
TrojanDroid: Android malware detection for Trojan
discovery using convolutional neural networks

Saeed Seraj, Michalis Pavlidis, and Nikolaos Polatidis

School of Architecture, Technology, and Engineering, University of Brighton, BN2 4GJ,
Brighton, U.K

{S.Seraj@Brighton.ac.uk, M.Pavlidis@Brighton.ac.uk N.Polatidis@Brighton.ac.uk}

Abstract. Android platforms are widely used nowadays in different forms such
as mobile phones and tablets, and this has made the Android platform an attrac-
tive target for hackers. While there are many solutions available for detecting
malware on Android devices there aren’t that many that are concentrated on spe-
cific malware types. To this extent, this paper delivers a new dataset for Trojan
detection for Android apps based on the permissions of the apps, while the second
contribution is a neural network architecture that can classify with very high ac-
curacy if an Android app is a genuine app or a Trojan pretending to be a normal
app. We have run extensive evaluation tests to validate the performance of the
proposed method and we have compared it to other well-known classifiers using
well-known evaluation metrics to show its effectiveness.

Keywords: Android, Malware detection, Trojan, Convolutional Neural Net-
works.

1 Introduction

Nowadays, in the world people can get all types of Android devices such as mobile
phones and tablets and numerous applications (apps) can be easily downloaded from
available websites in cyberspace. However, many apps are being produced daily, with
some of which being infected and being malware instead of a genuine app. Many ex-
ploiters infect applications using malicious approaches for their profit to steal infor-
mation from mobile devices. Malware can come in various forms, such as viruses, tro-
jans, worms, botnets, and many others and among that malware, trojans are a type of
malware that is often disguised as legitimate software; however, they will perform ma-
licious activities on the operating system that most of the users will not even notice or
understand [1, 6, 18].
 Therefore, in this article, we study how to detect Android Trojans using the
permissions of the applications. To do this we have collected and processed data and
created a new dataset that is described in detail in section 3. The Trojan dataset is a
classification dataset that contains only Trojan and genuine Android applications and
to this extent, we have developed a Convolutional Neural Network (CNN) architecture
that detects Trojans with very high accuracy. To achieve this, we first had a theory that
a Trojan can be identified based on the requested permissions during app installations.

2

The contributions of the paper are as follows:

• We introduce a novel dataset for Android Trojan detection based on the per-
missions of the applications.

• We deliver a CNN neural network architecture for Trojan detection.

The rest of the paper is organized as follows: Section 2 is the related work, section 3
describes the dataset, section 4 explains the proposed method, section 5 delivers the
experimental evaluation and section 6 contains the conclusions.

2 Related work

In the Android platform, there are several works available in the literature due to its
popularity and numerous malware, that exist. We have identified recent relevant works
and discussed them here but the related works that are about Trojan detection are non-
existent in the literature. To the best of our knowledge, there is only one related work
about Trojan detection that is based on dynamic analysis and not on permissions which
are discussed later in [2].
 We start with MCDM which is ‘a multi-criteria decision-making based’ mo-
bile malware detection system that uses a risk-based fuzzy analytical hierarchy process
(AHP) approach to evaluate the Android mobile applications. This research concen-
trated on static analysis by using permission-based features to assess the Android mo-
bile malware detection system approach [1]. In another research dynamic analysis was
used to detect their features. Therefore, a parameter such as a system call was investi-
gated in this study. The purpose of this research is to detect android Trojan based on
dynamic analysis [2]. Another research paper proposes a novel detection technique
called PermPair that builds and compares the graphs for malware and normal samples
by extracting the permission pairs from the manifest file inside the application [3]. Yet
another research presents a platform named DroidCat which is a novel dynamic appli-
cation classification model to complement those methods that are existing. DroidCat
uses various sets of dynamic features based on method calls and inter-component com-
munication (ICC) Intents without involving any permission, application resources, or
system calls [4]. One other study proposes an innovative Android malware detection
framework based on feature weighting with the joint optimization of weight-mapping
and the parameters of the classifier named JOWMDroid [5].
 In [6] the study introduces a new scheme for Android malware detection and
familial classification based on the Graph Convolutional Network (GCN). The general
idea is to map Android applications and APIs into a large heterogeneous graph and
convert the original problems into a node classification task. The study in [7] was a
novel hybrid-featured Android dataset that provides timestamps for each data sample
which covers all years of Android history from the years 2008 to 2020 and considers
the distinct dynamic data sources. Researchers presented a new malware detection
framework for Android applications that are evolutionary ’HAWK’. Their model can
pinpoint rapidly the proximity between a new application and existing applications and

3

assemble their numerical embeddings under different semantics as described in [8].
MAPAS is a malware detection platform that achieved high accuracy and adaptable
usage of computing resources. Moreover, MAPAS analyzed malicious apps behaviors
based on API call graphs of them by using convolution neural networks (CNN) [9].
NSDroid is ‘a time-efficient malware multi-classification approach based on neighbor-
hood signatures in local function call graphs (FCGs). This method uses a scheme based
on neighborhood signature to calculate the similarity of the different applications which
is significantly faster than traditional approaches according to subgraph isomorphism
[10]. A work that presents a web-based framework that helped to detect malware from
Android devices is named ‘MLDroid’. The proposed framework detects Android mal-
ware applications by performing its dynamic analysis measures can be found in [11].
 In their work ‘NATICUSdroid’ a new Android malware detection system that
investigates and classifies benign and malware using statistically selected native and
custom Android application permissions as features for various machine learning clas-
sifiers [12]. One more work is an innovative android malware detection framework
that uses a deep CNN neural network. In this system, Malware classification is per-
formed based on static analysis of the raw opcode sequence from a disassembled pro-
gram [13]. A machine learning-based malware detection platform is proposed to distin-
guish Android malware from benign applications. It is aimed to remove unnecessary
features by using a linear regression-based feature selection approach at the feature se-
lection stage of the proposed malware detection framework. [14]. Another research pro-
poses a novel approach based on behavior for Android malware classification. In the
proposed method, the Android malware dataset is decompiled to identify the suspicious
API classes and generate an encoded list. In addition, this framework classifies un-
known applications as benign or malicious applications based on the log-likelihood
score generated [15]. In their paper researchers have delivered a completely novel and
innovative dataset of malicious or benign Android anti-malware detection, including,
and a customized multilayer perceptron neural network (MLP) that is being used to
detect fake anti-malware that pretend to be genuine ones based on the permissions of
the applications [16].
 In their article researchers introduced a novel TAN (Tree Augmented naive
Bayes)-based—a hybrid Android malware detection mechanism that involves the con-
ditional dependencies which are required for the functionality of an application among
relevant static and dynamic features [17]. The next work is a survey aimed to provide
an overview of the way machine learning (ML) has been employed in the context of
malware analyses. They also conducted survey papers based on their objectives, what
kind of information about malware they used specifically, and what type of machine
learning techniques they employed [18]. DAE is a hybrid model based on a deep auto-
encoder and a CNN. This mechanism is proposed to improve the Android malware
detection accuracy. To achieve this, they reconstructed the high-dimensional features
of Android applications and employed multiple CNN to detect Android malware [19].
In the next research article, a new detection approach is introduced based on deep learn-
ing techniques to detect Android malware from trusted applications. To achieve that,
they treat one system call sequence as a sentence in the language and build a classifier
according to the Long Short-Term Memory (LSTM) language model [20].

4

 An EfficientNet-B4 CNN-based model is presented for Android malware de-
tection by employing image-based malware representations of the Android DEX file.
This model extracts relevant features from the Android malware images [21]. In the
following paper, a new classifier fusion scheme based on a multilevel architecture is
introduced that enables an effective combination of machine learning algorithms for
improved accuracy which is called DroidFusion. The induced multilevel model can be
utilized as an improved accuracy predictor for Android malware detection [22]. A Ma-
chine Learning-based method that utilizes more than 200 features extracted from both
static analysis and dynamic analysis of Android applications for malware detection was
proposed in [23]. A platform that is capable to detect android malware applications is
introduced to support the organized Android Market. The proposed framework in-
tended to develop a machine learning-based malware detection framework on Android
to detect malware applications and to increase the security and privacy of smartphone
users [24]. CoDroid is a hybrid Android malware detection approach based on the
sequence which utilizes the sequences of static opcode and dynamic system call [25].
Finally, researchers have combined the high accuracy of the traditional graph-based
method with the high scalability of the social network analysis-based approach for An-
droid malware detection [26].
 Although all these works are interesting there is only one work that is about
Trojan detection that is based on dynamic analysis. Therefore, in this work, we devel-
oped a new dataset about Trojan detection using permissions to fill this gap and we
have developed a CNN architecture to detect trojans with high accuracy.

3 Dataset

With regards to trojan detection in Android platforms, we introduce a new dataset based
on Android app permissions. To this extent, we developed an Android Trojan dataset
that contains 2593 entries. To do this we downloaded 1058 Android Trojan malware
and 1535 general benign apps from various categories from Google Play. We analyzed
all apk files using VirusTotal.com to extract all their features including internet access
and other required app permissions. Moreover, we have used over 70 reputed anti-mal-
ware detection engines to classify the apk files. The android Trojan dataset consists of
the following families: BankBot, Binv, Citmo, FakeBank, LegitimateBankApps, San-
droid, SmsSpy, Spitmo, Wroba, ZertSecurity and Zitmo. For the dataset to be in a usa-
ble form, we added all the information in a file.csv file format which can be easily
opened and processed. There is a total number of 450 columns in the dataset that in-
cludes 449 specific permissions plus the label which is the last column. The first row
in the dataset describes column titles, and the rest are features from 2593 android Tro-
jans and benign applications apk files. All values are in binary format i.e., 0 or 1. When
an app requires permission, then the value in the respective entry of the dataset is 1, and
unnecessary permissions of an app are set to zero. An Android app that is recognized
as malware by most antivirus companies based on VirusTotal report, is considered risky
and the value in the label column is set as 1, being Trojan. However, the other Android
genuine apps have zero value. The complete dataset is accessible at:
https://www.kaggle.com/saeedseraj/trojandroidpermissionbased-android-trojan-da-
taset/

5

Figure 1. An illustration of a small part of the proposed dataset

4 Proposed method

A 1-dimensional CNN sequential architecture has been developed to classify trojans
using the above dataset and the Python programming language with the Keras library.
The architecture includes one 1D-CNN layer, followed by a 1D MaxPooling layer, fol-
lowed by a Flatten layer, followed by 2 dense layers. The architecture is presented in
detail in figure 2. The Specific settings are as follows:

• A learning rate of 0.01 has been used and the optimizer is Adam
• The number of epochs is 6
• The batch size is 16
• The activation functions used are the Relu for the 1D CNN layer and the

first dense layer and the Sigmoid for the final dense layer
• Bias has been set to true in the 1D CNN layer

Figure 2. Proposed method architecture

6

5 Experimental evaluation

For the experimental evaluation, we have proposed the CNN architecture described in
section 4 developed using the Python programming language and the Keras library. For
all experiments, 5-fold cross-validation has been used.

5.1 Evaluation metrics

For the experimental evaluation, we have used the Python programming language and
the Keras machine learning library. With regards to evaluation metrics, we have used
the Accuracy, Precision, Recall, and F1 which are described in equations 1, 2, 3, and 4
respectively. TP stands for true positive, TN for true negative, FP for false positive, and
FN for false negative. Accuracy, which is equation 1, shows the overall performance.
Another significant metric is Precision which describes the portion of predicted Trojans
and is calculated by equation 2. Equation 3 explains the Recall metric which is the
portion of Trojan that is correctly classified. The F1-score is a number between 0 and
1 and is the harmonic mean of precision and recall which is computed according to
equation 4. These are well-known metrics that have been used in recent studies for
similar problems in Android malware detection [5, 6, 21]. Overall, our proposed
method outperforms alternative classifiers in all metrics.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3)

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4)

5.2 Results

This section delivers the results of the experimental evaluation. Figure 3 presents the results of
the proposed method architecture for both the train and test accuracy over 6 epochs. Figure 4
presents the loss results over 6 epochs.

7

Figure 3. Accuracy for each of the 5 folds

8

Figure 4. Loss for each of the 5 folds

5.3 Comparisons with other classifiers

The algorithms used in the comparisons are the following with the default settings used
from the sci-kit learn library: Decision Tree, Random Forest, Multi-Layer Perceptron.
The results are presented in Table 1 which provides a comparison between the proposed
method and the other well-known classifiers using accuracy, precision, recall, and F1.
5-fold cross-validation has been used throughout.

Algorithm Accuracy Precision Recall F1
Decision Tree 96.1% 95.8% 95.7% 95.9%
Random Forest 97.9% 97.7% 97.3% 97.5%

9

Multi-Layer
Perceptron 97.8% 97.8% 96.7% 97.7%

TrojanDroid 98.06% 99% 97.71% 98%
Table 1. Comparison results

6 Conclusions

In this paper, we have concentrated on Trojan detection on Android platforms. We have
collected a new dataset which we have made available, and we delivered a novel neural
network architecture that can detect trojans with very high accuracy. The results
indicate that by using the permissions of Trojan and genuine Android apps, trojans can
be detected in a straightforward way which can be useful to the research community
and beyond.
 In the future, we plan to extend our proposed method to include the specific
trojan family that a trojan belongs to and adjust it accordingly to detect the family with
high accuracy as well. Moreover, we plan to investigate how to use permissions to de-
tect other types of malware such as botnets.

References

1. Arif, J. M., Ab Razak, M. F., Mat, S. R. T., Awang, S., Ismail, N. S. N., &
Firdaus, A. (2021). Android mobile malware detection using fuzzy AHP. Jour-
nal of Information Security and Applications, 61, 102929.

2. Aminuddin, N. I., & Abdullah, Z. (2019). Android trojan detection based on
dynamic analysis. Advances in Computing and Intelligent System, 1(1).

3. Arora, A., Peddoju, S. K., & Conti, M. (2019). Permpair: Android malware
detection using permission pairs. IEEE Transactions on Information Forensics
and Security, 15, 1968-1982.

4. Cai, H., Meng, N., Ryder, B., & Yao, D. (2018). Droidcat: Effective android
malware detection and categorization via app-level profiling. IEEE Transac-
tions on Information Forensics and Security, 14(6), 1455-1470.

5. Cai, L., Li, Y., & Xiong, Z. (2021). JOWMDroid: Android malware detection
based on feature weighting with joint optimization of weight-mapping and
classifier parameters. Computers & Security, 100, 102086.

6. Gao, H., Cheng, S., & Zhang, W. (2021). GDroid: Android malware detection
and classification with graph convolutional network. Computers & Security,
106, 102264.

7. Guerra-Manzanares, A., Bahsi, H., & Nõmm, S. (2021). KronoDroid: Time-
based hybrid-featured dataset for effective android malware detection and
characterization. Computers & Security, 110, 102399.

8. Hei, Y., Yang, R., Peng, H., Wang, L., Xu, X., Liu, J., ... & Sun, L. (2021).
Hawk: Rapid android malware detection through heterogeneous graph atten-
tion networks. IEEE Transactions on Neural Networks and Learning Systems.

10

9. Kim, J., Ban, Y., Ko, E., Cho, H., & Yi, J. H. (2022). MAPAS: a practical
deep learning-based android malware detection system. International Journal
of Information Security, 1-14.

10. Liu, P., Wang, W., Luo, X., Wang, H., & Liu, C. (2021). NSDroid: efficient
multi-classification of android malware using neighborhood signature in local
function call graphs. International Journal of Information Security, 20(1), 59-
71.

11. Mahindru, A., & Sangal, A. L. (2021). MLDroid—framework for Android
malware detection using machine learning techniques. Neural Computing and
Applications, 33(10), 5183-5240.

12. Mathur, A., Podila, L. M., Kulkarni, K., Niyaz, Q., & Javaid, A. Y. (2021).
NATICUSdroid: A malware detection framework for Android using native
and custom permissions. Journal of Information Security and Applications,
58, 102696.

13. McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P.,
Sezer, S., ... & Joon Ahn, G. (2017, March). Deep android malware detection.
In Proceedings of the seventh ACM on conference on data and application
security and privacy (pp. 301-308).

14. Şahin, D. Ö., Kural, O. E., Akleylek, S., & Kılıç, E. (2021). A novel permis-
sion-based Android malware detection system using feature selection based
on linear regression. Neural Computing and Applications, 1-16.

15. Sasidharan, S. K., & Thomas, C. (2021). ProDroid—An Android malware de-
tection framework based on profile hidden Markov model. Pervasive and Mo-
bile Computing, 72, 101336.

16. Seraj, S., Khodambashi, S., Pavlidis, M., & Polatidis, N. (2022). HamDroid:
permission-based harmful android anti-malware detection using neural net-
works. Neural Computing and Applications, 1-10.

17. Surendran, R., Thomas, T., & Emmanuel, S. (2020). A TAN based hybrid
model for android malware detection. Journal of Information Security and Ap-
plications, 54, 102483.

18. Ucci, D., Aniello, L., & Baldoni, R. (2019). Survey of machine learning tech-
niques for malware analysis. Computers & Security, 81, 123-147.

19. Wang, W., Zhao, M., & Wang, J. (2019). Effective android malware detection
with a hybrid model based on deep autoencoder and convolutional neural net-
work. Journal of Ambient Intelligence and Humanized Computing, 10(8),
3035-3043.

20. Xiao, X., Zhang, S., Mercaldo, F., Hu, G., & Sangaiah, A. K. (2019). Android
malware detection based on system call sequences and LSTM. Multimedia
Tools and Applications, 78(4), 3979-3999.

21. Yadav, P., Menon, N., Ravi, V., Vishvanathan, S., & Pham, T. D. (2022). Ef-
ficientNet Convolutional Neural Networks-based Android Malware Detec-
tion. Computers & Security, 102622. Chicago

22. Yerima, S. Y., & Sezer, S. (2018). Droidfusion: A novel multilevel classifier
fusion approach for android malware detection. IEEE transactions on cyber-
netics, 49(2), 453-466. Chicago

11

23. Yuan, Z., Lu, Y., Wang, Z., & Xue, Y. (2014, August). Droid-sec: deep learn-
ing in android malware detection. In Proceedings of the 2014 ACM conference
on SIGCOMM (pp. 371-372).

24. Zarni Aung, W. Z. (2013). Permission-based android malware detection. In-
ternational Journal of Scientific & Technology Research, 2(3), 228-234.

25. Zhang, N., Xue, J., Ma, Y., Zhang, R., Liang, T., & Tan, Y. A. (2021). Hybrid
sequence‐based Android malware detection using natural language pro-
cessing. International Journal of Intelligent Systems, 36(10), 5770-5784. Chi-
cago

26. Zou, D., Wu, Y., Yang, S., Chauhan, A., Yang, W., Zhong, J., ... & Jin, H.
(2021). IntDroid: Android malware detection based on API intimacy analysis.
ACM Transactions on Software Engineering and Methodology (TOSEM),
30(3), 1-32.

