
TrojanDroid: Android malware detection for Trojan 
discovery using convolutional neural networks 

Saeed Seraj, Michalis Pavlidis, and Nikolaos Polatidis 

School of Architecture, Technology, and Engineering, University of Brighton, BN2 4GJ, 
Brighton, U.K 

{S.Seraj@Brighton.ac.uk, M.Pavlidis@Brighton.ac.uk N.Polatidis@Brighton.ac.uk} 

Abstract. Android platforms are widely used nowadays in different forms such 
as mobile phones and tablets, and this has made the Android platform an attrac-
tive target for hackers. While there are many solutions available for detecting 
malware on Android devices there aren’t that many that are concentrated on spe-
cific malware types. To this extent, this paper delivers a new dataset for Trojan 
detection for Android apps based on the permissions of the apps, while the second 
contribution is a neural network architecture that can classify with very high ac-
curacy if an Android app is a genuine app or a Trojan pretending to be a normal 
app. We have run extensive evaluation tests to validate the performance of the 
proposed method and we have compared it to other well-known classifiers using 
well-known evaluation metrics to show its effectiveness.  

Keywords: Android, Malware detection, Trojan, Convolutional Neural Net-
works. 

1 Introduction 

Nowadays, in the world people can get all types of Android devices such as mobile 
phones and tablets and numerous applications (apps) can be easily downloaded from 
available websites in cyberspace. However, many apps are being produced daily, with 
some of which being infected and being malware instead of a genuine app. Many ex-
ploiters infect applications using malicious approaches for their profit to steal infor-
mation from mobile devices. Malware can come in various forms, such as viruses, tro-
jans, worms, botnets, and many others and among that malware, trojans are a type of 
malware that is often disguised as legitimate software; however, they will perform ma-
licious activities on the operating system that most of the users will not even notice or 
understand [1, 6, 18]. 
 Therefore, in this article, we study how to detect Android Trojans using the 
permissions of the applications. To do this we have collected and processed data and 
created a new dataset that is described in detail in section 3. The Trojan dataset is a 
classification dataset that contains only Trojan and genuine Android applications and 
to this extent, we have developed a Convolutional Neural Network (CNN) architecture 
that detects Trojans with very high accuracy. To achieve this, we first had a theory that 
a Trojan can be identified based on the requested permissions during app installations.  
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The contributions of the paper are as follows: 

• We introduce a novel dataset for Android Trojan detection based on the per-
missions of the applications. 

• We deliver a CNN neural network architecture for Trojan detection. 
 
The rest of the paper is organized as follows: Section 2 is the related work, section 3 
describes the dataset, section 4 explains the proposed method, section 5 delivers the 
experimental evaluation and section 6 contains the conclusions. 

2 Related work 

In the Android platform, there are several works available in the literature due to its 
popularity and numerous malware, that exist. We have identified recent relevant works 
and discussed them here but the related works that are about Trojan detection are non-
existent in the literature. To the best of our knowledge, there is only one related work 
about Trojan detection that is based on dynamic analysis and not on permissions which 
are discussed later in [2]. 
 We start with MCDM which is ‘a multi-criteria decision-making based’ mo-
bile malware detection system that uses a risk-based fuzzy analytical hierarchy process 
(AHP) approach to evaluate the Android mobile applications. This research concen-
trated on static analysis by using permission-based features to assess the Android mo-
bile malware detection system approach [1]. In another research dynamic analysis was 
used to detect their features. Therefore, a parameter such as a system call was investi-
gated in this study. The purpose of this research is to detect android Trojan based on 
dynamic analysis [2]. Another research paper proposes a novel detection technique 
called PermPair that builds and compares the graphs for malware and normal samples 
by extracting the permission pairs from the manifest file inside the application [3]. Yet 
another research presents a platform named DroidCat which is a novel dynamic appli-
cation classification model to complement those methods that are existing. DroidCat 
uses various sets of dynamic features based on method calls and inter-component com-
munication (ICC) Intents without involving any permission, application resources, or 
system calls [4]. One other study proposes an innovative Android malware detection 
framework based on feature weighting with the joint optimization of weight-mapping 
and the parameters of the classifier named JOWMDroid [5].  
 In [6] the study introduces a new scheme for Android malware detection and 
familial classification based on the Graph Convolutional Network (GCN). The general 
idea is to map Android applications and APIs into a large heterogeneous graph and 
convert the original problems into a node classification task. The study in [7] was a 
novel hybrid-featured Android dataset that provides timestamps for each data sample 
which covers all years of Android history from the years 2008 to 2020 and considers 
the distinct dynamic data sources. Researchers presented a new malware detection 
framework for Android applications that are evolutionary ’HAWK’. Their model can 
pinpoint rapidly the proximity between a new application and existing applications and 
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assemble their numerical embeddings under different semantics as described in [8]. 
MAPAS is a malware detection platform that achieved high accuracy and adaptable 
usage of computing resources. Moreover, MAPAS analyzed malicious apps behaviors 
based on API call graphs of them by using convolution neural networks (CNN) [9]. 
NSDroid is ‘a time-efficient malware multi-classification approach based on neighbor-
hood signatures in local function call graphs (FCGs). This method uses a scheme based 
on neighborhood signature to calculate the similarity of the different applications which 
is significantly faster than traditional approaches according to subgraph isomorphism 
[10]. A work that presents a web-based framework that helped to detect malware from 
Android devices is named ‘MLDroid’. The proposed framework detects Android mal-
ware applications by performing its dynamic analysis measures can be found in [11]. 
 In their work ‘NATICUSdroid’ a new Android malware detection system that 
investigates and classifies benign and malware using statistically selected native and 
custom Android application permissions as features for various machine learning clas-
sifiers [12].  One more work is an innovative android malware detection framework 
that uses a deep CNN neural network. In this system, Malware classification is per-
formed based on static analysis of the raw opcode sequence from a disassembled pro-
gram [13]. A machine learning-based malware detection platform is proposed to distin-
guish Android malware from benign applications. It is aimed to remove unnecessary 
features by using a linear regression-based feature selection approach at the feature se-
lection stage of the proposed malware detection framework. [14]. Another research pro-
poses a novel approach based on behavior for Android malware classification. In the 
proposed method, the Android malware dataset is decompiled to identify the suspicious 
API classes and generate an encoded list. In addition, this framework classifies un-
known applications as benign or malicious applications based on the log-likelihood 
score generated [15]. In their paper researchers have delivered a completely novel and 
innovative dataset of malicious or benign Android anti-malware detection, including, 
and a customized multilayer perceptron neural network (MLP) that is being used to 
detect fake anti-malware that pretend to be genuine ones based on the permissions of 
the applications [16].  
 In their article researchers introduced a novel TAN (Tree Augmented naive 
Bayes)-based—a hybrid Android malware detection mechanism that involves the con-
ditional dependencies which are required for the functionality of an application among 
relevant static and dynamic features [17]. The next work is a survey aimed to provide 
an overview of the way machine learning (ML) has been employed in the context of 
malware analyses. They also conducted survey papers based on their objectives, what 
kind of information about malware they used specifically, and what type of machine 
learning techniques they employed [18]. DAE is a hybrid model based on a deep auto-
encoder and a CNN. This mechanism is proposed to improve the Android malware 
detection accuracy. To achieve this, they reconstructed the high-dimensional features 
of Android applications and employed multiple CNN to detect Android malware [19]. 
In the next research article, a new detection approach is introduced based on deep learn-
ing techniques to detect Android malware from trusted applications. To achieve that, 
they treat one system call sequence as a sentence in the language and build a classifier 
according to the Long Short-Term Memory (LSTM) language model [20].  
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 An EfficientNet-B4 CNN-based model is presented for Android malware de-
tection by employing image-based malware representations of the Android DEX file. 
This model extracts relevant features from the Android malware images [21]. In the 
following paper, a new classifier fusion scheme based on a multilevel architecture is 
introduced that enables an effective combination of machine learning algorithms for 
improved accuracy which is called DroidFusion. The induced multilevel model can be 
utilized as an improved accuracy predictor for Android malware detection [22]. A Ma-
chine Learning-based method that utilizes more than 200 features extracted from both 
static analysis and dynamic analysis of Android applications for malware detection was 
proposed in [23]. A platform that is capable to detect android malware applications is 
introduced to support the organized Android Market. The proposed framework in-
tended to develop a machine learning-based malware detection framework on Android 
to detect malware applications and to increase the security and privacy of smartphone 
users [24].  CoDroid is a hybrid Android malware detection approach based on the 
sequence which utilizes the sequences of static opcode and dynamic system call [25]. 
Finally, researchers have combined the high accuracy of the traditional graph-based 
method with the high scalability of the social network analysis-based approach for An-
droid malware detection [26]. 
 Although all these works are interesting there is only one work that is about 
Trojan detection that is based on dynamic analysis. Therefore, in this work, we devel-
oped a new dataset about Trojan detection using permissions to fill this gap and we 
have developed a CNN architecture to detect trojans with high accuracy. 

3 Dataset 

With regards to trojan detection in Android platforms, we introduce a new dataset based 
on Android app permissions. To this extent, we developed an Android Trojan dataset 
that contains 2593 entries.  To do this we downloaded 1058 Android Trojan malware 
and 1535 general benign apps from various categories from Google Play. We analyzed 
all apk files using VirusTotal.com to extract all their features including internet access 
and other required app permissions. Moreover, we have used over 70 reputed anti-mal-
ware detection engines to classify the apk files. The android Trojan dataset consists of 
the following families: BankBot, Binv, Citmo, FakeBank, LegitimateBankApps, San-
droid, SmsSpy, Spitmo, Wroba, ZertSecurity and Zitmo. For the dataset to be in a usa-
ble form, we added all the information in a file.csv file format which can be easily 
opened and processed. There is a total number of 450 columns in the dataset that in-
cludes 449 specific permissions plus the label which is the last column.  The first row 
in the dataset describes column titles, and the rest are features from 2593 android Tro-
jans and benign applications apk files. All values are in binary format i.e., 0 or 1. When 
an app requires permission, then the value in the respective entry of the dataset is 1, and 
unnecessary permissions of an app are set to zero. An Android app that is recognized 
as malware by most antivirus companies based on VirusTotal report, is considered risky 
and the value in the label column is set as 1, being Trojan. However, the other Android 
genuine apps have zero value. The complete dataset is accessible at: 
https://www.kaggle.com/saeedseraj/trojandroidpermissionbased-android-trojan-da-
taset/ 



5 

 

Figure 1. An illustration of a small part of the proposed dataset 

4 Proposed method 

A 1-dimensional CNN sequential architecture has been developed to classify trojans 
using the above dataset and the Python programming language with the Keras library. 
The architecture includes one 1D-CNN layer, followed by a 1D MaxPooling layer, fol-
lowed by a Flatten layer, followed by 2 dense layers. The architecture is presented in 
detail in figure 2. The Specific settings are as follows: 

• A learning rate of 0.01 has been used and the optimizer is Adam 
• The number of epochs is 6 
• The batch size is 16 
• The activation functions used are the Relu for the 1D CNN layer and the 

first dense layer and the Sigmoid for the final dense layer  
• Bias has been set to true in the 1D CNN layer 

 

 
Figure 2. Proposed method architecture 
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5 Experimental evaluation 

For the experimental evaluation, we have proposed the CNN architecture described in 
section 4 developed using the Python programming language and the Keras library. For 
all experiments, 5-fold cross-validation has been used. 

5.1 Evaluation metrics 

For the experimental evaluation, we have used the Python programming language and 
the Keras machine learning library. With regards to evaluation metrics, we have used 
the Accuracy, Precision, Recall, and F1 which are described in equations 1, 2, 3, and 4 
respectively. TP stands for true positive, TN for true negative, FP for false positive, and 
FN for false negative. Accuracy, which is equation 1, shows the overall performance. 
Another significant metric is Precision which describes the portion of predicted Trojans 
and is calculated by equation 2. Equation 3 explains the Recall metric which is the 
portion of Trojan that is correctly classified. The F1-score is a number between 0 and 
1 and is the harmonic mean of precision and recall which is computed according to 
equation 4. These are well-known metrics that have been used in recent studies for 
similar problems in Android malware detection [5, 6, 21]. Overall, our proposed 
method outperforms alternative classifiers in all metrics. 
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (1) 
         
  
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2) 
         
  
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3) 
 

  
 
 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(4) 

 

5.2 Results 

This section delivers the results of the experimental evaluation. Figure 3 presents the results of 
the proposed method architecture for both the train and test accuracy over 6 epochs. Figure 4 
presents the loss results over 6 epochs.  
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Figure 3. Accuracy for each of the 5 folds 



8 

 
Figure 4. Loss for each of the 5 folds 

5.3 Comparisons with other classifiers 

The algorithms used in the comparisons are the following with the default settings used 
from the sci-kit learn library: Decision Tree, Random Forest, Multi-Layer Perceptron. 
The results are presented in Table 1 which provides a comparison between the proposed 
method and the other well-known classifiers using accuracy, precision, recall, and F1. 
5-fold cross-validation has been used throughout. 
 
 

Algorithm Accuracy Precision Recall F1 
Decision Tree 96.1% 95.8% 95.7% 95.9% 
Random Forest 97.9% 97.7% 97.3% 97.5% 
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Multi-Layer 
Perceptron 97.8% 97.8% 96.7% 97.7% 

TrojanDroid 98.06% 99% 97.71% 98% 
Table 1. Comparison results 

6 Conclusions 

In this paper, we have concentrated on Trojan detection on Android platforms. We have 
collected a new dataset which we have made available, and we delivered a novel neural 
network architecture that can detect trojans with very high accuracy. The results 
indicate that by using the permissions of Trojan and genuine Android apps, trojans can 
be detected in a straightforward way which can be useful to the research community 
and beyond. 
 In the future, we plan to extend our proposed method to include the specific 
trojan family that a trojan belongs to and adjust it accordingly to detect the family with 
high accuracy as well. Moreover, we plan to investigate how to use permissions to de-
tect other types of malware such as botnets. 
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