the one used to denote the different
values of h and when considering the differences in the solution for different
values of h we used τ = 10−8 as the stopping criteria.

The initial conditions used here are that on day 0 the total population and
the number of infected people in each region are known, and that initially no
one has recovered or died from the disease. The initial number of carriers is
computed from the initial number of infected people using

C0 = nint

(
1− β
β

I0

)
(9)

where nint denotes the nearest integer. The initial number of susceptible can
then be calculation in each region using

S0 = P−C0 − I0

where P is the vector of the total population in each region.

3 Numerical results

In this section we present the results of using our model to simulate the spread
of a disease through country or region. Most of the results are for the United
Kingdom and the state of Rio Grande do Sul in Brazil, although the first
example is an artificial case which illustrates the importance of using the
population density in the equations rather than just the population. In all of
the numerical results presented here we have assumed that µIR = µCR and
that µCD = 0.

3.1 Initial Example

This first example considered here illustrates the importance of using the pop-
ulation density in the modelling process. Consider the spread of a disease
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through the four unconnected regions detailed in Table 1. As the regions are
unconnected the matrix T in (7) is the zero matrix meaning that there is no
movement of people between the regions. If we only consider the size of the
population in the model then results for Regions A and D (and Regions B and
C) would be identical as they have the same population. Figure 1 shows that
the percentage of people infected with the disease over time in each region if
the population density is considered instead of the population. In this case, the
results for Regions A and C are the same as these have the same population
densities. Region B has an earlier and higher peak number of infections as the
population density of this region is higher although the population is the same
as for Region C. The peak number of infections for Region D is smaller and
the peak occurs later as this region has a smaller population density.

Initial Population
Region Population Infected Area (km2) Density (km−2)

A 1,000,000 10 1,000 1,000
B 2,000,000 20 1,000 2,000
C 2,000,000 20 2,000 1,000
D 1,000,000 10 2,000 500

Table 1 Example regions for illustrating the importance of considering population density.

Fig. 1 The percentage of the population infected with a disease in each of the regions. Note
that the results for Regions A and C are superimposed.
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3.2 United Kingdom

The first location considered in this work is the United Kingdom (UK) ex-
cluding Northern Ireland. The UK is divided into 143 regions which represent
the local government authorities except in the large cites (such as London,
Manchester and the West Midlands for example) where the small local au-
thorities have been merged to form single metropolitan areas. For the UK we
assumed that the initial conditions are that there are two people infected with
the disease and they are located in London.

The first set of results explore how varying the parameters α, β and λ affects
the number of infections and number of deaths and the results are summarised
in Table 2. When considering the UK we used µIR = µCR = 0.0714, which
corresponds to it taking 14 days for an individual to recover from the disease,
and µID = 0.01 corresponding to a death rate of 1% of those who are infected.
Finally, for the UK we used dmax = 500 in equation (4) for determining the
proportion of people moving between the different regions.

The results in Table 2 shows that as λ increases the peak in the number of
people infected and the number of people who have died from the disease after
400 days also increases. This is as expected as λ is the infection rate and so
increasing λ should produce an increase in the number of infections. We can
also see that increasing λ without changing any of the the other parameters
causes the day on which the peak in the number of people who are infected to
become earlier in the epidemic.

The results in Table 2 also show that as β increase so does the peak in
the number of infected people and the long-term number of deaths. This is to
be expected as increasing β means that a larger proportion of the population
is being diagnosed as being infected with the disease rather than being just
an undiagnosed carrier. Increasing β delays the day on which the number of
people who are infected reaches its peak.

These results show that when α, which controls the proportion of the pop-
ulation of one region which moves to another region, is zero then the number
of deaths after 400 days from the disease is greatly reduced although the re-
duction in the maximum number of infected people is not so large. However,
the results also show that the biggest change in the number of deaths is when
α is increased from 0 to 0.05 and that further increases in α does not produce
such large changes in the number of deaths, and in some cases the number of
deaths after 400 days decreases as α increases.

The percentage of the population in each region who are infected or who
are carriers on the day on which the number of people who are infected or are
carriers reaches its peak is shown in Figure 2 for different values of α when
λ = 6 × 10−5 and β = 0.1. The day refers to the day on which the number
of people who are infected or who are carriers reaches its maximum value. As
expected, when α = 0 (Figure 2(a)) London is the only region with infected
people (or carriers) since in this case none of the population moves between
the different regions. When α = 0.05 (Figure 2(b)) the infection spreads to
the other metropolitan area since these have good transport links with each
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other and it was assumed that a proportionally large number of people travel
between these regions compared to the more rural areas. As we further increase
α (Figures 2(c) and 2(d)) the infection spreads more into the rural areas. It
is worth noting that in these cases the proportion of the population who are
infected or who are carriers in the urban areas decreases as α increases.

Peak Day Of Peak Died
β α λ Infected Infected Day 400

0.05

0.00
4 × 10−5 132,676 84 52,352
6 × 10−5 194,554 51 54,556
8 × 10−5 234,478 37 54,951

0.05
4 × 10−5 190,778 112 213,851
6 × 10−5 294,870 69 271,762
8 × 10−5 375,682 53 301,174

0.10
4 × 10−5 218,424 136 221,022
6 × 10−5 367,931 76 280,718
8 × 10−5 470,074 55 309,754

0.25
4 × 10−5 174,314 235 197,634
6 × 10−5 435,442 99 288,841
8 × 10−5 602,362 65 324,306

0.10

0.00
4 × 10−5 264,309 89 104,583
6 × 10−5 388,158 53 109,081
8 × 10−5 467,941 39 109,894

0.05
4 × 10−5 379,269 117 422,326
6 × 10−5 587,626 72 539,801
8 × 10−5 749,180 55 599,518

0.10
4 × 10−5 433,199 143 437,479
6 × 10−5 732,748 79 558,295
8 × 10−5 937,288 58 617,102

0.25
4 × 10−5 343,042 249 388,073
6 × 10−5 865,607 103 574,721
8 × 10−5 1,200,474 67 646,436

0.25

0.00
4 × 10−5 653,825 95 260,510
6 × 10−5 966,603 57 272,458
8 × 10−5 1,169,077 41 274,672

0.05
4 × 10−5 930,723 125 1,020,882
6 × 10−5 1,453,214 75 1,323,300
8 × 10−5 1,856,550 58 1,478,300

0.10
4 × 10−5 1,055,557 154 1,061,052
6 × 10−5 1,807,695 83 1,371,879
8 × 10−5 2,321,189 60 1,524,244

0.25
4 × 10−5 815,705 271 919,957
6 × 10−5 2,125,866 110 1,414,053
8 × 10−5 2,968,683 71 1,599,267

Table 2 The simulated maximum number of infected people and total deaths for the United
Kingdom using different values of the parameters.
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3.3 Rio Grande do Sul, Brazil

The other geographical location considered in this paper is the State of Rio
Grande do Sul in Brazil. For the simulations the state is divided into its 35 mi-
croregions. The initial conditions were that there were 3 cases in Porto Alegre,
and depending on the value of β the corresponding number of carriers in Porto
Alegre has been calculated using (9). It is assumed that both the number of
cases and the number of carriers are zero for all the other microregions in Rio
Grande do Sul. When considering Rio Grande do Sul we used dmax = 1000
in equation (4) for determining the proportion of people moving between the
different regions.

The first set of results that we present investigates how the parameter β,
which gives the proportion of infected people who have been diagnosed as hav-
ing Covid-19, affects the values of the other parameters when approximately
fitting the model to the observed data. Table 3 gives the values of the pa-
rameters in the different cases considered where we used α = 0.5 in (4) to
simulate a large proportion of the population moving between the different
microregions. Figure 3 compares the predicted number of cases for each value
of β with the observed number of cases in Rio Grande do Sul, and Figure 4
gives the corresponding comparison for the number of deaths. These figures
show that the results of the simulation are broadly the same as the observed
data.

It can be seen that as the parameter β increases, both the infection rate
given by λ and the recovery rate given by µIR and µCR also increase. There is
observational evidence that says that the recovery time for Covid-19 is around
14 days, which would give a recovery rate of 0.0714. Clearly the values of β
which do this are between 0.01 and 0.001. This is implying that less than one
percent of people who have Covid-19 are actually being diagnosed with the
disease.

The second set of results investigates how the spread of the disease is
affected by the mobility of people between the different microregions. The
proportion of people who move between different microregions is proportional
to the parameter α in (4). Here β = 0.001 has been used since the results
discussed above demonstrate that the simulated numbers of infections and
deaths are closest to the observed values for this β. The other parameters that
were use are λ = 3.5× 10−4, µIR = µCR = 0.02, µID = 0.0017 and µCD = 0.

Figure 5 shows the percentage of the population in each microregion that
are infected on days 45, 90, 135 and 180 for different values of α. These results
clearly show that as the proportion of people who move between microregions
increases then the disease is spread over a larger geographical area, as expected.
The results also show that increasing the mobility of the people can delay
when the maximum occurs. The first column of maps in Figure 5 show how the
geographical spread of the disease is slower when the population moves around
less. The results in the first column of Figure 5 show that the microregion
Campanha Ocidental (the most westerly microregion), which is a rural region

with the 6th lowest population density in Rio Grande du Sol, has only a small
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percentage of infections and carriers showing that the disease is slow to spread
in regions with a low population density, as expected.

Parameter β = 0.001 β = 0.01 β = 0.1
λ 3.50 × 10−4 6.30 × 10−4 1.52 × 10−3

µIR = µCR 0.020 0.190 0.742
µID 0.0017 0.0020 0.0020

Table 3 Values of the fitted parameters for different values of β.

4 Conclusions

Motivated by the actual pandemic, in the present work we have developed
a new mathematical model to simulate the spread of a disease taking into
account realistic geographical domains with subdomains and their associated
population densities. The work presented here is different from most existing
models which describe members of a population as being divided into four
groups (susceptible, infected, recovered or dead) and which cover the whole
country or state. The present approach is based on the population being di-
vided into local regional populations, and each of these are further divided into
five local groups, namely the numbers of susceptible, infected, recovered, carri-
ers and dead in each local region. Further, unlike previous models which have
used a single infection rate for the whole country or state, this present model
uses a different infection rate in each local region that depends on the geo-
graphical area of that local region. In each local region the infection statistics
are computed using kinetics, whereas the spread of the disease between regions
was implemented by a detailed balance diffusive transport matrix, with a mo-
bility parameter which controls the number of individuals traveling between
regions and a distance rule defining the probability of an individual traveling
between two regions. One academic example was analysed in order to justify
our reasoning with respect to the model structure, two realistic scenarios were
simulated, the first one for the UK and the second one for the southernmost
Brazilian state Rio Grande do Sul.

The results for the small example with four isolated regions show that it
is important to use the population densities in the calculations rather than
just the populations. If there are two regions with the same size of population
then the disease will spread more slowly through the region with the larger
area, whereas using a model based purely on population size would predict
that the same rate would happen in both regions. Further, if one of the re-
gions becomes big enough then the disease will simply decline in that region
since the interactions between the susceptible and infected populations be-
comes small. Further, the results for both the UK and Rio Grande du Sol
show that the population density does play a significant role in how rapidly a
disease spreads through a population. The results for the UK shown in Figure
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2 show that on the day when the number of people who are infected or carriers
peaks the largest percentages of infected people and carriers are in the large
cities, such as London, Birmingham and Manchester, whilst the percentages
are much lower in the more sparsely populated rural areas. The results for Rio
Grand du Sol given in Figure 5 show that the disease spreads quickly though
the densely populated region around Porto Alegre with a large percentage of
the population becoming infected or carriers whilst the percentage of infected
people is much lower in the more rural areas.

The results for both the UK and Rio-Grande do Sul show that the key
parameter that affects the magnitude of both the number of people who are
infected and the number of deaths is the proportion of infected people that
are diagnosed with the disease, although we have made the assumption that
no carriers die and that they all recover. Increasing the infection rate λ causes
the maximum number of people who are infected to increase and also the
number of long term deaths to increase. Also, as the infection rate increases
the day on which the number infected people reaches its peak becomes earlier.
As the parameter α (which determines the proportion of the population in
each region who travel to another region) increases then generally the peak
in the number of people who are infected increases and the day on which the
maximum number of infected people occurs is later.
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(a) α = 0.00, day 55 (b) α = 0.05, day 74

(c) α = 0.10, day 81 (d) α = 0.25, day 106

Fig. 2 The percentage of people in each region who are infected or who are carriers on the
day when the number of people who are infected or who are carriers reaches its maximum
for each value of α. Here β = 0.1 and λ = 6 × 10−5.
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Fig. 3 The observed and simulated number of cases for Rio Grande do Sul using different
values of the parameter β.
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Fig. 4 The observed and simulated number of deaths for Rio Grande do Sul using different
values of the parameter β.
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(a) Day 45, α = 0.1 (b) Day 45, α = 0.5 (c) Day 45, α = 0.9

(d) Day 90, α = 0.1 (e) Day 90, α = 0.5 (f) Day 90, α = 0.9

(g) Day 135, α = 0.1 (h) Day 135, α = 0.5 (i) Day 135, α = 0.9

(j) Day 180, α = 0.1 (k) Day 180, α = 0.5 (l) Day 180, α = 0.9

Fig. 5 The simulated percentage of people who are infected or who are carriers in each
microregion on days 45, 90, 135 and 180.




