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Abstract 
 
Background 

Cognitive training offers a potential approach for the prevention of cognitive 

decline in later life. Repetition of targeted exercises may improve, or at least preserve, 

both specific domains and general cognitive abilities by strengthening neural connections 

and promoting neuroprotective processes within brain networks. Significantly, middle-

aged adults have been omitted from the cognitive training literature. Therefore, in a first 

experiment, we investigated short-term training (1 session) on a perceptual-cognitive-

motor task in middle-aged adults. Furthermore, we examined the functional and 

structural neural correlates of this training. In a second experiment, we tested the 

effectiveness of longer-term cognitive training (4-6 weeks) in improving overall cognitive 

function in this age group. In addition, we examined structural and functional brain 

changes resulting from training.  

 

Methods 

Twenty one healthy middle-aged adults between 40 and 50 years old took part in 

the first experiment. All participants underwent one scanning session during which they 

completed the perceptual-cognitive-motor task. We compared performance and 

functional imaging on the pre- and post-training phases of the task. We used diffusion 

MRI to examine microstructural variation in the brain in relation to training outcome. The 

diffusion indices included fractional anisotropy (FA), mean diffusivity (MD), neurite 

density index (NDI), and orientation dispersion index (ODI). 

 

For the second experiment, 40 healthy middle-aged adults between 40 and 50 

years of age took part in the study. Participants completed either adaptive cognitive 

training (experimental condition) or non-adaptive training (active control). We examined 

performance on trained and untrained (transfer) tasks at pre- and post-training. We also 

compared functional imaging at pre- and post-training. And finally, we tested for 

microstructural effects of cognitive training with diffusion imaging.  

 

Results 

For experiment 1, we found a significant improvement in performance following 

training on the task. There were also significant training-induced changes in functional 

activity in cortical and subcortical brain regions. Furthermore, significant correlations 

were found between the diffusion indices of FA, MD, and ODI and training outcome. 

These results indicate that variation in brain structure was related to learning ability. 

 

For experiment 2, we found that both adaptive and non-adaptive groups showed 

significantly improved performance on the training tasks. In addition, we found improved 

performance on an untrained task following completion of the training programme. 
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Increased activity was demonstrated in brain regions following training. And finally, there 

were training-induced changes in ODI in the frontal pole, indicating a change in brain 

structure as a result of cognitive training. 

 

Conclusions 

We found that short-term and longer-term cognitive training resulted in 

significant performance improvements in middle-aged adults. Substantial improvements 

were found for the training tasks, and training gains transferred to an untrained task. 

Furthermore, functional and structural brain changes occurred as a result of training. 

Taken together, the findings in this thesis demonstrate considerable cognitive, motor, and 

neural plasticity in this age group. Therefore, we conclude that cognitive training in 

middle-aged adults was effective at inducing brain changes and improving cognitive 

function. This may have a significant potential impact with regards to preventing age-

related cognitive decline in later life. 
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1.1 Cognitive decline in older age 
 

Cognitive decline has been sufficiently evidenced in healthy older adults across 

several cognitive domains (e.g., attention, working memory, spatial memory, reasoning) 

(for review see Karbach & Verhaeghen, 2014; Au et al., 2015; Soveri et al., 2017; Pergher 

et al., 2018). In view of the rapidly increasing elderly population, this is a growing concern 

for healthcare organisations in the near future (Pergher et al., 2018). As such, the study of 

cognitive decline during one’s life span, and more importantly, what can be done to slow 

it down, has gained considerable interest from the research community (Pergher et al., 

2018). 

 
 Negative associations between age and performance on tests for aspects of fluid 

cognition are well documented (Salthouse, 1991; Kausler, 1994; Lindenberger & Baltes, 

1994; Schaie, 1995; Rabbitt, 1997; Verhaeghen & Salthouse, 1997; Salthouse, 2004; Perry 

et al., 2009; Seidler et al., 2010; Verwey et al., 2010; Verwey et al., 2011). For example, 

the performance of older adults was found to be lower than that of young adults on tests 

of reasoning, spatial ability (Salthouse, 1992; Verhaeghen & Salthouse, 1997), and 

episodic memory (Verhaeghen et al., 1993; Verhaeghen & Salthouse, 1997). Decline has 

also been shown in working memory (e.g., Baddeley, 1986; Just & Carpenter, 1992; 

Verhaeghen & Salthouse, 1997; Park & Reuter-Lorenz, 2009; Emch et al., 2019; Pliatsikas 

et al., 2019). Furthermore, older adults are particularly impaired in associative memory 

(Iidaka et al., 2001; Sperling et al., 2003; Cowan et al., 2006; Cohn et al., 2008; Shing et al., 

2008; Naveh-Benjamin et al., 2009; Edmonds et al., 2012). Attention is also negatively 

affected by age (Naveh-Benjamin et al., 2005). In addition, there is a basic and relatively 

pervasive loss in cognitive processing speed with age (Salthouse, 1985; Cerella, 1990; 

Myerson et al., 1990; Salthouse, 1996). Meta-analysis has shown that this age-related 

decline is moderately large (Verhaeghen & Salthouse, 1997). These abilities are needed to 

perform activities of daily living, and therefore there may be a substantial negative impact 

of cognitive decline on quality of life in older age (Deary et al., 2009). 

 
Research has also demonstrated that there is a decline in motor skill acquisition 

with age (e.g., Rabbitt, 1997; Li & Lindenberger, 2002; Hedel & Dietz, 2004; Smith et al., 

2005; Rieckmann & Bäckman, 2009; Seidler et al., 2010; Bennett et al., 2011; Verwey et 
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al., 2011; King et al., 2013). For example, Smith et al. (2005) investigated the learning of a 

novel visuomotor task in adults between 18 and 95 years of age. Participants were split 

into two groups (18-61 and 62–95 years of age). Motor learning was significantly slower 

in adults over 62 years of age. The learning of new motor skills, as well as the 

modification of previously learned skills, is necessary for the performance of everyday 

activities, and motor skills play a crucial role in all phases of the life span (King et al., 

2013). Evidence is mounting that the development and use of complex motor skills 

decreases with age not only for biomechanical and neuromuscular reasons, but also due 

to a decline in cognitive functioning (Salthouse, 1996; Rabbitt, 1997; Howard & Howard, 

2001; Li & Lindenberger, 2002; Hedel & Dietz, 2004; Howard et al., 2004; Rieckmann & 

Bäckman, 2009; Seidler et al., 2010; Verwey et al., 2011). Indeed, it has been suggested 

that motor and cognitive plasticity cannot be seen as being independent from each other 

(Voelcker-Rehage, 2008). In particular, the early learning phase of motor skill acquisition 

has been shown to be mainly influenced by cognitive processes to understand the task 

and prepare strategies (Milton et al., 2004; Kelly & Garavan, 2005). 

 
1.2 Age-related neural changes and cognitive decline 
 

What are the underlying mechanisms of decreased cognitive and motor 

performance as we age? The aging process is associated with widespread changes in the 

brain, and these age-related neural changes are thought to substantially contribute to 

age-related deficits in motor and cognitive functioning (e.g., Cabeza, 2001; Hogan, 2004; 

Kennedy & Raz, 2005; Paquet et al., 2008; Bäckman et al., 2010; Bennett et al., 2011; King 

et al., 2013). Evidence linking behavioural deficits to age-associated changes in relevant 

neural substrates comes from several studies (e.g., Cabeza, 2001; Kaasinen & Rinne, 

2002; Raz et al., 2003; Allen et al., 2005; Raz et al., 2005; Bäckman et al., 2006; Bäckman 

et al., 2010; King et al., 2013). For example, the aging process is associated with 

decreased volume in the frontal cortex as well as the caudate and putamen (Raz et al., 

2003; Allen et al., 2005; Raz et al., 2005), disruptions in the dopaminergic system 

(Kaasinen & Rinne, 2002; Bäckman et al., 2006, 2010), and degradations in the white 

matter tracts connecting the striatum to the frontal cortex (Bennett et al., 2011). These 

age-related neural changes have been associated with learning deficits in older adults 

(Kennedy & Raz, 2005; Paquet et al., 2008; Bennett et al., 2011).  
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Furthermore, the prefrontal and mediofrontal cortex, and the frontostriatal 

network demonstrate the highest age-related decline (for an overview see Cabeza, 2001). 

For example, using multimodal imaging measures, Giorgio et al. (2010) found extensive 

reductions in grey matter volume in aging, and reductions were detected earlier in the 

frontal cortex. In an fMRI study, Dennis and Cabeza (2011) showed that older adults 

recruited the medial temporal lobe for sequence learning, and this activation was 

significantly greater, while striatal activity decreased compared with young adults. The 

cerebellum has also exhibits similar age-related declines as the striatum, at least with 

respect to reductions in volume (Luft et al., 1999; Raz et al., 2005). In addition, such 

degradations in the cortico-cerebellar system are thought to substantially contribute to 

age-associated deficits in motor and cognitive functioning (e.g., Hogan, 2004; King et al., 

2013). Moreover, a DTI aging study by Bennett et al. (2011) found that caudate–

dorsolateral prefrontal cortex (dPFC) and hippocampus–dPFC tract integrity were related 

to sequence learning. The caudate–dPFC tract integrity decreased in the older ages, 

mediating age-related differences in learning. Thus, the slower and/or lower learning 

gains of older adults may be manifestations of age-related changes in the structure and 

functioning of the networks subserving different cognitive and motor functions. 

 
Although age-associated neurodegenerative and neurochemical changes are 

thought to underlie the decline in cognitive and motor performance, compensatory 

processes in cortical and subcortical functions, e.g., changed activation patterns, de-

differentiation (Cabeza, 2001), de-lateralization (Cabeza, 2002; Nyberg et al., 2003), may 

allow maintenance of performance (and probably learning) level in older adults (Voelcker-

Rehage, 2008). In brain-imaging studies, activation seen early in practice involves generic 

attentional and control areas—prefrontal cortex, anterior cingulate cortex, and posterior 

parietal cortex are the main areas considered to perform the scaffolding role (together 

with changes seen in task-specific areas) (Kelly & Garavan, 2005). 

 
1.3 Cognitive plasticity and cognitive training 
 

In general, diminished learning gains are interpreted as a substantial age-related 

performance loss in older adults, and a reduction in cognitive and motor plasticity 

(Voelcker-Rehage, 2008). However, several studies have demonstrated that there is 
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considerable cognitive plasticity up to very old age, and that cognitive training can result 

in significant performance improvements on the trained tasks (e.g., Singer et al., 2003; 

Rebok et al., 2007; Basak et al., 2008; Buschkuehl et al., 2008; Voelcker-Rehage, 2008; 

Borella et al., 2010; Karbach & Schubert, 2013; Karbach & Verhaeghen, 2014). For 

example, Singer et al. (2003) investigated performance gains after mnemonic training in a 

sample of participants aged 75 to 101 years old (eight sessions of training in a 

performance-enhancing mnemonic technique: Method of Loci). It was found that 

memory plasticity with the Method of Loci is still preserved in very old age, although to a 

limited degree. In a study by Pfeifer et al. (2014), no significant difference was found 

between young and older adults on an associative memory task. This is rather atypical in 

the recognition memory literature, where poorer associative memory performance in 

older adults is the norm (Sperling et al., 2003; Naveh-Benjamin et al., 2004; Cohn et al., 

2008; Naveh-Benjamin et al., 2009; Edmonds et al., 2012). The authors attribute this 

finding to the effects of the self-paced learning paradigm used in the study. These results 

are encouraging, as they suggest that when older adults are given sufficient time to train 

on the task, their associative retrieval becomes non-significantly different from that of 

young adults (Pfeifer et al., 2014). Owen et al. (2010) reported the results of a six-week 

online study in which participants (aged 18 to 60) trained several times each week on 

cognitive tasks designed to improve reasoning, memory, planning, visuospatial skills, and 

attention. Significant gains were observed in every one of the cognitive tasks that were 

trained. Thus, with sufficient training, significant improvements have been demonstrated 

in both young and older adults on trained tasks (e.g., Singer et al., 2003; Basak et al., 

2008; Owen et al., 2010; Schmiedek et al., 2010; Karbach & Verhaeghen, 2014; Rebok et 

al., 2014). 

 
Even without developing Alzheimer's disease, cognitive decline in healthy aging 

can have real-life consequences, for example,  impaired financial and medical decision-

making (Moye & Marson, 2007; Agarwal et al., 2009; Boyle et al., 2012; Strenziok et al., 

2014). Yet, there is evidence that protective factors against cognitive decline exist, such 

as educational attainment and multi-lingualism (Yu et al., 1989; Chertkow et al., 2010; 

Craik et al., 2010; Strenziok et al., 2014). These factors confer some protection against 

late-life cognitive decline and even against Alzheimer-related pathology (Landau et al., 
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2012; Li et al., 2013; Strenziok et al., 2014). This epidemiological evidence suggests 

benefits to developing cognitive training into a daily activity as a lifestyle intervention 

against decline in later life (Strenziok et al., 2014). 

 
Two categories of training have emerged with the specific aim of targeting a single 

cognitive process (process-based training), or multiple cognitive functions (multidomain 

training) (Lustig et al., 2009). Process-based approaches involve training individual higher-

order cognitive functions, such as inhibition, working memory, and attention, and may 

include training on multiple individual domains with separate tasks. Multidomain 

approaches, on the other hand, involve training several cognitive functions within the 

same task. Multidomain programmes are particularly diverse and include videogame 

training (e.g., Basak et al., 2008), cognitive-social programmes, and exercise training (e.g., 

Stuss et al., 2007). Multidomain training is considered an optimal context for cognitive 

interventions because of the variability in task demands, frequent feedback, stimulus 

variability, and the engaging and motivating nature of the task (Lustig et al., 2009). 

Positive effects of multidomain training have been repeatedly reported for younger and 

older adults (Green & Bavelier, 2003; Basak et al., 2008; van Muijden et al., 2012; for a 

review see Kueider et al., 2012). 

 
Indeed, the importance of healthy cognitive ageing is not limited to clinical 

populations, and people of all ages can benefit from engaging in cognitively stimulating 

activities. The concept that brain training may prevent cognitive decline has been 

emphasised as a potential opportunity for older individuals to maintain or improve their 

cognitive function. Developing an effective cognitive training programme can therefore 

have a practical application and large potential impact for use beyond clinical practice, 

such as in education, and in healthy aging. 

 
1.4 Cognitive function in middle-aged adults 
 

To date, cognitive training has predominantly been used in older adults as a way 

to improve cognitive functions which have already declined (Kueider et al., 2012; Lampit 

et al., 2014). However, there is evidence to suggest that systematically engaging in 

cognitive activities at an earlier age may actually provide a protective effect against 
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cognitive decline in later life (Akbaraly et al., 2009; Köhncke et al., 2016; Gow et al., 2017; 

Chan et al., 2018). In particular, middle-aged adults are underrepresented in the cognitive 

training literature despite increasing general focus on this age group as a crucial period 

for cognitive decline or stability (Hertzog et al., 2009). For example, Salthouse (2004) 

demonstrated that many different cognitive variables are affected by increased age and 

that negative age-cognition relations appear to begin in early and not late adulthood. 

Specifically, it has been shown that cognitive decline appears to accelerate after the age 

of 50, but the onset can already be observed before then (Verhaeghen & Salthouse, 1997; 

Salthouse, 2004). Verhaeghen and Salthouse (1997) conducted a meta-analysis on 91 

studies looking at associations between age and cognitive functions such as speed of 

processing, working memory, episodic memory, reasoning, and spatial ability. To 

determine whether the magnitude or pattern of the relationships among variables 

differed across young and older adulthood, they created two subsamples: one consisting 

of participants between 18 and 50 years of age, the other consisting of participants 51 

years old and older. The analyses comparing individuals over and under the age of 50 

demonstrated that negative age-cognition relations were stronger in the older group and 

significantly so for perceptual speed, reasoning ability, and episodic memory. However, it 

is important to note that there were significant negative age-cognition relations in all 

variables in the sample ranging from 18 to 50 years of age. These results clearly indicate 

that although the influences related to age are stronger after 50, sizable associations 

were evident in both age ranges, indicating that cognitive performance declines with 

increased age even before 50.  

 

Furthermore, with regards to cognitive training in young adults, it is possible that 

the impact of training is reduced when the individual is already functioning at their 

optimal level of fluid intelligence, which is thought to peak in early to mid adulthood 

(Horn & Cattell, 1967). Therefore, the effects of cognitive training may only become 

apparent once fluid intelligence, hence general cognitive functioning, has started to 

decline. The problem with cognitive training in the elderly, however, is that decline is 

rapid and pathology may have already set in (Deary et al., 2009), thus, intervention 

becomes less effective or redundant. Indeed, training studies suggest that cognitive 

plasticity is reduced, although not completely lost in older adulthood, and therefore the 
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effect of training declines with age (Brehmer et al., 2007; Shing et al., 2008; Schmiedek et 

al., 2010; Brehmer et al., 2012; von Bastian & Oberauer, 2014; Zinke et al., 2014).   

 

Notably, complex cognitive demands and lifestyle activities in midlife are linked to 

decreased risk of cognitive decline in later life (Marioni et al., 2012; Suo et al., 2012; Gow 

et al., 2017; Chan et al., 2018), yet no past studies have looked at the effects of cognitive 

training in middle-aged adults. For example, Suo and colleagues (2012) found that 

occupational managerial experience in midlife (ages 31–64) was the largest predictor of 

hippocampal grey matter atrophy in older age (ages 70 -90). Occupational managerial 

experience is thought to be representative of complex mental stimulation due to the 

role’s demand for linguistic competency, verbal comprehension, and verbal memory in 

successful management. Specifically, they found that work-related complex mental 

stimulation was associated with a diminished rate of grey matter atrophy in the 

hippocampus some 20 to 30 years later. The authors suggest that cognitive stimulation in 

midlife initiates a series of neuroplastic events that continue well into older age. In 

addition, grey matter volume has been found to reach a plateau around 40-50 years of 

age and steadily decline thereafter (Courchesne et al., 2000). Findings such as these stress 

the importance of investigating the effects of cognitive training programmes initiated in 

midlife, and further research with this age group is needed to clarify the underlying 

neuroprotective mechanisms. Indeed, middle-age might be the optimal time at which to 

start cognitive training interventions. 

 
1.5 Cognitive training and transfer 
 

Training cognitive processes such as working memory and other executive 

functions can improve behavioural performance (e.g., Klingberg, 2010; Morrison & Chein, 

2011; Hsu et al., 2014; Flegal et al., 2019; Pappa et al., 2020). However, cognitive training 

research faces criticisms that effects are often limited to the trained tasks, whereas 

transfer to untrained tasks is inconsistent (Dougherty et al., 2016; Melby-Lervag & Hulme, 

2013; Melby-Lervag et al., 2016; Soveri et al., 2017; Flegal et al., 2019; Pappa et al., 2020). 

Indeed, the ultimate goal of training as an intervention for age-related cognitive decline is 

transfer to everyday cognitive functioning (Strenziok et al., 2014). If training does not just 

improve trained-task performance but also broad cognitive abilities, then even small 
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effects could lead to important benefits for individuals’ everyday functioning, as these 

improvements would generalise to all sorts of cognitive activities (Hertzog et al., 2009; 

Schmiedek et al., 2010). Moreover, even small delays or reductions of age-associated 

cognitive decline could substantially prolong individuals’ capacity for leading independent 

lives (Hertzog et al., 2009; Schmiedek et al., 2010). However, if cognitive training effects 

are restricted to the trained tasks, such benefits would have little practical significance 

(Schmiedek et al., 2010). Thus, an important issue to consider is whether benefits transfer 

to untrained tasks testing the same cognitive function as the trained tasks (near transfer), 

or lead to a general improvement in the level of cognitive functioning and transfer even 

to tasks measuring different abilities (far transfer). 

 
1.6 Mechanisms underlying transfer 
 

The efficacy of cognitive training with regards to transfer effects is controversial, 

and progress in the field requires investigation of factors that optimise transfer of training 

gains (Lustig et al., 2009; Schmiedek et al., 2010; Flegal et al., 2019). While near transfer 

effects have been widely reported (e.g., Klingberg et al., 2005; Willis et al., 2006; Jaeggi et 

al., 2008; Mozolic et al., 2009; Schmiedek et al., 2010; Dunning et al., 2013; Karbach & 

Verhaeghen, 2014; Caeyenberghs et al., 2016; Emch et al., 2019), evidence of far transfer 

to other more general cognitive domains, is reported less frequently, and regarded more 

skeptically (Dahlin et al., 2008; Moody, 2009; Owen et al., 2010; Shipstead et al., 2012; 

Melby-Lervag & Hulme, 2013; Melby-Lervag et al., 2016; Soveri et al., 2017; Flegal et al., 

2019). In other words, near transfer occurs readily when trained and untrained tasks are 

similar, while far transfer to untrained abilities that share few cognitive and perceptual 

features with the training has been harder to demonstrate (Strenziok et al., 2014). 

Indeed, one of the most pressing issues for current and future research is how to improve 

transfer effects, which are often limited in both breadth and effect size (Lustig et al., 

2009; Schmiedek et al., 2010; Flegal et al., 2019). Thus, an understanding of the 

mechanisms that underlie transfer may aid in the development of more effective training 

programmes. 

 
Cognitive training involves the repeated practice of exercises that target specific 

cognitive processes, such as attention, memory, and reasoning. The basic rationale is that 
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the repetitive use of cognitive functions leads to improved efficiency of the brain 

processes underlying them. Change in cognitive performance as a result of training is 

known as cognitive plasticity (Jones et al., 2006; Lovden et al., 2010; Pappa et al., 2020), 

while experience-induced change in the structure and function of the underlying brain 

systems is referred to as neuroplasticity (Lovden et al., 2010; Gathercole et al., 2019; 

Pappa et al., 2020). Indeed, the human brain has a large degree of plasticity, i.e., the 

capacity to adapt to changing demands by altering its structure (Lovden et al., 2010). An 

explanation for transfer is that the effects observed following training reflect plasticity in 

the neural system underpinning the particular function that has been trained; training 

might therefore lead to durable neuronal changes and improved neural efficiency which 

should extend to other activities that engage the same processes (Westerberg & 

Klingberg, 2007; Klingberg, 2010; Takeuchi et al., 2010; Astle et al., 2015; Barnes et al., 

2016; Caeyenberghs et al., 2016; Salmi et al., 2018; Gathercole et al., 2019).  

 
1.7 Functional plasticity and cognitive training  
 

The nervous system possesses an intrinsic ability to learn and adapt to new 

experiences throughout life, and this neural plasticity is manifested both functionally and 

structurally (Pascual-Leone et al., 2005). Functional imaging studies may provide a 

window into how an intervention is having its effects (Lustig et al., 2009). Two main 

changes are categorised as a result of training: an increase in activation as measured by 

the blood oxygen level dependent (BOLD) signal of an area, indicating increased neural 

activity in that region; or a decrease in activation of an area, indicating either decreased 

use, or, more likely, an increase in efficiency (Lustig et al, 2009). Neuroimaging studies 

investigating the effects of well-controlled cognitive training have yielded heterogeneous 

findings, providing evidence for both training-induced increases and decreases in cortical 

activity (Lustig et al., 2009; Karbach & Verhaeghen, 2014). These activation changes are 

thought to reflect shifts in strategy or processing after training, and increased neural 

efficiency, respectively (Lustig et al., 2009). When training first begins, prefrontal and 

parietal regions associated with cognitive control, as well as areas associated with the 

more specific task demands, are found to become more active (Lustig et al., 2009). If the 

training is successful and results in improved task performance, then subsequent activity 

in these regions will decrease, indicating increased neural efficiency (Lustig et al., 2009). 

https://www-sciencedirect-com.ezproxy.sussex.ac.uk/science/article/pii/S014976341300050X#bib0470
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Notably, the association of extra activations with good performance occurs in short-term 

training (i.e., single-session studies), before the task is well-practiced (Braver et al., 2009; 

Lustig et al., 2009). By contrast, post-training neuroimaging assessments occur after 

several sessions of training (i.e., longer-term training), when performance has been 

relatively optimised (Lustig et al., 2009). 

 
In addition to the activation increases and decreases that have been reported, 

evidence of functional reorganisation, and more complex dynamics of brain activity 

changes are also found over the course of training (Klingberg, 2010; Morrison & Chein, 

2011; Hsu et al., 2014; Flegal et al., 2019). Activation increases in training studies are 

explained as added recruitment of brain regions or as response strengthening within a 

cortical region, and are thought to reflect increases in capacity (Kelly & Garavan, 2005; 

Lustig et al., 2009; Lovden et al., 2010; Flegal et al., 2019; Pappa et al., 2020). Activation 

decreases, on the other hand, are thought to reflect neural efficiency, i.e., fewer 

resources are needed to perform the same task after training than before training (Kelly 

& Garavan, 2005; Lustig et al., 2009; Lovden et al., 2010; Flegal et al., 2019; Pappa et al., 

2020). 

 
1.8 Structural plasticity and cognitive training 
 

In addition to functional changes, the learning of a novel skill also relies upon 

anatomical changes in the brain (e.g., Draganski et al., 2004; Pascual-Leone et al., 2005; 

Scholz et al., 2009; Takeuchi et al., 2010; Sagi et al., 2012; Xiao et al., 2016). Experience-

dependent functional plasticity can be accompanied by structural changes in both grey 

and white matter (e.g., Draganski et al., 2004; Scholz et al., 2009). Structural 

modifications in grey matter could reflect underlying cellular mechanisms including 

synaptogenesis and dendritic arborisation as shown in animal studies (e.g., Volkmar & 

Greenough, 1972; Turner & Greenough, 1985; Knott et al., 2002; Xu et al., 2009; Yang et 

al., 2009). Further evidence from animal studies suggests that white matter modifications 

as a result of experience could reflect changes in myelination. For example, activity-

dependent myelination has been demonstrated in studies by Demerens et al. (1996) and 

Ishibashi et al. (2006). Exposure to environmental enrichment has been shown to result in 

a higher number of unmyelinated and myelinated axons, and glial cells (Markham et al., 
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2009; Zhao et al., 2012). In an experiment by Hughes et al. (2018), exposure of mice to 

sensory enrichment dramatically increased the frequency of new oligodendrocyte 

integration. The authors suggest that this experience-dependent enhancement of 

myelination may accelerate information transfer in these circuits and strengthen the 

ability of axons to sustain activity by providing additional metabolic support (Hughes et 

al., 2018). These processes by which the brain’s structure alters in response to the 

environment may also underlie changes in cognitive and motor performance as a result of 

training. 

 
With regards specifically to training, changes have been shown in neuron 

morphology, as measured by dendritic density (Greenough et al., 1985; Withers & 

Greenough, 1989), and synaptogenesis (Kleim et al., 2002). Moreover, Kleim et al. (2002) 

have demonstrated that synapse changes were colocalised to the region within which 

functional alterations were observed following extended motor skill training. They 

showed that rats trained to reach and grasp food pellets through a slot have significantly 

more synapses per neuron within layer V of the caudal forelimb area, compared to 

control animals. Such data indicate that both functional and structural plasticity can occur 

simultaneously within the same cortical region, and thus shows that morphological 

changes contribute to the learning of a skilled motor behaviour (Ungerleider et al., 2002). 

Additional evidence for the role of morphological changes in motor skill learning comes 

from recent studies in mice that showed blocking the formation of new oligodendrocytes 

impairs motor learning (McKenzie et al., 2014; Xiao et al., 2016), suggesting that the 

generation of new myelin is an important form of plasticity used to modify the properties 

of circuits in the brain (Hughes et al., 2018). For example, McKenzie et al. (2014) knocked 

out cells responsible for laying down insulating myelin along axons in the brains of adult 

mice. The mice lacking the myelin-forming oligodendrocytes were less able to learn a new 

complex motor skill involving running on a wheel with unevenly spaced bars. 

Furthermore, Gibson et al. (2014) used optogenetic stimulation of the premotor cortex in 

awake, behaving mice to demonstrate that neuronal activity promotes 

oligodendrogenesis, and increases myelination within the deep layers of the premotor 

cortex and subcortical white matter. They were able to show that this neuronal activity–
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regulated oligodendrogenesis and myelination is associated with improved motor 

function of the corresponding limb. 

 
As discussed, invasive procedures in animals are able to detect structural changes 

following training (e.g., Greenough et al., 1985; Withers & Greenough, 1989; Kleim et al., 

2002; Xu et al., 2009; Xiao et al., 2016). In humans, structural effects can be detected in 

vivo by non-invasive techniques such as magnetic resonance imaging (MRI), which can 

provide invaluable information on neuroplasticity. Indeed, structural imaging techniques 

have been used to evaluate changes in the brain as a result of motor skill training (e.g., 

Draganski et al., 2004; Scholz et al., 2009). The structural changes observed in the human 

brain after extensive training include modifications in grey matter volume and cortical 

thickness (e.g., Maguire et al., 2000; Draganski et al., 2004, 2006). Draganski et al. (2004) 

used voxel-based morphometry to investigate region-specific changes in grey matter in 

participants that received training in a complex visuomotor skill (i.e., juggling). They found 

that participants in the juggling group demonstrated a significant bilateral expansion in 

grey matter in the mid-temporal area and overlying the left posterior intraparietal sulcus. 

In addition, there was a close relationship in these regions between the structural grey 

matter changes and juggling performance. These findings indicate that training-induced 

behavioural plasticity is also reflected at a structural level (Draganski et al., 2004). 

 
Diffusion MRI provides unique insight into tissue microstructure and is arguably 

the most promising candidate for in vivo quantification of structural brain changes (Zhang 

et al., 2012). Alterations in brain microstructures are often the precursors of volumetric 

changes (Kodiweera et al., 2016). This means that microstructural imaging biomarkers, 

such as those derived from diffusion MRI, are potentially more sensitive and altered 

earlier than the structural changes found with traditional volumetric analyses using T1-

weighted voxel-based morphometry (Kodiweera et al., 2016). Currently, the standard 

diffusion MRI technique is diffusion tensor imaging (DTI) (Basser et al., 1994). DTI is 

sensitive to the displacement and hindrance of water molecules resulting from local 

tissue boundaries (Scholz et al., 2009; Lerner et al, 2014). DTI provides simple markers, 

such as mean diffusivity (MD) and fractional anisotropy (FA), which are widely used as 

measures of microstructure in the brain and serve respectively as indices of tissue 
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density, and fibre organisation/directionality (Pierpaoli & Basser, 1996). The structural 

remodelling of brain tissue leads to a change in its water diffusion properties (i.e., a 

change in the tissue boundaries leads to a change in the displacement and hindrance of 

water molecules, which can be measured with DTI) (Assaf & Pasternak, 2008; Barazany et 

al., 2009; Blumenfeld-Katzir et al., 2011; Sagi et al., 2012). These changes in diffusion 

properties are thought to be the result of an increase in tissue density (due to, for 

example, reshaping of neuronal or glial processes), or enhancement of tissue organisation 

(for example, strengthening of axonal or dendritic processes) (Assaf & Pasternak, 2008; 

Sagi et al., 2012).  

 
Although conventional diffusion MRI techniques such as DTI have been widely 

used as an indicator of white matter integrity in studies of ageing and training (e.g., 

Engvig et al., 2012, Lovden et al., 2010; Metzler-Baddeley et al., 2017), the DTI model has 

two key limitations. First, diffusion indices such as FA and MD are average measurements 

across a voxel from multiple different compartments, including both intracellular and 

extracellular spaces that are likely to have varying shapes, orientations, and diffusivities 

(Kodiweera et al., 2016). Therefore, DTI is sensitive to tissue microstructure but lacks 

specificity for individual tissue features (Pierpaoli et al., 1996; Zhang et al., 2012; Jones et 

al., 2013). Hence, a change in these measurements cannot be attributed to specific 

changes in tissue microstructure (Pierpaoli et al., 1996; Zhang et al., 2012; Jones et al., 

2013; Jelescu et al., 2016). For example, a reduction in FA may be caused by a reduction 

in neurite density, an increase in the dispersion of neurite orientation distribution, as well 

as various other tissue changes (Beaulieu, 2009; Zhang et al., 2012). Second, the diffusion 

indices assume fibre bundles are parallel, and thus are inaccurate in microstructural 

environments containing crossing fibres as found in areas of complex axonal or dendritic 

architecture (Jeurissen et al., 2013; Jones et al., 2013; Vos et al., 2012). Indeed, crossing 

fibres are thought to occur in around 90% of the brain’s white matter (Jeurissen et al., 

2013). More recently developed models of diffusion MRI are designed to overcome these 

issues. 

 
Neurite orientation dispersion and density imaging (NODDI) is a form of diffusion 

MRI that can be used to estimate the microstructural complexity of dendrites and axons 
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(Zhang et al., 2012). Zhang et al. (2012) proposed a model of microstructure consisting of 

individual compartments for three different tissue environments: intraneurite, 

extraneurite, and cerebrospinal fluid (CSF). The NODDI model separates the signal arising 

from these three different tissue environments: intracellular (characterised by restricted 

diffusion), extracellular (characterised by hindered diffusion), and CSF (characterised by 

unrestricted diffusion) (Figure 1.1). Significantly, it is an improvement on other diffusion 

MRI techniques due to the ability to differentiate between these three different (and 

more specific) microstructural indices. For example, results have demonstrated that 

NODDI generates sensible measures of neurite density and orientation dispersion, 

thereby disentangling two key contributing factors to FA and enabling the analysis of each 

factor individually (Zhang et al., 2012). This means that NODDI indices are less ambiguous 

microstructural interpretations, in addition to being more likely to detect small-scale 

changes as a result of cognitive training than alternative structural MRI techniques.  
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Figure 1.1. The NODDI technique and how it differs from traditional DTI. In DTI, a diffusion tensor 

models three orthogonal axes of diffusion (V1, V2, V3), from which FA and MD can be estimated. 

NODDI models diffusion according to three compartments: restricted diffusion in the intracellular 

compartment, hindered diffusion in the extracellular compartment, and free diffusion in CSF. 

From this model, parameter maps representing the neurite density index (NDI) and orientation 

dispersion index (ODI) can be estimated. Yellow circles highlight a region where changes in FA can 

be accompanied by changes in both NDI and ODI. From Rae et al., 2017. 



29 
 

1.9 Experiment 1: Perceptual-cognitive-motor training in middle-aged adults 
 

In a first experiment, we investigated the functional and structural correlates of 

short-term training on a novel and complex perceptual-cognitive-motor task in healthy 

middle-aged adults (40-50 years old). As discussed, middle-age might be the optimal time 

at which to start training interventions, given that cognitive function, motor skill learning 

ability, and grey matter volume appear to start declining around this age (e.g., Gershon, 

1978; Courchesne et al., 2000; Voelcker-Rehage & Wilimczik, 2006; Janacsek et al., 2012). 

Indeed, training in the elderly may be less effective as decline is rapid and pathology may 

have already set in (Deary et al., 2009), whereas the impact of training in young adults 

may be reduced when the individual is already functioning at their optimal level. As such, 

we sought to investigate training in middle-aged adults. This is the first study to examine 

neuroplasticity in a complex perceptual-cognitive-motor task in this age group. 

 
The perceptual-cognitive-motor (PCM) task that we used in our study was adapted 

from Bennett and colleagues (2018). It is a computer-based task that requires the 

continuous identification of relevant from irrelevant stimuli, planning and selection of 

appropriate actions from more than one available option, and the execution of actions 

under time constraints. Successful completion of the PCM task requires motor as well as 

cognitive processes (including decision making, working memory, attention, and pattern 

recognition). Motor skill acquisition in particular is thought to be the integrative product 

of multiple functions and neural mechanisms, each contributing to a different aspect of 

learning (Hikosaka et al., 2002). Therefore, motor skill training might be a promising 

avenue to prevent decline in later life. Consequently, we decided to use the PCM task as it 

is multidomain, including motor, cognitive, and perceptual elements, and this form of 

training has been shown to be particularly effective in improving cognitive function (e.g., 

Green & Bavelier, 2003; Basak et al., 2008; Lustig et al., 2009; van Muijden et al., 2012). 

 
Motor skill training has been extensively studied in young adults and is thought to 

follow several distinct stages including an early, fast learning stage in which considerable 

improvement in performance can be seen within a single training session; and a later, 

slow learning stage in which further gains can be observed across several sessions of 

practice (e.g., Nudo et al., 1996; Karni et al., 1998; Ungerleider et al., 2002; Doyon et al., 
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2003; Krakauer et al., 2005; King et al., 2013). In addition, the neural substrates 

underlying motor skill learning have been extensively characterised (for reviews see: 

Grafton et al., 1995; Ungerleider et al., 2002; Doyon et al., 2003; Penhune & Steele, 2012; 

King et al., 2013). The brain regions involved in motor skill learning differ depending on 

whether it is the early or late phase of training, and on the nature of the cognitive 

processes required (e.g., learning by trial and error, implicit learning, etc.) (Doyon et al., 

2003; Coynel et al., 2010).  

 
The early, fast learning phase of motor skill acquisition (i.e., session 1) elicits 

widespread activation in subcortical areas (basal ganglia, cerebellum, hippocampus), as 

well as relevant cortical areas (supplementary motor area: SMA, preSMA, primary motor 

cortex: M1, premotor cortex, anterior cingulate, inferior parietal regions, and dorsolateral 

prefrontal cortex: dPFC) (e.g., Sakai et al., 1998; Doyon & Ungerleider, 2002; Ungerleider 

et al., 2002; Floyer-Lea & Matthews, 2005; Albouy et al., 2008; Albouy et al., 2012). The 

pattern of activation in these different structures changes as a function of learning (King 

et al., 2013). For example, activity in the striatum increases while activity in the 

cerebellum decreases with training (Grafton et al., 1994; Grafton et al., 1995; Doyon et 

al., 1996; Penhune & Doyon, 2002; Ungerleider et al., 2002; Doyon et al., 2003). The 

cerebellum is especially critical for early motor sequence learning, not only for error 

detection and correction, but also for the acquisition of sequence knowledge (e.g., Seidler 

et al., 2002; Tamás Kincses et al., 2008; Doyon et al., 2009; Steele & Penhune, 2010; King 

et al., 2013). Cerebellar activity decreases with practice and may become undetectable 

when the sequential movements are well learned (Grafton et al., 1994; for review, see 

Doyon & Ungerleider, 2002). Notably, researchers have also reported striatal activations 

in the early phase of motor sequence learning, when participants have to rely more 

strongly on the use of cognitive strategies and working memory (Jenkins et al., 1994; 

Jueptner et al., 1997; Toni et al., 1998; Ungerleider et al., 2002). Further, the ability to 

perform complex problems has been shown to be initially supported by extensive 

attentional and strategic resources, which engage a prefrontal, orbitofrontal, and anterior 

cingulate network (Minati & Sigala, 2013). With practice, these resources are gradually 

replaced by access to long term working memory for familiar material, which engages 

predominantly occipital and medial temporal areas (Minati & Sigala, 2013). Regions such 
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as the sensorimotor territory of the basal ganglia, ventrolateral prefrontal cortex (vPFC), 

intraparietal sulcus, precuneus, and inferior parietal area, show increased activation 

during later stages of motor sequence learning, while the cerebellum, anterior cingulate, 

premotor cortex, and inferior parietal regions, show significant reductions in activity 

(Doyon, 1997; Sakai et al., 1998; Doyon & Ungerleider, 2002; Ungerleider et al., 2002; 

Doyon et al., 2003; Lehéricy et al., 2005; King et al., 2013). Therefore, distinct cerebellar–

basal ganglia–cortical networks are engaged during the early and late phases of motor 

skill training, and different regions are involved depending on the cognitive processes 

required (Coynel et al., 2010; King et al., 2013). 

 
Doyon and Ungerleider (2002) have proposed a framework for interpreting this 

complex pattern of brain activation underlying motor skill learning. At the heart of this 

framework operate two loop circuits, a cortico-striatal and a cortico-cerebellar system, 

which are both recruited and operate in parallel during the fast learning stage (Figure 

1.2). Specifically, early in the learning phase the following structures are recruited: the 

striatum, cerebellum, motor cortical regions (e.g., premotor cortex, SMA, preSMA, 

anterior cingulate), as well as prefrontal and parietal areas. Dynamic interactions 

between these structures are believed to be critical for establishing the motor routines 

necessary for learning new skilled motor behaviours (Doyon & Ungerleider, 2002; 

Ungerleider et al., 2002; Doyon et al., 2003; Doyon & Benali, 2005).  
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Figure 1.2. Model of motor skill learning. Cortico-striatal and cortico-cerebellar systems are both 

recruited during the fast learning stage of motor skill training. Both motor sequence and motor 

adaptation tasks recruit similar cerebral structures early in the learning phase: the striatum, 

cerebellum, motor cortical regions (e.g., premotor cortex, SMA, pre-SMA, anterior cingulate), as 

well as prefrontal and parietal areas. As learning progresses after consolidation in the slow 

learning phase, however, representational changes can be observed. From Doyon et al., 2003. 
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Similarly, in a model proposed by Hikosaka et al. (2002), two loop circuits are 

recruited which specialise in learning spatial and motor features of sequences 

independently, and in different coordinates (Figure 1.3). Learning spatial coordinates is 

supported by a frontoparietal-associative striatum-cerebellar circuit, while learning motor 

coordinates is supported by an M1-sensorimotor striatum-cerebellar circuit. For example, 

for simple reaching to a visual target, the target position is first coded in spatial 

coordinates — centred around the eye, head, or object — and then converted to motor 

coordinates — such as joint angles or muscle forces. The Hikosaka et al. model suggests 

that this coordinate transformation process depends on the SMA, pre-SMA, and 

premotor cortices. Importantly, it is argued that learning spatial coordinates is usually 

explicit and faster as it may be accompanied by increased attention or working memory, 

putatively involving prefrontal and parietal cortical regions (Miller & Cohen, 2001). By 

contrast, motor coordinates are usually processed implicitly and require minimum 

attention, therefore they are slowly acquired during learning. Both models share the view 

that motor skill learning involves interactions between distinct cortical and subcortical 

structures, crucial for the unique cognitive and control demands associated with skill 

acquisition (Doyon & Ungerleider, 2002; Hikosaka et al., 2002). 
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Figure 1.3. Scheme of motor skill learning. A sequence of movements is represented in spatial 

coordinates and motor coordinates. The left side of the figure is characteristic of the spatial 

sequence, the right side is characteristic of the motor sequence. Learning spatial coordinates is 

supported by a frontoparietal-associative striatum-cerebellar circuit, while learning motor 

coordinates is supported by an M1-sensorimotor striatum-cerebellar circuit. The coordinate 

transformation process depends on the SMA, pre-SMA, and premotor cortices. Spatial sequences 

are usually processed explicitly and therefore quickly acquired, but require maximum attention. 

Motor sequences are usually processed implicitly and therefore slowly acquired, but require 

minimum attention. BG = basal ganglia and CB = cerebellum. From Hikosaka et al., 2002. 

 

 
For the current experiment, we sought to characterise functional plasticity at the 

early stage of training, and as such, we used functional magnetic resonance imaging 

(fMRI) to investigate changes in activation over 1 session of practice. Therefore, we 

expected training-induced increases in activity in cognitive and motor networks as per the 
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early learning phase of motor skill acquisition in the Doyon and Ungerleider (2002) and 

Hikosaka et al. (2002) models. Specifically, we expected PCM learning to be supported by 

increased activity in the striatum, cerebellum, hippocampus, parahippocampus, SMA, 

preSMA, M1, premotor cortex, anterior cingulate, dPFC, orbitofrontal cortex (oPFC), and 

inferior parietal cortex. In addition, we sought to link functional plasticity as a result of 

training, with underlying structure. Diffusion imaging provides a promising opportunity to 

image the structural underpinnings associated with learning and task performance. Thus, 

we used both DTI and NODDI to analyse microstructural variation in grey and white 

matter in relation to training outcome. 

 
1.10 Experiment 2: Working memory, attention, and executive function training in 
middle-aged adults 
 

In a second experiment, we tested the effectiveness of longer-term cognitive 

training (4-6 weeks) in improving overall cognitive function in healthy middle-aged adults 

(40-50 years old). This age group are not performing at their peak, but still have time to 

implement lifestyle changes and training programmes that may improve their cognitive 

resilience and quality of life in older age. In addition, we examined how the brain 

responds to this training and investigated any resulting structural and functional brain 

changes. This is the first study to examine longer-term cognitive training and 

neuroplasticity in middle-aged adults.  

 
 The cognitive training programme in this study included several tasks targeting 

working memory, attention, and other executive functions, such as inhibition. Working 

memory provides temporary storage and manipulation of information essential for 

complex cognitive tasks such as language comprehension, learning, and reasoning 

(Baddeley, 1992). The classic working memory model consists of three components: an 

attentional control system or “central executive”, responsible for the regulation of 

cognitive processes, i.e., executive functions; a visuospatial sketchpad which manipulates 

visual images; and a phonological loop which manipulates speech-based information 

(Baddeley, 1992; Miyake et al., 2000). Furthermore, it has been argued that executive 

functioning depends upon three processes: 1. shifting attention between tasks and active 

representations; 2. inhibition of automatic responses and irrelevant information; and 3. 
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working memory updating, i.e., modifying the content of working memory according to 

incoming information (Miyake et al., 2000; Nee et al., 2013; Pappa et al., 2020). 

Therefore, we aimed to target these particular processes in our training programme with 

a view to improving broad cognitive abilities, thus increasing the probability of transfer to 

untrained tasks. 

 
Substantial benefits of working memory training have been widely reported (e.g., 

Klingberg et al., 2005; Jaeggi et al., 2008; Schmiedek et al., 2010; Dunning et al., 2013; 

Caeyenberghs et al., 2016; Emch et al., 2019). For example, Caeyenberghs et al. (2016) 

compared adaptive working memory training to non-adaptive training in younger adults 

aged 19-40 years old. Adaptive working memory training led to significant improvement 

on untrained working memory tasks (near transfer), and generalisation to tasks of 

reasoning and inhibition (far transfer), compared to the non-adaptive group. Recent work 

by Emch and colleagues (2019) used an adaptive verbal working memory training (N-back 

task) in adults aged 50–65 years old. The active control group performed a non-adaptive 

low-level of the same verbal working memory training (fixed level of 1-back task). They 

found significant near transfer to another verbal working memory task (HAWIE-R digit 

span forward task) in the adaptive group compared to the active control, indicating that 

the training generally improved performance in this cognitive domain (far transfer effects 

were not tested for in this study). Indeed, working memory training gains have been 

found at all ages from the preschool years through to late adulthood (Wass et al., 2012; 

Melby-Lervag & Hulme, 2013; Sonuga-Barke et al., 2013; Karbach & Verhaeghen, 2014; 

Gathercole et al., 2019). Thus, working memory training may lead to fundamental 

improvements in a cognitive system critical for everyday functioning across the lifespan 

(Baltes et al., 1999; Schmiedek et al., 2010; Gathercole et al., 2019). 

 
Studies targeting attention that require participants to inhibit interference or 

switch attention have also produced reliable results (e.g., Willis et al., 2006; Bherer et al., 

2008; Mozolic et al., 2009). For example, Mozolic and colleagues (2009) investigated the 

effects of a cognitive training intervention aimed at helping individuals suppress 

irrelevant auditory and visual stimuli. Participants received 8 weeks of either the 

attention training programme or an educational lecture control programme. Participants 
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in the intervention programme showed significantly larger improvements than the 

control group in untrained domains such as processing speed and dual-task completion, 

demonstrating the utility of attention training for improving cognitive function. 

 
Furthermore, Mowszowski et al. (2016) showed that executive function training 

including planning, reasoning, and problem-solving resulted in maintained improvements 

up to ten years, with accompanying evidence of far transfer to general cognitive abilities. 

Willis et al. (2006) showed that training conferred sustained benefit in cognitive function 

for participants. Specifically, episodic memory, speed of processing, and divided attention 

training predominantly enhanced performance in these specific functions (near transfer), 

while improvements associated with executive function training generalised to other 

cognitive domains (far transfer). Moreover, these effects were maintained 5 years after 

the initiation of the intervention. Therefore, given that attention, executive function, and 

working memory training seem to be particularly beneficial and can result in widespread 

transfer (Schmiedek et al., 2010; Karbach & Verhaeghen, 2014; Pappa et al., 2020), we 

focused on a training intervention that targets these domains. 

 
To measure transfer of training-related cognitive improvements, we used the 

Raven Advanced Progressive Matrices (RAPM: Raven & Court, 1998), an associative 

learning task (PAL), an associative memory task (PAR), and a working memory task (N-

back). The RAPM was used to investigate far transfer by measuring each participant’s 

fluid intelligence before and after cognitive training. Fluid intelligence refers to the ability 

to solve novel reasoning problems independently of previously acquired knowledge 

(Cattell, 1963; Jaeggi et al., 2008). It is critical for a wide variety of cognitive activities, and 

is considered one of the most important factors in learning (Cattell, 1963; Jaeggi et al., 

2008). Previous research has demonstrated that fluid ability can benefit from cognitive 

training (e.g., Basak et al., 2008; Jaeggi et al., 2008; Stine-Morrow et al., 2008; Karbach & 

Kray, 2009; Buschkuehl & Jaeggi, 2010; Strenziok et al., 2014). For example, Jaeggi and 

colleagues (2008) showed that intense training with a demanding working memory task 

(dual N-back, spatial and verbal) led to generalised improvements of fluid intelligence as 

measured by the RAPM. In the Jaeggi et al. (2008) study, transfer resulted even though 
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the trained task (dual N-back) was very different from the intelligence test itself (RAPM) 

(i.e., far transfer). 

 
Pair-associative learning (PAL) and pair-associative retrieval (PAR) tasks were used 

to measure far and near transfer effects, respectively. Associative learning refers to the 

binding of objects commonly seen together in the environment to become linked in our 

mind (Curtis & D'Esposito, 2003; Ranganath, 2006; Ciaramelli et al., 2008; Albright, 2012; 

Pfeifer et al., 2014, 2016). Associative memory involves the retrieval of the associated 

objects from memory to guide future behaviour, and draws on multiple cognitive 

mechanisms that include bottom-up perception and top-down imagery, as well as 

attention, and working memory (Curtis & D'Esposito, 2003; Ranganath, 2006; Ciaramelli 

et al., 2008; Albright, 2012; Pfeifer et al., 2014, 2016). The result of these processes is an 

experience of declarative memory, i.e., the conscious recollection of associated stimuli or 

events that constitute our factual knowledge (semantic memory), or personal experiences 

(episodic memory) (Curtis & D'Esposito, 2003; Ranganath, 2006; Ciaramelli et al., 2008; 

Albright, 2012; Pfeifer et al., 2014, 2016). There are previous reports of transfer to 

associative memory from cognitive training (Schmiedek et al., 2010; Rudebeck et al., 

2012; Toril et al., 2016; Flegal et al., 2019). For example, Flegal and colleagues (2019) 

used an adaptive working memory training programme and found transfer to an 

untrained associative memory task (Object-Location Association task). 

  
The N-back task was used to measure training-induced near transfer effects. The 

N-back was originally developed by Kirchner (1958) as a visuospatial task, and by 

Mackworth (1959) as a visual letter task, for measuring working memory. The task 

involves various cognitive processes, such as working memory updating, which includes 

the encoding of incoming stimuli, the monitoring, maintenance, and updating of the 

sequence to store the last N elements, and stimulus matching (matching the current 

stimulus to the one presented N positions back in the sequence) (Jaeggi et al., 2010; 

Schmiedek et al., 2014; Pergher et al., 2018; Pappa et al., 2020). In addition, it involves a 

number of core executive functions besides working memory, such as inhibitory control 

and cognitive flexibility, problem solving, decision making, and selective attention (Kane 

& Engle, 2002; Pergher et al., 2018). Thus, the N-back task was selected as a test of near 
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transfer as it includes the working memory, attention, and inhibition components of the 

cognitive training programme used in this study.  

 
In addition to investigating the behavioural effects of cognitive training, we 

assessed training-induced functional changes. The N-back and PAR transfer tasks were 

selected for task-based fMRI. The N-back task has been shown to consistently activate 

regions involved in working memory (i.e., fronto-parieto-cerebellar circuitry and 

subcortical regions such the striatum) (Wager & Smith, 2003; Owen et al., 2005; Rottschy 

et al., 2012; Nee et al., 2013; Salmi et al., 2018; Emch et al., 2019). Key regions forming 

the neural basis of working memory comprise the vPFC; dPFC; frontal pole; posterior 

parietal cortex; inferior temporal cortex; striatum; and cerebellum (Curtis & D'Esposito, 

2003; Wager & Smith, 2003; Ranganath et al., 2004; Ranganath, 2006; Nee et al., 2013; 

Salmi et al., 2018; Emch et al., 2019; Pappa et al., 2020). In addition, the PAR task also 

engages the working memory regions discussed above (Wager & Smith, 2003; Owen et 

al., 2005; Rottschy et al., 2012; Nee et al., 2013; Salmi et al., 2018; Emch et al., 2019). 

Thus, the working memory training in our programme was expected to engage these 

areas, thereby inducing functional plasticity that would translate to an improvement on 

untrained tasks that require the same processes (i.e., the N-back and PAR tasks). We 

therefore expected training-related changes in activity in vPFC, dPFC, frontal pole, 

superior parietal cortex, inferior parietal cortex, inferior temporal cortex, striatum, and 

cerebellum during performance of the N-back and PAR tasks. 

 
To further investigate the neural mechanisms involved in transfer of training gains, 

we used the NODDI technique in addition to traditional DTI. Thus, we examined the 

underlying microstructural alterations that may occur following cognitive training, 

thought to indicate experience-dependent plasticity. Indeed, it’s suggested that cognitive 

training results in durable changes in neural infrastructure supporting transfer of training 

(Schmiedek et al., 2010; Strenziok et al., 2014). If cognitive training can enhance cognitive 

resilience and improve, maintain, or reduce decline in cognitive function, this could 

potentially have an enormous public health impact (Gates & Sachdev, 2014; Corbett et 

al., 2015). An understanding of the neural mechanisms underlying training-induced 
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plasticity that may drive improvement in task performance, could aid in the development 

of effective cognitive training programmes. 

 
This thesis aimed to investigate how the brain responds to cognitive training in 

healthy middle-aged adults, with a view to improving cognitive function and potentially 

preventing age-related decline in later life. We sought to characterise both functional and 

structural neuroplasticity as a result of training with task-based fMRI, and diffusion-

weighted MRI. If cognitive training results in improved cognitive function, then significant 

gains in performance should be observed for the training tasks. Specifically, we should 

see improvements on the PCM training task in the first experiment, and on the working 

memory, attention, and inhibition training tasks in the second experiment. Furthermore, 

if training results in an improvement in the general cognitive functioning of middle-aged 

adults, then we should observe significantly improved performance on the transfer tasks. 

We also predicted both structural and functional brain changes as a result of training, 

indicating neuroplastic events that may underlie improved cognitive function and 

successful transfer of training gains to untrained tasks. If cognitive training is effective at 

inducing brain changes and improving broad cognitive abilities in middle-aged adults, 

then this may be an important step towards designing large-scale interventions that can 

have a positive impact on healthy cognitive ageing. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



41 
 

 
 

  Chapter 2: Methods 
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2.1 Perceptual-cognitive-motor training in middle-aged adults: Behavioural and 
MRI experiment (Chapter 3) 
 

The aim of this experiment was to investigate the functional and structural 

correlates of short-term training on a novel and complex perceptual-cognitive-motor task 

in healthy middle-aged adults (40-50 years old). We sought to characterise functional 

plasticity at the early stage of training, and as such, we used functional magnetic 

resonance imaging (fMRI) to investigate changes in activation over 1 session (160 trials = 

31 minutes of training). In addition, we sought to link functional plasticity as a result of 

training, with underlying structure. Thus, we used both DTI and NODDI to analyse 

microstructural variation in grey and white matter in relation to training outcome. 

 
2.1.1 Participants  
 

A sample size calculation was performed using the G*Power calculator v. 3.1.9.2 

(Faul et al., 2007). The sample size calculation for the current study was based on the 

effect size results of Uji, Bennett, Hayes, and Ford (unpublished data) demonstrating that 

practice at the perceptual-cognitive-motor task led to improved performance for the 

training group with a large effect size of ηp
2 = .49. The current study was therefore 

powered to detect a large effect size (t = 1.73) and required a total sample size of 21. 

Twenty one participants would allow the study to detect differences at a significance level 

of 0.05 with a 95% probability. Twenty-two middle-aged adults between 40 and 50 years 

old took part in this experiment after giving informed, written consent. Participants were 

compensated for their time. They were recruited from the University of Brighton and 

from the local community using e-mail advertisement and via posters in the local area. All 

participants had normal or corrected-to-normal vision and were right–hand dominant. 

The participants had no history of psychiatric or neurological illness, or brain injury. 

Participants also had no history of alcohol or drug use disorders. Participants were not 

taking prescribed medications at the time of the experiment. All participants were 

carefully screened for MRI contraindications, such as pacemakers, metal within the body, 

or claustrophobia. Due to low task-engagement during the session, one participant was 

excluded, leaving 21 participants in the final sample (female: n = 11; age: M = 44.67 years, 

SD = 3.23) in a within-subjects study design. The mean number of years of education for 
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the sample was 18.24 (SD = 2.72). The study was reviewed and approved by the Brighton 

and Sussex Medical School Research Governance and Ethics Committee.  

 
2.1.2 Procedure 

 
All participants underwent one MRI scanning session. Participants received 

written instructions for the perceptual-cognitive-motor task (Appendix I, pg. 278) and saw 

an example of the task on a computer screen just prior to starting the scanning session. 

Participants then underwent the scanning procedure (Figure 2.1), during which they first 

habituated to the scanner and MRI computer mouse used for the task by completing 8 

practice trials (~1min) of the perceptual-cognitive-motor task. They used a fibre-optic 

MRI-compatible mouse (FOM-2B-10B, NAtA technologies, Canada) to control the white 

cursor on the screen, such that it reached the red target while avoiding the green objects. 

They then completed 80 trials (~15min) of the task in a pre-training phase while 

undergoing fMRI scanning. Following this, they completed 72 trials during a training 

phase while undergoing structural and diffusion scanning. The training phase was divided 

into two parts: 24 trials (~6min) were completed during a T1 structural scan, and 48 trials 

(~9min) were completed during a NODDI/DTI scan. Finally, they repeated 80 trials 

(~15min) of the task during a post-training phase while undergoing fMRI scanning. 

 

 

 

Figure 2.1. MRI protocol: participants completed 8 practice trials of the PCM task (no scan, 1min), 

followed by 80 trials (fMRI scan, 15min), then 24 trials (T1 scan, 6min), then 48 trials (NODDI/DTI 

scan, 9min), and finally, they completed 80 trials (fMRI scan, 15min). 
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Perceptual-cognitive-motor task 

 

The perceptual-cognitive-motor (PCM) task (Figure 2.2) was adapted from Bennett 

and colleagues (2018). It is novel and computer-based, requiring participants to move a 

cursor to a target while avoiding random moving objects, and requires the selection of 

appropriate actions to execute from more than one available option.  

 

 

 

 

Figure 2.2. PCM task: the goal is to move the white cursor to the red target while avoiding a 

number of green circles that move around on the screen. The onsets of each phase of the trial are 

shown; t denotes time in the trial. Adapted from Bennett et al., 2018. 

 

 

 

The task goal was for participants on each trial to move the cursor (represented by 

a white circle on the screen) from the bottom corner of the computer screen to a red 

circle target located in the diagonal corner of the screen. The white cursor would appear 

in either the bottom left or bottom right of the screen. The starting positions of the white 

cursor changed pseudo-randomly from trial-to-trial, but with an equal number of these 

two possible starting positions across the experiment. To achieve the task goal, 

participants had to move the white cursor to the red target while avoiding a number of 
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green objects (N = 20 circles) that were moving around the screen on pseudo-randomised 

linear trajectories. After 6s the group of 20 green circles (2x diameter of the white cursor) 

appeared onscreen. When the green objects started their linear movement (after 8s), 

participants were able to move the white cursor freely on the screen with the goal of 

reaching the red target. The green objects moved around on the screen with pre-

programmed linear trajectories. There were four different movement patterns for the 

green objects that each began with the same start positions. A total of eight movement 

patterns across the two starting positions were created by mirroring the original four 

movement patterns relative to either of the two starting positions of the white cursor in 

an attempt to have equal task difficulty on each starting position. Participants were 

unaware of either the gain relationship of the white cursor movement or the number of 

different movement patterns of the green objects. If the white cursor touched one of the 

green objects, the trial ended and was deemed unsuccessful. If the white cursor reached 

the red target, the trial ended and was recorded as successful. Participants were not 

restricted in their response times in each trial, therefore each trial time was recorded, 

and the experiment continued until all trials had been completed. The MRI-compatible 

computer mouse was held by participants in their right hand and was moved on an MRI-

compatible tray and mouse pad to control the cursor location on the computer screen.  

 

2.1.3 MRI data acquisition 

 

fMRI 

 

Imaging data were collected using a Siemens Magnetom Avanto 1.5-T MRI scanner 

(Siemens, Erlangen, Germany) with a 32-channel phased-array head coil, tuned to 66.6 

MHz. The PCM task was presented on an in-bore rear projection screen, at a viewing 

distance of approximately 45 cm, subtending 5° of visual angle. Stimuli were delivered 

using Cogent 2000 v1.32 running under MATLAB R2015a (The MathWorks, Inc., Natick, 

MA). Time-course series of the two runs were acquired using a T2*-weighted echo planar 

imaging (EPI) sequence, obtaining 354 volumes during run 1 of the PCM task (pre-

training) and 354 volumes during run 2 of the PCM task (post-training). Each volume 

consisted of 34 axial slices oriented 30° to the AC–PC line and covering the whole brain. 

Slices were acquired bottom–up in the sequential mode. The following functional imaging 
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parameters were used: repetition time (TR) = 2520 ms, echo time (TE) = 43 ms, flip angle 

= 90°, matrix = 64 × 64, field of view (FoV) = 192×192 mm, slice thickness = 3.0 mm with a 

20% gap, resulting in 3.0 mm isotropic voxels.  

 

Structural T1 

 

A whole-brain, high-resolution T1-weighted 3D structural image was obtained 

using a magnetisation-prepared gradient-echo sequence, consisting of 192 contiguous 

axial slices (TR = 2730 ms, TE = 3.57 ms, flip angle = 7°, matrix = 256 × 240, FoV = 256 × 

240 mm, 1.0 mm isotropic voxel size). The T1-weighted image was used as an anatomical 

reference for each participant’s functional data. 

 

Diffusion MRI 

 

Multi-shell diffusion-weighted data were acquired with single-shot, twice-

refocused pulse gradient spin-echo EPI using multiband (MB) acceleration factor 2. Sixty 

axial slices oriented in parallel to the AC–PC line and covering the whole brain were 

acquired with the following parameters: TR = 4036 ms, TE = 95 ms, matrix size = 96 x 96, 

FoV = 240 x 240 mm, 2.5 mm isotropic voxel size. Two b-value shells were acquired, b = 

800 and 2000 s/mm2 with 30 and 60 non-collinear diffusion-weighted directions, 

respectively. The images included a total of 9 non-diffusion-weighted volumes (b = 0). 

Further images with b = 0 were acquired in the opposite phase encoding direction in 

order to estimate and correct for susceptibility induced distortions.  

 

2.1.4 Data analysis  

 

2.1.4.1 Behavioural data analysis 
 

Statistical Package for the Social Sciences (SPSS IBM V. 22 for Windows) was used 

for analyses. Tests of assumptions were conducted to check that the chosen statistical 

analyses were appropriate for our data. The dependent variable was the number of 

successful trials in which the cursor reached the red target in the pre- and post-training 

phase. Number of successful trials on the PCM task was analysed using a paired samples 

t-test comparing pre- and post-training performance. Statistical significance was set at p < 

.05 (two-tailed). Cohen's d was used as an effect size measure (Cohen, 1992). Cohen's d 
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can be interpreted as: d = .20 (small effect); d = .50 (medium effect); and d =.80 (large 

effect). 

 

2.1.4.2 fMRI analyses 

 

Preprocessing 

 

We compared functional imaging during the pre-training and post-training phase. 

We used SPM12 (Wellcome Trust Centre for Neuroimaging, UCL, London, UK; 

www.fil.ion.ucl.ac.uk/spm) running under MATLAB R2015a for data preprocessing and 

statistical analyses. Preprocessing of functional images included slice time correction to 

the middle slice, spatial realignment to the first image, and unwarping. The T1-weighted 

structural image was coregistered to the mean functional image and subsequently 

segmented to obtain normalisation parameters based on the standard Montreal 

Neurological Institute (MNI) template. The normalisation parameters obtained from 

segmentation were used to transform each participant’s functional images and the bias-

corrected structural image into MNI space. Voxel sizes of the functional and structural 

images were retained during normalisation, and the normalised functional images were 

spatially smoothed using an 8mm full-width-half-maximum (FWHM) Gaussian kernel. 

 

First-level analysis 

 

Statistical analyses were performed using the general linear model. The response 

function was modelled relative to the onsets and durations of each trial, using a canonical 

hemodynamic response function (HRF) available in SPM12. At the single-subject analysis, 

the model was composed of the 2 fMRI runs (Pre-training and Post-training). Each run 

included 2 regressors representing the onset and duration of successful trials and 

unsuccessful trials. Thus, for fMRI run 1 there were two conditions: Pre-training 

_Successful trials and Pre-training_Unsuccessful trials, and for fMRI run 2 there were two 

conditions: Post-training_Successful trials and Post-training_Unsuccessful trials, resulting 

in 4 regressors of interest.  There were 6 regressors of no interest representing motion-

related variance for each fMRI run. A high-pass filter was applied with a period of 128 

seconds to remove low-frequency signals relating to scanner drift and/or physiological 

noise. 
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Second-level analyses 

 

Results of the single-subject analysis were taken to second level to examine 

activation differences following training in regions of interest (ROI). In addition, we tested 

whether performing more accurately (Successful vs Unsuccessful trials) was associated 

with activations in particular brain areas. The subject-specific beta images of Pre-training 

and Post-training Successful and Unsuccessful trials (i.e., Pre-training_Successful, Pre-

training_Unsuccessful, Post-training_Successful, Post-training_Unsuccessful) were 

entered into separate 2 × 2 repeated measures ANOVAs for each ROI using the full 

factorial design specification in SPM12. Testing phase (Pre-training, Post-training) and 

Trial Performance (Successful, Unsuccessful) were entered as within-subject factors to 

look for differences in brain activation for successfully vs. unsuccessfully performed trials 

during the pre- and post-training phases. All main and interaction effects derived from 

the ANOVAs are reported using a statistical significance of p < .05 after False Discovery 

Rate (FDR) correction for multiple comparisons at the cluster level, clusters formed using 

p < .001 (Genovese et al., 2002; Chumbley & Friston, 2009). Significant clusters for all 

analyses were localised according to the Anatomy toolbox (v 2.2b, Eickhoff et al., 2005). 

 

We computed normalised difference scores for the PCM task, such that Difference 

Score = (Post-training score - Pre-training score) / (Post-training score + Pre-training 

score). Higher difference scores indicate a bigger training gain. Correlations were run 

between the difference scores and activity in the ROIs using the contrasts Pre-training > 

Post-training and Post-training > Pre-training, i.e., all trials were included regardless of 

whether successful or unsuccessful. We used the MarsBaR (MARSeille Boîte À Région 

d’Intérêt) 0.44 toolbox for SPM (Brett et al., 2002) to extract the mean percent change in 

beta values of each ROI for the contrasts Pre-training > Post-training and Post-training > 

Pre-training, and correlated this with the difference scores using an in-house script run in 

MATLAB R2015a. 

 

ROIs were selected based on the models for motor skill learning by Hikosaka et al. 

(2002) and Doyon and Ungerleider (2002). These models include the striatum, 

cerebellum, premotor cortex, SMA, preSMA, M1, anterior cingulate, as well as prefrontal 
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and parietal areas. In addition, we included the hippocampus as increases in activity have 

been demonstrated in this region for both the early and later stages of motor training 

(Schendan et al., 2003; Albouy et al., 2008; Fernández-Seara et al., 2009; Gheysen et al., 

2010; King et al., 2013). And finally, the parahippocampal cortex was included as it is 

highly engaged during visuospatial processing (van Strien et al., 2009; Aminoff et al., 

2013; Hohenfeld et al., 2020), a key aspect of the PCM task. We specified 12 anatomical 

ROIs bilaterally: striatum (including caudate and putamen), cerebellum, hippocampus, 

parahippocampus, SMA, preSMA, M1, premotor cortex, anterior cingulate, dPFC, oPFC, 

and inferior parietal cortex. The precuneus and vPFC were selected to serve as control 

regions. We did not expect to see a change in activity in these areas as they show 

increased activation during later stages of motor skill learning (Doyon, 1997; Sakai et al., 

1998; Doyon & Ungerleider, 2002; Ungerleider et al., 2002; Doyon et al., 2003; Lehéricy et 

al., 2005; King et al., 2013). All ROI masks were from the WFU PickAtlas v2.4 (Maldjian et 

al., 2003; http://www.nitrc.org/projects/wfu_pickatlas/).  

 

2.1.4.3 Diffusion MRI analyses 

 

Preprocessing 

 

We used diffusion imaging to examine microstructural differences in grey and 

white matter in relation to training outcome. Diffusion-weighted data sets were analysed 

to produce the NODDI indices of neurite density index (NDI) and orientation dispersion 

index (ODI). In addition, the diffusion tensor imaging (DTI) indices of fractional anisotropy 

(FA) and mean diffusivity (MD) were obtained. 

 

The diffusion images were first corrected for movement and eddy current 

distortions using FMRIB software library (FSL, version 5.0.7, Oxford, UK). Eddy current 

distortions were estimated and corrected for using FSL’s topup tool. Data were 

preprocessed using the NODDI MATLAB toolbox (Zhang et al., 2012; 

http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab) which yielded maps of NDI 

and ODI for each participant. Diffusion tensors were fitted using DTIFIT in FSL, providing 

output maps of FA and MD. All maps were normalised to the MNI space using the 

http://www.nitrc.org/projects/wfu_pickatlas/
http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
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Advanced Normalization Tools (ANTs, version 2.1.0; http://stnava.github.io/ANTs). 

Images were spatially smoothed using a 5mm FWHM Gaussian kernel. 

 

Statistical analyses 

 

To quantify the relationship between performance and brain microstructure, 4 

simple regression analyses were performed in SPM12. Correlations were run between the 

PCM difference scores and the DTI indices of FA and MD, and the NODDI indices of NDI 

and ODI. The whole-brain voxel-wise analyses were conducted using a simple regression 

(converted to t-contrast) procedure. We entered participants’ diffusion maps into 

separate one-sample t-tests for FA, MD, NDI, ODI, and included difference scores as a 

covariate. As we explicitly modelled a constant regressor as the first column of the design 

matrix, we ran the contrasts 0 1 to check for positive correlations and 0 -1 to check for 

negative correlations between each index and difference scores. A statistical significance 

threshold of p < .05 FDR-corrected at the cluster level was used, after clusters were 

formed with an uncorrected p < .001. 
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2.2 Working memory, attention, and executive function training in middle-aged 

adults: Behavioural experiment (Chapter 4) 
 

The aim of this experiment was to test the effectiveness of cognitive training in 

healthy middle-aged adults (40-50 years old). We compared the training condition to an 

active control treatment. Participants in the experimental condition completed an 

adaptive cognitive training programme, while the active control group completed a non-

adaptive version of the same training. To test for training-related improvements in 

cognitive function we examined performance on the training tasks. In addition, to assess 

whether training gains transferred to untrained abilities we examined performance on 

transfer tasks. 

 
2.2.1 Participants  
 

The sample size for this experiment was based on a study by Caeyenberghs et al. 

(2016) that examined transfer effects following working memory training in 40 younger 

adults (M age = 26.5 years). Therefore, we aimed to have a minimum of 40 participants in 

the present experiment. Participants were recruited from the Universities of Sussex and 

Brighton, as well as from the local community. This was carried out using volunteer 

databases available to researchers, e-mail advertisement, social media, and via posters in 

local shopping and leisure centres. A total of 53 middle-aged adults were recruited for 

this study. Participants were pseudo-randomly assigned to either the experimental or 

control group, with the provision to match the groups for age, sex, handedness, and 

education level. All participants were blind to the group they were assigned to. However, 

the experimenter was not blind to group assignment. Participants had normal or 

corrected-to-normal vision. The participants had no history of psychiatric or neurological 

illness, or brain injury. Participants also had no history of alcohol or drug use disorders. 

Participants were not taking prescribed medications at the time of the experiment. They 

were carefully screened for MRI contraindications, such as pacemakers, metal 

contamination, or claustrophobia. Written informed consent was obtained under a 

protocol approved by the Brighton and Sussex Medical School Research Governance and 

Ethics Committee. Participants were compensated for their time. Three participants were 

excluded from further analysis due to failure to complete the training programme. Three 
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were excluded as they were unable to complete the first MRI scanning session. A further 

6 withdrew before the first MRI session as a substantial time commitment was required 

for the study. And 1 participant was excluded due to an incidental finding during the MRI 

scan. Thus, a total of 40 participants (28 females, 12 males) between 40 and 50 years of 

age (M = 44.97 years, SD = 3.07) were included for analysis. Of these, 20 were part of the 

adaptive (experimental) training group (14 females, 6 males; M age = 44.15 years, SD = 

2.94), and 20 were part of the non-adaptive (control) training group (14 females, 6 males; 

M age = 45.80 years, SD = 3.04). The mean number of years of education for the adaptive 

group was 17.30 (SD = 3.80). The mean number of years of education for the non-

adaptive group was 17.15 (SD = 3.10). There were 18 right handed participants in the 

adaptive group, and 19 in the non-adaptive group. 

 

2.2.2 Procedure  
 

To investigate whether regular cognitive training leads to overall improvement in 

cognitive function in middle-aged adults, we used a mixed design with group (cognitive 

training, active control) as a between-subjects factor, transfer task as a within-subjects 

factor (RAPM, PAL, PAR, N-back), and session (pre-training, post-training) as a within-

subjects factor. We compared cognitive training to an active control treatment to ensure 

that any effects observed in the cognitive training group could not be attributed to simple 

test-retest effects (typically performing better the second time, regardless of training), or 

the fact that the trained participants would have more attention paid to them (i.e., the 

Hawthorne effect: Landsberger, 1958), or higher expectations of themselves due to the 

training (Collie et al., 2003; McCarney et al., 2007; Green & Bavelier, 2012). To make sure 

that training conditions were the same for both groups, participants in the experimental 

condition completed an adaptive cognitive training programme, while the active control 

group completed a non-adaptive version of the same training. For participants assigned to 

the adaptive group, the training dynamically changed relative to performance, thus 

keeping task demands challenging and at a high level of difficulty. For participants in the 

non-adaptive group, task difficulty was lower and remained within a constant limited 

range over the entirety of training, regardless of the participant’s performance. Cognitive 

function and transfer effects were assessed using a fluid intelligence test: RAPM (far 
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transfer), a paired associative learning task: PAL (far transfer), a paired associative 

memory task: PAR (near transfer), and a working memory task: N-back (near transfer). 

Participants in both the experimental and control groups received the same detailed 

written instructions for all the tasks (Appendices II, III, and IV, pgs. 279, 281, and 284). 

 

All participants came in for an introductory session lasting about an hour, during 

which the study and MRI scanning were described in detail. They received instructions for 

the N-back task and a demonstration of the task on the computer. And finally, they 

completed the baseline RAPM test. Following this, participants came in for the first 

scanning session and further baseline testing. Participants first learned a set of 8 paired 

associates (PAL) and were then tested on them during a memory task in the scanner 

(PAR). Following which they completed the N-back task, also in the scanner. Participants 

then completed 12 sessions of either the adaptive or non-adaptive training over 4-6 

weeks (2-3 sessions per week). Post training, participants again completed the RAPM, 

PAL, PAR, and N-back tasks (with different stimuli to reduce practice effects) to measure 

possible changes in cognitive ability and transfer. See Figure 2.3 for procedure overview. 

 

 

 

 

Figure 2.3. Experiment procedure: participants attended an information session during which 

they received instructions for the N-back task and completed the baseline RAPM test. Participants 

then came in for the first scanning session and further baseline testing (PAL, PAR, and N-back 

tasks). Following this they completed 12 sessions of either the adaptive or non-adaptive training. 

At the end of the final training session, they completed the post-training RAPM test. Finally, 
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participants came in for the post-training MRI session, during which they completed the PAL, PAR, 

and N-back tasks. 

 

 

Cognitive training tasks 

 

We used CogniPlus software (SCHUHFRIED GmbH, Austria) for the cognitive 

training programme (Figure 2.4). The training programme consisted of 5 computer-based 

exercises that aimed to train working memory, attention, and executive function. Each 

task was 10min long and total training time per session was 50min. Training for all 

participants was completed individually on a computer in a quiet room. All training was 

carried out in the laboratory to ensure each session was fully completed and to provide 

assistance should the participants require it. Both the adaptive and non-adaptive groups 

completed the same tasks. For participants assigned to the adaptive group, the difficulty 

of the task dynamically changed relative to performance within task blocks (increasing or 

decreasing dependent on >75% correct performance). Participants in the adaptive group 

began each session where they left off in the previous session, i.e., a participant’s level 

was stored for each task at the end of each session, and they started from that level in 

the next session rather than from the beginning. For participants in the non-adaptive 

group, task difficulty remained within a constant limited range over the entirety of 

training, regardless of the participant’s performance. Participants in the non-adaptive 

group started each session from the beginning. The training tasks were: Divided Attention 

(DIVID), Spatial Coding (CODING), Spatial Updating (DATEUP), Response Inhibition (HIBIT-

R), and Mental Rotation - Spatial Processing (ROTATE). Each is discussed in more detail 

below. 

 

Divided Attention (DIVID) 

 

The DIVID task trained divided attention; the ability to perform multiple tasks 

simultaneously (Sturm, W., SCHUHFRIED GmbH). This is an important ability in daily life 

where multiple streams of information across modalities (or aspects of the environment) 

must be monitored. The divided attention task exemplified this by placing the participant 

in the role of a security officer at an airport. Participants simultaneously observed a range 

of scenes on several control monitors, such as sliding doors at the entrance, a ticket 
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counter, and luggage conveyor, as well as audio announcements (Figure 2.4A). Their task 

was to deal with problems as they occurred in different monitors by pressing a response 

key as quickly as possible. If they failed to react promptly to a problem or a relevant 

announcement, the scenes on the monitors froze, and the correct monitor was 

highlighted until the reaction button was pushed.  

 

Spatial Coding (CODING)  

 

CODING is an exercise that trained visuospatial working memory (Schellig, D., 

Schuri, U., Sturm, W., SCHUHFRIED GmbH). Participants were shown a series of vehicles 

driving onto a bridge with multiple traffic lanes (Figure 2.4B). Once the vehicles drove 

over the bridge they disappeared from the participant's view. When the vehicles 

reappeared, one of them might have changed position relative to the others. It was the 

participant’s job to identify which of the vehicles had moved. This involved comparing the 

new arrangement of the vehicles with the previously stored layout of their original 

arrangement and identifying any differences. As the task becomes more difficult, the 

number of cars that change position increases. 

 

Updating - Spatial (DATEUP) 

 

The DATEUP task trained the executive updating function of spatial working 

memory, whereby memory contents were renewed in a controlled and goal-directed 

manner (Schellig, D., Schuri, U., Sturm, W., SCHUHFRIED GmbH). Participants watched 

different types of butterflies in a natural setting as they flew over meadows and sandy 

ground (Figure 2.4C). Throughout the task, one butterfly lands and another starts its flight 

until eventually, at irregular intervals, the participant is asked a question. Depending on 

the difficulty level, the participant must highlight one or more butterflies in a specific 

order, such as the last but one butterfly, the last three butterflies, or the last of each of 

three different butterfly types.    

 

Response Inhibition (HIBIT-R) 

 

The HIBIT-R task trained the executive ability to suppress unwanted reactions 

(response inhibition) (Weisbrod, M., Kaiser, S., Pfüller, U., Roesch-Ely, D., Aschenbrenner, 
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S., SCHUHFRIED GmbH). The training programme primarily works with Stop Signal and 

Go/No-go tasks. Participants assumed the role of a post-office employee and sorted 

letters and packages as quickly and accurately as possible (Figure 2.4D). There were four 

different tasks in which the participant was asked to pay attention to specific cues (e.g., 

whether there is a stamp) that indicated when they needed to react and when they did 

not. Additionally, participants were able to co-design their own course of training such 

that following successful completion of a task, the participant could decide whether they 

would like to continue the current task or switch to a different one. Thus, they could 

choose between tasks themselves and design the programme to keep it individually 

motivating and maximise engagement. 

 

Mental Rotation - Spatial Processing (ROTATE) 

 

The ROTATE exercise trained spatial processing ability (Sommer, M., Heidinger, C., 

SCHUHFRIED GmbH). Two types of task were presented alternately. In the change of 

perspective task, the participants saw an object on the right-hand side of the screen 

surrounded by cameras. The task was to identify which camera was used to take the 

picture shown on the left side of the screen (Figure 2.4E). The second type of task was a 

rotation task. The screen showed symbolic axes of rotation, called “rotation rods”, which 

could be used to rotate the object in space. Participants had to decide which rod needed 

to be used to rotate the object on the right of the screen in order to match the picture on 

the left side. 
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Figure 2.4. Cognitive training tasks used for adaptive and non-adaptive training (CogniPlus, 

SCHUHFRIED GmbH). A) Divided attention task. B) Spatial coding task. C) Spatial updating task. D) 

Response inhibition task. E) Mental rotation - spatial processing task. 

 

 

Cognitive assessment and transfer tasks 

 

In the pre- and post-training sessions, 4 working memory and executive function 

tasks were used to measure cognitive improvement and transfer effects associated with 

training. The transfer tasks were: RAPM (far transfer), PAL (far transfer), PAR (near 

transfer), and N-back (near transfer). Stimuli for PAL, PAR, and N-back were delivered 

using Cogent 2000 v1.32 running under MATLAB R2015a (The MathWorks, Inc., Natick, 

MA). The RAPM was administered as a pen and paper test. 

 

RAPM 
  

To investigate far transfer effects, an adapted short version of the Raven 

Advanced Progressive Matrices (RAPM; Raven & Court, 1998) Set 2 was used to measure 

each participant’s general intelligence before and after cognitive training (see Figure 2.5 

for an example question). The RAPM consists of a range of nonverbal problems, whereby 

participants must identify the missing piece of a 3x3 array of patterns by inferring the 
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rules that determine the patterns found in each row and column. It is therefore designed 

to test abstract reasoning and thus directly estimate a person’s level of fluid intelligence 

or general cognitive ability. Participants were given instructions for this task, but no 

specific guidance on how each puzzle might be solved (e.g., they were told to look for 

which picture completed the pattern, but not what the specific patterns might involve). 

The 36-item RAPM was split into two tests of equal difficulty, based on previous findings 

regarding difficulty in a study by Jaeggi et al. (2014). We used Jaeggi et al.’s (2014) 18-

item versions of the test, whereby version B was administered in session one and version 

A was administered in session two. For both tests, participants were given 10 minutes to 

complete as many of the questions as they could. Scores were calculated as the total 

number of correct responses and ranged from 0-18. 

 

 

 

 
Figure 2.5. Example from the RAPM test. The test consists of a range of nonverbal problems; the 

task is to find the missing piece of a 3x3 array of patterns by inferring the rules that determine the 

patterns found in each row and column. 
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PAL and PAR 
 

Pair-associative learning (PAL) and pair-associative retrieval (PAR) tasks were used 

to measure far and near transfer effects, respectively. Adapted from Pfeifer et al. (2016), 

this computer-based task initially involved the participant learning a set of 8 achromatic 

fractal pair-associates (Figures 2.6 and 2.7) during the learning phase (PAL), outside of the 

scanner. Participants were explicitly informed that they would be given a memory test on 

these stimuli during scanning. They were asked to memorise the correct combination of 

pair-associates for the subsequent memory test to take place in the scanner (retrieval 

phase, PAR). Firstly, each of the 8 pair-associates was randomly presented once at the 

centre of a computer screen for 4s, and participants were instructed to remember the 

correct association of the pairs. The presentation was followed by a trial-and-error 

learning task. Each trial began with a fixation cross presented for 1s, followed by a cue 

picture presented at the top of the screen and 4 possible matching target pictures below 

(Figure 2.8A). The targets were taken from the stimulus set of the 8 pair-associates and 

one target was always a match (i.e., the correct pair-associate). Participants were asked 

to indicate which of the 4 targets belonged with the cue, by using different keyboard 

responses for each target. They had a maximum of 3s to make a response. Following the 

response, visual feedback appeared below the pictures for 2s, indicating whether or not 

the matching target had been identified correctly or incorrectly (green tick or red cross, 

respectively). Sixteen Runs were required in the learning phase and each Run contained 8 

trials, such that participants received a score out of 8 at the end of each of the 16 runs 

(displayed onscreen). Cue and target shapes of all pair-associates were presented 

interchangeably during learning: a stimulus that had been presented as the cue in one 

Run constituted the target in the following Run.  The task lasted approximately 13 min. 

Scores were calculated as the total number of correct responses (i.e., correct 

identification of the target pair-associate in each trial) and therefore ranged from 0-128. 
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Figure 2.6. The 8 achromatic fractal pair-associates used for the pre-training PAL and PAR tasks 

(adapted from Pfeifer et al., 2016). 
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Figure 2.7. The 8 achromatic fractal pair-associates used for the post-training PAL and PAR tasks 

(adapted from Pfeifer et al., 2016). 
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Following the associative learning task, participants completed the retrieval phase 

in the scanner. For the PAR task (Figure 2.8B), a cue picture was presented at the centre 

of the screen (1s), during which participants were asked to use the cue to retrieve the 

matching pair-associate (associative retrieval). During the delay period (8s), participants 

were required to hold the retrieved picture in mind (working memory). Finally, the target 

presentation (1s) comprised the associative recognition stage, where participants were 

asked to recognise the target as the matching or non-matching pair-associate. Following 

target presentation, a response window appeared and stayed on screen for a maximum 

of 3 seconds, during which participants were asked to press button 1 to indicate the 

target was a match, or button 2 to indicate the target was a non-match. The button-

presses were followed by a variable intertrial interval (ITI) of 6 – 10s before the next trial 

(pseudo-randomised, biased towards 8 and 10s). No feedback was provided on the 

accuracy of the participants’ responses. The task was about 13 minutes long. There were 

a total of 40 trials (8 pairs, presented 5 times). Scores were measured as the total 

combined number of Hits (i.e., correct match) and Correct Rejections (i.e., correct non-

match). If they chose non-match when a target was a match, this was recorded as a Miss. 

If they chose match when the target was a non-match, this was recorded as a False Alarm.  

Scores ranged from 0-40. 

 
For the PAR task, the cue and target images were presented interchangeably 

throughout the trials. On 60% of the trials, the cue pictures were followed by a matching 

target, constituting 24 match trials and 16 non-match trials. In this sense, lure stimuli 

were non-matching images from the same set of the 8 pair-associates rather than trial 

unique stimuli. Using recombinations of same-set stimuli constitutes a more powerful test 

of associative memory, requiring participants to retrieve the intact combination of pair-

associates out of equally familiar stimuli rather than rejecting lures on the basis of their 

novelty (Mayes et al., 2007; Pfeifer et al., 2016). The minimum trial distance between 

match and non-match trials was 1 (i.e., a match trial could immediately follow a non-

match trial and vice versa), and the maximum trial distance was five (i.e., a non-match 

trial could follow 4 presentations of match-trials). The PAR task was always presented 

before the N-back task in order to avoid retroactive interference effects on associative 

memory. 
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Figure 2.8. Pair-associative learning and retrieval tasks (PAL, PAR). A) Each trial of the PAL task 

contained a fixation cross (1s), followed by the stimulus presentation, during which participants 

were asked to select one of 4 possible pair-associates to match with the cue image at the top (3s), 

and feedback (2s). B) For the PAR phase, participants were asked to use the cue (1s) to retrieve 

the matching pair-associate. During the delay period (8s), participants were required to hold the 

retrieved picture in mind. The target presentation (1s) comprised the associative recognition 

stage, where participants were asked to recognise whether it was the matching or non-matching 

pair-associate. The response window appeared and stayed on screen for a maximum of 3 seconds. 

Responses were followed by a variable intertrial interval (ITI) of 6 – 10s. Adapted from Pfeifer et 

al., 2016. 

 

 

N-back 

 

While in the MRI scanner, the visual N-back task (Figure 2.9) was used to measure 

working memory and therefore training-induced near transfer effects. This involved a task 

script adapted from Campbell et al. (2016), whereby participants saw a series of stimuli 

consisting of individual upper- and lower-case consonant letters, which were presented 

sequentially on a computer screen. The task was to decide whether the current stimulus 

on the screen matched the one that was presented N items back in the series. We used 

four different conditions during the task: a control 0-back condition whereby participants 

press a button when the target letter appears, and increasing difficulty conditions (i.e., 
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working memory load) of 1-back, 3-back, and 4-back. The instruction indicating whether 

the task for a particular series was 0-back, 1-back, 3-back, or 4-back was presented on the 

screen just before the series started. There were 4 blocks of each condition, with 20 

letters per block, giving 80 total trials per level, and a total of 320 trials for the entire task. 

The order of blocks was pseudo-random with each level presented once during a rotation 

of 4 blocks. Each letter appeared on screen for 1 second, and there was 1 second 

between letters, giving a total of 40 seconds per block. The task lasted approximately 11 

minutes. There were 28 total targets per condition of 80 letters. Participants were 

required to press a button indicating when the target was a match to the letter presented 

N items back (i.e., Hit), and to not press the button if they didn’t think the target was a 

match (i.e., Correct Rejection). If they pressed the button when a target was not a match, 

this was recorded as a False Alarm. If they failed to press the button when the target was 

a match, this was recorded as a Miss. A score for each condition was calculated as the 

total combined number of Hits and Correct Rejections, with a possible range of 0-80. 

 

 

 

 

Figure 2.9. N-back task. The goal is to decide whether the current stimulus on the screen matches 

the one that was presented N items back in the series. There were four different conditions 

during the task: a control 0-back condition whereby participants press a button when the target 

letter appears, and increasing working memory loads of 1-back, 3-back, and 4-back. 
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 2.2.3 Data analysis 
 

Analyses were performed using SPSS IBM V. 25. Tests of assumptions were carried 

out to check that the chosen statistical analyses were appropriate for our data. 

Descriptive statistics are expressed as mean and standard deviation for continuous 

variables, and frequencies for categorical variables. Multiple independent samples t-tests 

were performed comparing the groups (adaptive vs non-adaptive) on the demographic 

data and baseline (pre-training) performance for each transfer task. All tests for 

demographic and baseline data were two-tailed; significance level was set at p < .05. 

 

Performance on the CogniPlus training exercises was analysed using paired 

samples t-tests comparing session 1 to session 12 for all tasks in adaptive and non-

adaptive groups. Performance was calculated as the last level of difficulty reached at the 

end of a session. Statistical significance was set at p < .05 (two-tailed). 

 

Post-training performance scores on the near and far transfer tasks (RAPM, PAL, 

PAR, 3-back, 4-back) were entered as dependent variables in separate one-way analyses 

of covariance (ANCOVA), with group (adaptive, non-adaptive) as a between-subjects 

factor, and baseline performance entered as covariates. Statistical significance for all tests 

was set at p < .05 (two-tailed). We then ran paired samples t-tests comparing pre- and 

post-training performance on each of the transfer tasks for the total sample (combined 

adaptive and non-adaptive training groups, N = 40), with statistical significance set at p < 

.05 (two-tailed).   

 
In addition, we conducted Kendall's tau-b correlations of performance on 

CogniPlus tasks with post-training performance on transfer tasks. This was to determine 

whether a specific type of training (i.e., working memory, attention, or inhibition) was 

associated with improved performance on particular transfer tasks. Significance for the 

correlations was set to p < .05 (two-tailed).   

    
Effect sizes. Cohen's d was used as an effect size measure for paired t-tests 

(Cohen, 1992). Cohen's d can be interpreted as: d = .20 (small effect); d = .50 (medium 

effect); and d =.80 (large effect). Partial eta squared (ηp
2) was used as an effect size 
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measure in ANCOVAs. Partial eta squared can be interpreted as: ηp
2 = .01 (small effect); 

ηp
2 = .06 (medium effect); and ηp

2 = .14 (large effect). 

 
Power analysis. Given the relatively small sample sizes in our 2 groups, we 

calculated the achieved power in all statistical comparisons to supplement our null 

hypothesis significance tests. The power calculations were performed using SPSS IBM V. 

25 for ANCOVAs, and using the G*Power calculator v. 3.1.9.4 (Faul et al., 2007) for t-tests. 
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2.3 Working memory, attention, and executive function training in middle-aged 

adults: MRI experiment (Chapter 5) 
 

The aim of this experiment was to investigate how the brain responds to cognitive 

training in healthy middle-aged adults (40-50 years old).  We sought to characterise 

functional plasticity as a result of training with task-based fMRI. In particular, training-

induced functional changes were assessed on the near transfer tasks (PAR, N-back). To 

further investigate the neural mechanisms involved in transfer of training gains, we used 

the NODDI technique in addition to traditional DTI. Thus, we examined the 

microstructural alterations that may occur in the brain following cognitive training.  

 

2.3.1 Participants 

 

The same participants as in the previous section were tested for the MRI part of 

the experiment. Details can be found in section 2.2.1. In sum, a total of 40 middle-aged 

adults completed the study. Of these, 20 were part of the adaptive (experimental) 

training group, and 20 were part of the non-adaptive (control) training group. One person 

(non-adaptive group) was excluded from the PAR fMRI analyses due to major artefacts 

found on the scan, leaving 39 data sets for analysis (adaptive: n = 20; non-adaptive: n = 

19). One person (adaptive group) was excluded from the N-back fMRI analyses due to 

data corruption during transfer from the scanner, leaving 39 data sets for analysis 

(adaptive: n = 19; non-adaptive: n = 20). A single non-adaptive participant’s diffusion data 

were corrupted during transfer from the scanner and therefore excluded, leaving 39 data 

sets for analysis (adaptive: n = 20; non-adaptive: n = 19). 

 

2.3.2 Procedure 

 

The procedure was the same as in the previous section, consisting of a PAR task 

and an N-back task performed in the scanner. Details are described in section 2.2.2 and 

will be summarised here. The study involved two scanning sessions for each participant: a 

pre-training session and a post-training session. These sessions aimed to image structural 

and functional brain changes underlying performance improvements as a result of 

training. In the pre-training MRI session, participants first learned a set of 8 paired 

associates (PAL) outside of the scanner and were then tested on them during a memory 
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task in the scanner (PAR). Following which they completed the N-back task, also in the 

scanner. Participants then completed 12 sessions of either the adaptive or non-adaptive 

training (CogniPlus, Shuhfried GmbH) over 4-6 weeks (2-3 sessions per week). For the 

post-training scan, participants again completed the PAR and N-back tasks (with different 

stimuli, in order to reduce practice effects) to measure possible changes in brain function 

and cognitive ability.  

 

Figure 2.10 shows the MRI protocol used during both the pre- and post-training 

scanning sessions. Each session included PAR task fMRI (13min), followed by a structural 

T1 scan (6min), then N-back task fMRI (11min), then quantitative magnetisation transfer 

(qMT) and associated DESPOT1 and b1 maps for 20min (data not reported in this thesis), 

and finally a NODDI/DTI scan (9min). Total scanning time per session was about 1 hour. 

 

 

 

Figure 2.10. MRI protocol for the pre- and post-training sessions: each session included PAR fMRI 

(13min), followed by a structural T1 scan (6min), then N-back fMRI (11min), then qMT and 

associated DESPOT1 and b1 maps (20min), and finally a NODDI/DTI scan (9min). Total scanning 

time per session was 1 hour. 

 

 
2.3.3 MRI data acquisition 

 

fMRI 

 

Imaging data for each session were collected using a Siemens Prisma scanner 

(Siemens, Erlangen, Germany), equipped with a 3.0-T magnet and 64-channel phased-
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array receive-only head coil. The PAR and N-back tasks were presented on an LCD 

monitor, at a viewing distance of approximately 45 cm, subtending 5° of visual angle. 

Stimuli were delivered using Cogent 2000 v1.32 running under MATLAB R2015a (The 

MathWorks, Inc., Natick, MA). Time-course series of the two tasks were acquired using a 

T2*-weighted multiband echo planar imaging (EPI) sequence, with a slice acquisition 

acceleration factor of 8, obtaining about 960 volumes of the PAR task and 880 volumes of 

the N-back task. Each volume consisted of 72 axial slices oriented 30° to the AC–PC line 

and covering the whole brain. Slices were acquired bottom-up in the interleaved mode. 

The following functional imaging parameters were used: repetition time (TR) = 800 ms, 

echo time (TE) = 37 ms, flip angle = 52°, matrix = 104 × 104, field of view (FoV) = 208×208 

mm, slice thickness = 2.0 mm with a 20% gap, resulting in 2.0 mm isotropic voxels. A 

single-band reference image of high quality and increased contrast was acquired for each 

fMRI task and was used for registration. 

 

Structural T1 

 

A whole-brain, high-resolution T1-weighted 3D structural image was obtained 

using a magnetisation-prepared gradient-echo sequence, consisting of 192 contiguous 

axial slices (TR = 2300 ms, TE = 2.19 ms, flip angle = 9°, matrix = 256 × 256, FoV = 256 × 

256 mm, 1.0 mm isotropic voxel size). The T1-weighted image was used as an anatomical 

reference for each participant’s functional data. 

 

Diffusion MRI 

 

Multi-shell diffusion-weighted data were acquired with single-shot, twice-

refocused pulse gradient spin-echo EPI using multiband (MB) acceleration factor 2. Sixty 

axial slices oriented 30° to the AC–PC line and covering the whole brain were acquired 

with the following parameters: TR = 4000 ms, TE = 80 ms, matrix size = 96 x 96, FoV = 205 

x 205 mm, slice thickness = 2.14 mm, 2.14 mm isotropic voxel size. Two b-value shells 

were acquired, b = 800 and 2800 s/mm2, with 30 and 64 non-collinear diffusion-weighted 

directions, respectively. Two images with no diffusion weighting (b = 0) were acquired. 

Further images with b = 0 were acquired in the opposite phase encoding direction in 

order to estimate and correct for susceptibility induced distortions. 
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2.3.4 fMRI analyses 

 

Preprocessing 

 

We used SPM12 (Wellcome Trust Centre for Neuroimaging, UCL, London, UK; 

www.fil.ion.ucl.ac.uk/spm) running under MATLAB R2019a for data preprocessing and 

statistical analyses. Preprocessing of functional images was carried out for both the pre- 

and post-training PAR and N-back tasks. High pass temporal filtering (128s) was applied to 

remove low frequency signals relating to scanner drift. Spatial realignment to the single 

band reference image and motion correction was applied using the Realign and Unwarp 

algorithms in SPM (Andersson et al., 2001; Hutton et al., 2002). All EPI data were brought 

into an approximate alignment across scans and sessions using an affine transformation 

with the FLIRT tool in FMRIB software library (FSL, version 5.0.7, Oxford, UK). Each T1-

weighted structural image was segmented and used to compute a group template image 

using the DARTEL toolbox. EPI data were warped to MNI space with transformation 

parameters derived from the group template image (Ashburner, 2007). The normalised 

functional images were spatially smoothed using a 5mm full-width-half-maximum 

(FWHM) Gaussian kernel. 

 

2.3.4.1 fMRI PAR task 

 

We used an event-related design for the PAR task and conducted region of 

interest (ROI) analyses for 3 types of memory: associative retrieval, working memory, and 

recognition. During the cue period (1s) of the PAR task, participants were asked to use the 

cue to retrieve the matching target (associative retrieval). During the delay period (8s), 

participants were required to hold the retrieved picture in mind (working memory). The 

target presentation (1s) comprised the associative recognition stage, where participants 

were asked to recognise the target as the matching or non-matching pair-associate. 

Following target presentation, a response window appeared and stayed on screen for 3 

seconds, during which participants were asked to press 1 of 2 buttons, providing decisions 

about the target (match/non-match). The button-presses were followed by a variable 

intertrial interval (ITI) of 6 – 10s, pseudorandomly biased towards 8 and 10s. 
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First-level analysis 

 

A first-level general linear model (GLM) analysis was conducted to estimate BOLD 

responses to each component of the correctly remembered memory items. At the single-

subject level, we specified regressors associated with the cue, delay, and target period for 

each session. This resulted in two regressors of interest relating to associative retrieval: 

pre-training_cue, post-training_cue; two regressors of interest relating to working 

memory: pre-training_delay, post-training_delay; and two regressors of interest relating 

to associative recognition: pre-training_target, and post-training_target. Associative 

retrieval (cue period), working memory (delay period), and associative recognition (target 

period) were analysed by including only correct responses (collapsing across Hit and 

correct rejection trials, i.e., correct match and non-match trials). Regressors of no interest 

included the prompt (containing a participant’s button presses), and a nuisance regressor 

(containing all misses, false alarms, and non-responses). Additional nuisance regressors 

included: 6 affine motion parameters, their first-order derivatives, and regressors 

censoring periods of excessive motion (rotations > 1°, and translations > 1mm). For each 

regressor representing a cue and target period, activation was modelled using a boxcar 

function starting at onset and lasting for 1 second. Regressors representing a delay period 

were modelled to start 3 seconds after delay onset and lasted for 5 seconds until the end 

of the delay period. This was done to avoid capturing any residual activity pertaining to 

the cue period, but instead explaining a largely unique source of variance pertaining to 

delay period activity (Rissman et al., 2004). All regressors were convolved with a canonical 

hemodynamic response function available in SPM12.  

 

Second-level analyses 

 

Results of the single-subject analysis were taken to group-level to examine 

activation differences following training in regions of interest (ROI). The subject-specific 

contrast images of pre-training and post-training cue, delay, and target period were 

entered into separate 2 group (adaptive, non-adaptive) × 2 session (pre-training, post-

training) x 3 period (cue, delay, target) mixed ANOVAs for each ROI using the full factorial 

design specification in SPM12. Group (adaptive, non-adaptive) was entered as the 

between-subject factor, and session (pre-training, post-training) and period (cue, delay, 
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target) as the within-subject factors. All main and interaction effects derived from the 

ANOVAs are reported using a statistical significance of p < .05 after False Discovery Rate 

(FDR) correction for multiple comparisons at the cluster level, clusters formed using p < 

.001 (Genovese et al., 2002; Chumbley & Friston, 2009). Significant clusters for all 

analyses were localised according to the Anatomy toolbox (v 2.2b, Eickhoff et al., 2005). 

 

ROI analyses were carried out based on areas that were thought to overlap 

between our cognitive training programme and the PAR task. In particular, we expected 

brain regions involved in working memory to be recruited during our training programme 

and during the PAR task. Working memory emerges from the dynamic interaction of a 

large number of brain areas including dorsolateral PFC, ventrolateral PFC, frontal pole, 

superior parietal cortex, inferior parietal cortex, inferior temporal cortex, striatum, and 

cerebellum (Curtis & D'Esposito, 2003; Wager & Smith, 2003; Ranganath et al., 2004; 

Owen et al., 2005; Nee et al., 2013; Salmi et al., 2018; Emch et al., 2019; Pappa et al., 

2020). Thus, we specified 8 anatomical ROIs bilaterally that included dorsolateral PFC, 

ventrolateral PFC, frontal pole, superior parietal cortex, inferior parietal cortex, inferior 

temporal cortex (including inferior temporal gyrus, fusiform gyrus, and parahippocampal 

gyrus), striatum (including caudate and putamen), and cerebellum. All ROI masks were 

from the WFU PickAtlas v2.4 (http://www.nitrc.org/projects/wfu_pickatlas/; Maldjian et 

al., 2003).  

 
2.3.4.2 fMRI N-back task  
 

We used a block design for the N-back task and conducted ROI analyses for the 4 

conditions of the task (0-back, 1-back, 3-back, and 4-back). The 0-back was designed to 

act as a control condition (vigilance state) and provided the baseline activation for 

comparison in fMRI analyses. The 1-back, 3-back, and 4-back conditions provided 

increasing working memory demands. The task was to decide whether the current letter 

on the screen matched the one that was presented N items back in the series. 

Participants were required to press a button indicating when the target was a match to 

the letter presented N items back (i.e., Hit), and to not press the button if they didn’t 

think the target was a match (i.e., Correct Rejection). There were 4 blocks of each 

condition (0-back, 1-back, 3-back, and 4-back). 

http://www.nitrc.org/projects/wfu_pickatlas/
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First-level analysis 

 

Imaging data from the N-back experiment were analysed within the framework of 

the GLM to estimate BOLD responses to each of the four levels. For the single-subject 

analysis, we specified regressors associated with the experimental conditions of 0-, 1-, 3-, 

and 4-back for each session. This resulted in two regressors of interest relating to the 0-

back condition: pre-training_0-back, post-training_0-back; two regressors of interest 

relating to the 1-back condition: pre-training_1-back, post-training_1-back; two 

regressors of interest relating to the 3-back condition: pre-training_3-back, post-

training_3-back, and two regressors of interest relating to the 4-back condition: pre-

training_4-back, and post-training_4-back. Regressors of no interest included the on-

screen instructions, and a nuisance regressor (containing all misses and false alarms). 

Additional nuisance regressors included: 6 affine motion parameters, their first-order 

derivatives, and regressors censoring periods of excessive motion (rotations > 1°, and 

translations > 1mm). For each regressor representing an N-back condition, activation was 

modelled using a boxcar function starting at the onset of a block and lasting until the end 

of the block (i.e., 40 seconds). All regressors were convolved with a canonical 

hemodynamic response function available in SPM12. A series of contrasts was then 

produced for each session representing mean activation during each N-back condition 

minus the 0-back condition, which acted as the baseline activation (pre-training: 1-back – 

0-back, 3-back – 0-back, 4-back – 0-back; post-training: 1-back – 0-back, 3-back – 0-back, 

4-back – 0-back). 

 

Second-level analyses 

Results of the single-subject analysis were taken to group-level to examine 

activation differences following training in regions of interest (ROI). The subject-specific 

contrasts of pre- and post-training 0-back, 1-back – 0-back, 3-back – 0-back, and 4-back – 

0-back, were entered into separate 2 group (adaptive, non-adaptive) × 2 session (pre-

training, post-training) x 4 condition (0-, 1-, 3-, and 4-back) mixed ANOVAs for each ROI 

using the full factorial design specification in SPM12. Group (adaptive, non-adaptive) was 

entered as the between-subject factor, and session (pre-training, post-training) and 

condition (0-, 1-, 3-, and 4-back) as the within-subject factors. All second level analyses 
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were thresholded at cluster-wise FDR-correction p < .05 (cluster-forming threshold p < 

.001). Significant clusters for all analyses were localised according to the Anatomy toolbox 

(v 2.2b, Eickhoff et al., 2005). 

 

The N-back task was specifically developed as a test of working memory (Kirchner, 

1958; Mackworth, 1959). Therefore, ROI analyses were carried out using the same 

working memory regions as used for the PAR task. We specified 8 anatomical ROIs 

bilaterally: dorsolateral PFC, ventrolateral PFC, frontal pole, superior parietal cortex, 

inferior parietal cortex, inferior temporal cortex (including inferior temporal gyrus, 

fusiform gyrus, and parahippocampal gyrus), striatum (including caudate and putamen), 

and cerebellum. All masks were from the WFU PickAtlas v2.4 (Maldjian et al., 2003; 

http://www.nitrc.org/projects/wfu_pickatlas/). 

 

2.3.5 Diffusion MRI analyses 

 

Preprocessing 

 

Diffusion data were first preprocessed using tools from FSL (version 5.0.7, Oxford, 

UK). FSL’s topup tool was used to correct for susceptibility and the Eddy command was 

used to correct for eddy current distortions (Andersson et al., 2003). Following this, b-

vectors from the transformation matrix were rotated accordingly (Leemans & Jones, 

2009). 

 

The NODDI model was then fitted to the data using the toolbox by Zhang et al. 

(2012) provided for Matlab (The MathWorks, Inc., Natick, MA, USA), generating voxel-

wise whole-brain maps of NDI and ODI for each participant per session. The NODDI 

analysis was performed using Matlab (v.2012b) on the University of Sussex high-

performance computing cluster with 128 cores. The diffusion tensor model was then 

fitted to the same data using the FSL tool DTIfit in order to compute FA and MD whole-

brain maps. The resulting NODDI and DTI parameter maps were normalised to MNI space 

using the Advanced Normalization Tools (ANTs, version 2.1.0) in order to permit group-

http://www.nitrc.org/projects/wfu_pickatlas/
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level statistical comparison. Parameter maps were then spatially smoothed with a 5 mm 

FWHM Gaussian kernel in FSL. 

 

Statistical analyses 

 

We used FSL (version 5.0.7, Oxford, UK) for all statistical analyses. Whole-brain 

parameter maps from session one were subtracted from whole-brain parameter maps 

from session two in order to obtain ODI, NDI, FA, and MD change from baseline for each 

participant. These difference maps (session two – session one) were entered into whole-

brain voxel-wise one- and two-sample t-tests to identify effects of overall training, as well 

as adaptive versus non-adaptive training, on regional differences in NDI, ODI, FA, and MD 

parameters. A statistical significance threshold of p < .05 FWE-corrected at the cluster 

level was used, after clusters were formed with an uncorrected p < .001. 
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Chapter 3: Perceptual-cognitive-motor training in 
middle-aged adults: Behavioural and MRI findings 
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3.1 Introduction 

 

3.1.1 Motor skill learning in middle-age 

 

Most motor skill learning studies investigating age-related changes, like most 

cognitive studies investigating age-related changes, compare older adults’ performances 

with that of younger adults, but do not include middle-aged participants (Voelcker-

Rehage, 2008). This is a significant omission given that the few life-span studies that have 

been conducted indicate that the reduction in motor plasticity occurs not particularly in 

older age, but in middle-age (after a peak in youth and younger adulthood) (Gershon, 

1978; Voelcker-Rehage & Wilimczik, 2006; Voelcker-Rehage, 2008; Janacsek et al., 2012). 

Studies looking at the acquisition of a complex motor skill showed that performance 

decrements start early in middle-age (30–45 years) (Gershon, 1978; Voelcker-Rehage & 

Wilimczik, 2006; Janacsek et al., 2012). For example, Janacsek et al. (2012) investigated 

motor sequence learning across the life span, between 4–85 years of age, and found that 

in terms of reaction time and accuracy, age groups between 9 and 44 years of age 

showed similar degrees of sequence learning, and this was significantly higher than the 

youngest (4–8) and the two oldest (45–59 and 60–85) groups. Thus, it appears that motor 

skill learning ability starts to decline in middle-age, therefore, this would be a good age 

group for the initiation of training programmes. 

 

3.1.2 fMRI and motor skill training 
 

Researchers have used fMRI and other methodologies to demonstrate differences 

in brain function and structure after practice at perceptual-motor tasks (e.g., Floyer-Lea & 

Matthews, 2005), or perceptual-cognitive tasks (e.g., Forstmann et al., 2008). For 

example, short-term training at a computer-based tracking task led to improved 

performance and increased activity in subcortical circuits of the brain (striatum, 

cerebellum), whereas longer-term training led to changes in the primary somatosensory 

and motor cortex that increases the implicit representation for sequences learned 

(Floyer-Lea & Matthews, 2005). These findings are consistent with the view of 

neuroplasticity where structural and functional changes occur in the brain as a result of 

training, practice, and experience (Jancke, 2009; Dayan & Cohen, 2011). 
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The brain regions involved in motor skill learning differ depending on whether it is 

the early or late phase of training, and on the nature of the cognitive processes required 

(Doyon et al., 2003; Coynel et al., 2010; King et al., 2013). Doyon and Ungerleider (2002) 

have proposed a model for characterising the complex pattern of brain activation 

underlying motor skill training. Two loop circuits, a cortico-striatal and a cortico-cerebellar 

system, are both recruited and operate in parallel during the fast learning stage. Early in 

the learning phase, the following structures are recruited: the striatum, cerebellum, 

motor cortical regions (e.g., premotor cortex, SMA, preSMA, anterior cingulate), as well as 

prefrontal and parietal areas.  

 
Similarly, in a model proposed by Hikosaka et al. (2002), two loop circuits are 

recruited which specialise in learning spatial and motor features of sequences 

independently. Learning spatial coordinates is supported by a frontoparietal-associative 

striatum-cerebellar circuit, while learning motor coordinates is supported by an M1-

sensorimotor striatum-cerebellar circuit. The coordinate transformation between the 

spatial and motor sequences depends on the SMA, pre-SMA, and premotor cortices. 

Importantly, it is argued that learning spatial coordinates is usually explicit and faster as it 

may be accompanied by increased attention or working memory, putatively involving 

prefrontal and parietal cortical regions (Miller & Cohen, 2001). By contrast, motor 

coordinates are usually processed implicitly and require minimum attention, therefore 

they are slowly acquired during learning.  

 
3.1.3 Diffusion MRI and motor skill training 

 
Studies using DTI have shown that inter-individual variation in white-matter 

microstructure, as measured by FA, correlates with behavioural performance (e.g., Tuch 

et al., 2005; Johansen-Berg et al., 2007). Moreover, studies have demonstrated 

microstructural differences in white matter after long-term motor skill training (Scholz et 

al., 2009; Takeuchi et al., 2010). For example, Scholz et al. (2009) used DTI to measure 

white matter changes following training of a novel complex visuomotor skill (i.e., 

juggling). Participants were scanned before and after a 6-week training period, or 

following no training (control group). The trained group revealed significant increases in 

FA within white matter underlying the posterior intraparietal sulcus.  
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In addition to the structural changes shown to occur following long-term training 

(days or weeks) of a new motor skill (e.g., Draganski et al., 2004; Scholz et al., 2009), 

these types of changes have also been demonstrated with relatively short timescales 

(Sagi et al., 2012; Hofstetter et al., 2013). Invasive microscopy procedures have been able 

to detect regional structural changes such as dendritic spine formation and 

oligodendrogenesis after short-term motor skill training within 1 – 2.5 hours (Xu et al., 

2009; Xiao et al., 2016). Such short-term effects have been more difficult to detect so far 

by non-invasive techniques such as diffusion MRI. However, Sagi et al. (2012) have shown 

that this is indeed possible using DTI. Sagi et al. (2012) scanned participants before and 

after a spatial navigation task based on a computer car race game. Microstructural 

changes in grey matter were significant after only 2 hours of training. Specifically, the 

training group showed a reduction in MD in the hippocampus and parahippocampus. An 

increase in FA was found in the parahippocampus, supramarginal/angular cortex, superior 

temporal gyrus, amygdala, and pulvinar. Moreover, there was a significant negative 

correlation between improvement rate in the car racing task and MD reduction in the 

hippocampus and parahippocampus. 

 
The interpretation of such changes in DTI indices is challenging. FA in part reflects 

anatomical features of white matter such as axon calibre, fibre density, and myelination 

(Beaulieu, 2009). Modifications in these properties might underlie training improvements 

by altering conduction velocity and synchronisation of nervous signals (Fields, 2008). It is 

possible that newly generated myelin is laid down preferentially in circuits that are 

engaged during training (McKenzie et al., 2014). This activity-dependent myelination, 

which would be expected to influence FA, is therefore a potential mechanism through 

which the properties of white matter are affected by experience (Scholz et al., 2009). 

Changes in other structural features of white matter, such as axon diameter (which could 

itself be regulated by myelin; Fields, 2008), or packing density, could also underlie 

differences in FA (Scholz et al., 2009). Changes in MD might be attributed to alterations in 

extracellular volume (Ransom et al., 1985; Sykova, 1997; Hofstetter et al., 2013), swelling 

of cells (Le Bihan, 2007; Hofstetter et al., 2013), or an increase in glia cell volume (Kleim et 

al., 2007; Theodosis et al., 2008; Markham et al., 2009; Hofstetter et al., 2013). Therefore, 

although widely used, DTI indices are average measurements across a voxel from multiple 
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different compartments, including both intracellular and extracellular spaces (Kodiweera 

et al., 2016). Hence, a change in these measurements cannot be attributed to specific 

changes in tissue microstructure (Pierpaoli et al., 1996; Zhang et al., 2012; Jones et al., 

2013; Jelescu et al., 2016).  

 
NODDI is a diffusion MRI model that is able to differentiate between three 

different (and more specific) microstructural indices: intracellular, extracellular, and 

cerebrospinal fluid (CSF) (Zhang et al, 2012). This means that NODDI indices are less 

ambiguous microstructural interpretations. Indeed, NODDI has been used with success to 

investigate age-associated changes to white matter (Kodiweera et al., 2016), and cortical 

grey matter (Nazeri et al., 2015). Nazeri et al. (2015) examined age-related effects on grey 

matter neuritic organisation and density in humans across the adult lifespan (21– 84 

years). A detailed analysis using 48 ROIs revealed that ODI extracted from a majority of 

cortical regions (27 of 48) showed a significant decline with age. Importantly, the 

researchers demonstrated that neocortical ODI outperformed cortical thickness and 

white matter FA for the prediction of chronological age. NODDI can therefore provide 

information about underlying microstructure beyond that of traditional diffusion 

methods such as DTI. 

 
3.1.4 Experiment aims and design 
 

The aim of the current experiment was to investigate the functional and structural 

correlates of short-term training in healthy middle-aged adults (40-50 years old). Motor 

skill learning ability and grey matter volume start to decline in middle-age (Gershon, 

1978; Courchesne et al., 2000; Voelcker-Rehage & Wilimczik, 2006; Janacsek et al., 2012). 

As such, we sought to investigate training in this age group. 

 
Participants in this study trained on a novel and complex perceptual-cognitive-

motor (PCM) task (Bennett et al., 2018). This task requires motor as well as cognitive 

processes (including decision making, working memory, attention, and pattern 

recognition). Therefore, we decided to use the PCM task as it is multidomain, and as 

discussed, this form of training has been shown to be particularly effective in improving 
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cognitive function (Green & Bavelier, 2003; Basak et al., 2008; Lustig et al., 2009; van 

Muijden et al., 2012). 

 
For this experiment, we sought to characterise functional plasticity at the early 

stage of training, as such, we used fMRI to investigate changes in activation over 1 session 

(i.e., 31 minutes of training = 160 trials). In addition, we sought to link functional plasticity 

as a result of training, with underlying structure. Thus, we used both DTI and NODDI to 

analyse microstructural variation in grey and white matter in relation to training outcome. 

 
3.1.5 Experiment hypotheses 

 

We tested four hypotheses for this experiment. First, if training in middle-aged 

adults is effective at inducing cognitive plasticity, then we should see significant training 

gains for the PCM task. PCM training has been shown to greatly improve performance on 

this task in young adults when compared to age-matched controls that received no 

training (M = 22.3 years of age, Bennett et al., 2018; M = 21.8 years of age, Uji et al., 

unpublished data). Moreover, several studies have shown substantial improvements on 

trained tasks, and with multidomain training in particular, in both young and older adults 

(e.g., Green & Bavelier, 2003; Rebok et al., 2007; Basak et al., 2008; Lustig et al., 2009; 

Karbach & Verhaeghen, 2014). As the PCM task is multidomain (for example, it involves 

working memory, decision-making, and motor processes), as trained tasks have shown 

improvements in both young and older adults, and as training on the PCM task in 

particular has previously resulted in better performance in young adults, we expected 

significant improvements in PCM performance with training in middle-aged adults.  

  

Second, if increased activity occurs in the brain following short-term training, 

whereas longer-term training results in decreases in activity (Braver et al., 2009; Lustig et 

al., 2009), then we should see increased activation in cognitive and motor networks for 

the PCM task. According to the Doyon and Ungerleider (2002) model, early in the learning 

phase of motor skill training (i.e., session 1), the following structures are recruited: the 

striatum, cerebellum, premotor cortex, SMA, preSMA, anterior cingulate, as well as 

prefrontal and parietal areas. The Hikosaka et al. (2002) model suggests that learning 

spatial coordinates is supported by a frontoparietal-associative striatum-cerebellar circuit, 
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while learning motor coordinates is supported by an M1-sensorimotor striatum-

cerebellar circuit, and transformations between the two coordinate systems depend on 

the SMA, preSMA, and premotor cortices. In addition, the ability to perform complex 

problems is initially supported by extensive attentional and strategic resources, which 

engage a prefrontal, orbitofrontal, and anterior cingulate network (Minati & Sigala, 2013). 

The hippocampus has shown increases in activity in both the early and later stages of 

motor skill learning (Schendan et al., 2003; Albouy et al., 2008; Fernández-Seara et al., 

2009; Gheysen et al., 2010; King et al., 2013). And finally, the parahippocampal cortex is 

highly engaged during visuospatial processing (van Strien et al., 2009; Aminoff et al., 

2013; Hohenfeld et al., 2020), a key aspect of the PCM task. Specifically, we expected 

PCM learning to be supported by increased activity in the striatum, cerebellum, 

hippocampus, parahippocampus, SMA, preSMA, M1, premotor cortex, anterior cingulate, 

dPFC, orbitofrontal cortex (oPFC), and inferior parietal cortex. The precuneus and vPFC 

were selected to serve as control regions. We did not expect to see a change in activity in 

these areas as they show increased activation during later stages of motor skill learning 

(Doyon, 1997; Sakai et al., 1998; Doyon & Ungerleider, 2002; Ungerleider et al., 2002; 

Doyon et al., 2003; Lehéricy et al., 2005; King et al., 2013). 

 

Third, if learning is supported by changes in brain function, then we would expect 

to see differences in activity for successful vs. unsuccessful trials on the PCM task. Some 

studies have shown increases in brain activity for successful vs. unsuccessful trials (Daniel 

& Pollmann, 2010; Swann et al., 2012). Specifically, posterior putamen activation was 

increased for successful vs. unsuccessful categorisation with either monetary reward or 

informative (correct/incorrect) feedback (Daniel & Pollmann, 2010). In addition, Swann et 

al. (2012) found significantly increased activity in preSMA and inferior frontal gyrus for 

successful vs. unsuccessful trials on an inhibitory motor task. Therefore, we predicted that 

successful trials would show increased activation compared to unsuccessful trials in the 

above cognitive and motor networks. 

 

Finally, if brain structure influences motor skill learning ability, then variation in 

microstructure should be related to training outcome for the PCM task. Studies using DTI 

have shown that inter-individual differences in brain structure correlate with behavioural 
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performance (e.g., Tuch et al., 2005; Johansen-Berg et al., 2007). Therefore, we expected 

microstructural variance in grey and white matter to correlate with learning outcome. 

Specifically, lower MD and higher FA would be associated with greater improvement in 

PCM performance. With regards to NODDI indices, higher levels of NDI indicate a greater 

density of axons in white matter and dendrites in grey matter (Zhang et al., 2012). 

Therefore, we expected that higher NDI in both grey and white matter would correlate 

with improved performance on the task. For ODI, in voxels containing very directional 

white matter tracts, lower ODI indicates less axonal dispersion and high axonal coherence 

(Zhang et al., 2012). Whereas higher ODI in grey matter indicates areas that are rich in 

multi-directional dendritic structure (Dowell et al., 2019). As such, we predicted that ODI 

would correlate with improved performance depending on whether in the white matter 

(i.e., lower ODI), or grey matter (i.e., higher ODI). 

 

3.2 Summary of methods 
 
3.2.1 Participants  
 

Twenty-two middle-aged adults between 40 and 50 years old were recruited for 

this experiment. All participants had normal or corrected-to-normal vision and were right-

hand dominant. The participants had no history of psychiatric or neurological illness, or 

brain injury. Participants also had no history of alcohol or drug use disorders. Participants 

were not taking prescribed medications at the time of the experiment. All participants 

were carefully screened for MRI contraindications. Due to low task-engagement during 

the session, one participant was excluded, leaving 21 participants in the final sample 

(female: n = 11; age: M = 44.67 years, SD = 3.23) in a within-subjects study design. The 

mean number of years of education for the sample was 18.24 (SD = 2.72).  

 
3.2.2 Procedure 

 
All participants underwent one MRI scanning session during which they performed 

the perceptual-cognitive-motor (PCM) task. The task goal was for participants to move 

the white cursor to the red target while avoiding a number of moving green objects on 

the screen. They completed 80 trials (~15min) of the task in a pre-training phase while 

undergoing fMRI scanning. Following this, they completed 72 trials during a training 
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phase while undergoing T1 structural and diffusion scanning (~15min). Finally, they 

repeated 80 trials (~15min) of the task during a post-training phase while undergoing 

fMRI scanning. 

 

3.2.3 Behavioural data analysis 
 

Number of successful trials on the PCM task was analysed using a paired samples 

t-test comparing pre- and post-training performance. Statistical significance was set at p < 

.05 (two-tailed). Cohen's d was used as an effect size measure (Cohen, 1992).  

 

3.2.4 fMRI data 
 
ROI analyses 
 

We examined activation changes in regions of interest (ROI) following PCM 

training. In addition, we compared activity for successful vs unsuccessful trials in the task-

relevant ROIs. The subject-specific beta images of Pre-training_Successful, Pre-

training_Unsuccessful, Post-training_Successful, and Post-training_Unsuccessful were 

entered into separate 2 × 2 repeated measures ANOVAs for each ROI using the full 

factorial design specification in SPM12. Testing Phase (Pre-training, Post-training) and 

Trial Performance (Successful, Unsuccessful) were entered as within-subject factors to 

look for differences in brain activation for successfully vs unsuccessfully performed trials 

during the pre- vs post-training phases. We calculated the main and interaction effects of 

Testing Phase and Trial Performance using an F-contrast, whilst inclusively masking the 

effects with each ROI. The WFU PickAtlas v2.4 toolbox (Maldjian et al., 2003; 

http://www.nitrc.org/projects/wfu_pickatlas/) was used to select masks and add the ROI 

dialog into the SPM GUI, restricting the search space before the analysis was run. All main 

and interaction effects derived from the ANOVAs were initially thresholded at a statistical 

significance of p < .05 after False Discovery Rate (FDR) correction for multiple 

comparisons at the cluster level, clusters formed using p < .001 (Genovese et al., 2002; 

Chumbley & Friston, 2009). However, none of the ROI ANOVAs survived the FDR 

correction for multiple comparisons. We therefore used an exploratory uncorrected 

threshold of p < .005 and k = 5 voxels to test for main and interaction effects. Significant 

http://www.nitrc.org/projects/wfu_pickatlas/
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clusters for all analyses were localised according to the Anatomy toolbox (v 2.2b, Eickhoff 

et al., 2005). 

 
To further explore differences in Testing Phase, we ran the contrasts Pre-training > 

Post-training and Post-training > Pre-training in each ROI using the uncorrected threshold 

of p < .005 and k = 5 voxels. We then computed normalised difference scores for the PCM 

task indicating training outcome, such that Difference Score = (Post-training score - Pre-

training score) / (Post-training score + Pre-training score). Higher difference scores 

indicate a bigger training gain. Correlations were run between the training outcome and 

percent change in betas in the ROIs that showed a significant effect for the contrasts Pre-

training > Post-training and Post-training > Pre-training with the exploratory threshold for 

significance. To this end, we used the MarsBaR (MARSeille Boîte À Région d’Intérêt) 0.44 

toolbox for SPM (Brett et al., 2002) to extract the mean percent change in beta values for 

the ROIs with a significant effect, and correlated this with the normalised difference 

scores using an in-house script run in MATLAB R2015a. 

 
Specification of ROI masks 
 

All ROI masks were bilateral and chosen from the WFU PickAtlas. Selecting masks 

from the WFU PickAtlas resulted in masks being larger than required, and therefore, 

significant effects may also have been detected for neighbouring brain regions outside 

those of interest. ROIs were selected based on the models for motor skill learning by 

Hikosaka et al. (2002) and Doyon and Ungerleider (2002). These models include the 

striatum, cerebellum, premotor cortex, SMA, preSMA, M1, anterior cingulate, as well as 

prefrontal and parietal areas. In addition, we included the hippocampus as increases in 

activity have been demonstrated in this region for both the early and later stages of 

motor training (Schendan et al., 2003; Albouy et al., 2008; Fernández-Seara et al., 2009; 

Gheysen et al., 2010; King et al., 2013). And finally, the parahippocampal cortex was 

included as it is highly engaged during visuospatial processing (van Strien et al., 2009; 

Aminoff et al., 2013; Hohenfeld et al., 2020), a key aspect of the PCM task. As such, we 

specified 12 anatomical ROIs bilaterally: striatum (including caudate and putamen), 

cerebellum, hippocampus, parahippocampus, SMA, preSMA, M1, premotor cortex, 

anterior cingulate, dPFC, oPFC, and inferior parietal cortex. The precuneus and vPFC were 
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selected to serve as control regions. We did not expect to see a change in activity in these 

areas as they show increased activation during later stages of motor skill learning (Doyon, 

1997; Sakai et al., 1998; Doyon & Ungerleider, 2002; Ungerleider et al., 2002; Doyon et 

al., 2003; Lehéricy et al., 2005; King et al., 2013). 

 

3.2.5 Diffusion MRI data 
 
Whole-brain analyses 
 

We used diffusion imaging to examine microstructural variation in grey and white 

matter in relation to training outcome. Quantifying neurite morphology in terms of its 

density and orientation distribution provides a window into the structural basis of brain 

function (Zhang et al., 2012). ROI analyses were chosen for the fMRI data due to strong a-

priori hypotheses based on extensive research on motor skill learning in young adults 

(e.g., Grafton et al., 1995; Nudo et al., 1996; Karni et al., 1998; Ungerleider et al., 2002; 

Doyon et al., 2003; Krakauer et al., 2005; Penhune & Steele, 2012; King et al., 2013). 

Conversely, diffusion analyses were whole-brain because very few studies have used DTI 

to investigate training (Scholz et al., 2009; Takeuchi et al., 2010; Sagi et al., 2012; 

Hofstetter et al., 2013), and none have used NODDI. Therefore, there is very little 

diffusion MRI research on which to base the selection of regions for investigation of the 

relationship between brain structure and training outcome. As such, an exploratory 

analysis examining the whole brain was deemed as the most appropriate way to analyse 

the diffusion imaging data. However, an exploratory analysis may result in “fishing” for 

statistically significant signals, rather than running analyses with the purpose of testing 

the hypotheses. On the other hand, research is done not only to test hypotheses and 

confirm theories, but also to expand them. Therefore, an exploratory whole-brain analysis 

might be useful in the first instance when using relatively new techniques such as NODDI, 

and could potentially give us novel information that we may otherwise miss. In terms of 

linking training-induced functional plasticity with underlying structure, it may have been 

reasonable to base our diffusion analyses on the same ROIs used in our fMRI analyses, 

which were based on extensive previous research on motor skill training. This limitation is 

somewhat mitigated if structure and training outcome relationships are demonstrated in 

regions with functional significance for the PCM task, and in regions within which 
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functional alterations occurred following training on the PCM task (discussed further in 

section 3.4.3.4 Diffusion MRI findings and functional significance, pg. 118). 

 

Correlations were run between the PCM normalised difference scores and the DTI 

indices of FA and MD, and the NODDI indices of NDI and ODI. The whole-brain voxel-wise 

analyses were conducted using a simple regression (converted to t-contrast) procedure. 

We ran the contrasts 0 1 to check for positive correlations and 0 -1 to check for negative 

correlations between each index and difference scores. A statistical significance threshold 

of p < .05 FDR-corrected at the cluster level was used, after clusters were formed with an 

uncorrected p < .001. 

 

3.3 Results 
 

3.3.1 Behavioural results 
 
 Correlations were run to determine if there were any relationships between the 

demographic data (gender, age, education) and the normalised difference scores. Tests of 

assumptions for the point-biserial correlation of gender x difference scores indicated no 

outliers in the difference scores for females and no outliers for males (Appendix V, Figure 

V.1, pg. 285). A Shapiro-Wilk test for females showed that difference scores are normally 

distributed, W(11) = .961, p = .785; as did a Shapiro-Wilk test for males, W(10) = .965, p = 

.836. Levene’s test found that the assumption of homogeneity of variance for female and 

male difference scores was met, F(1,19) = .424, p = .523. The point-biserial correlation 

demonstrated that there was no significant relationship between gender and training 

outcome, rpb = -.049, p = .834. 

 

Tests of assumptions for the Pearson’s correlation of age x difference scores 

indicated no outliers for age and no outliers for difference scores (Appendix V, Figures V.2 

and V.3, pg. 286). A Shapiro-Wilk test showed that age is normally distributed, W(21) = 

.925, p = .112; as did a Shapiro-Wilk test for difference scores, W(21) = .976, p = .863. A 

scatterplot indicated that the assumption of homoscedasticity was potentially violated 

(Appendix V, Figure V.4, pg. 287). As such, Kendall's tau-b was included as this non-

parametric test statistic does not require this assumption to be met. The Pearson’s 
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correlation demonstrated that there was no significant relationship between age and 

training outcome, r = .184, p = .424; as did Kendall’s tau-b, τb = .080, p = .625. 

 

 Tests of assumptions for the Pearson’s correlation of education x difference scores 

indicated no outliers for education (Appendix V, Figure V.5, pg. 288). Tests of assumptions 

for difference scores were not violated and are reported above. A Shapiro-Wilk test 

showed that education is normally distributed, W(21) = .909, p = .052. Scatterplots 

indicated the possibility of a quadratic relationship between the variables (Appendix V, 

Figures V.6 and V.7, pgs. 288 and 289). As such, a quadratic regression was conducted to 

see if this better described a potential relationship. The Pearson’s correlation 

demonstrated that there was no significant relationship between education and training 

outcome, r = -.007, p = .975. The quadratic regression demonstrated that education did 

not significantly predict training outcome, F(2,18) = 1.738, p = .204 , R2 = .162. As there 

were no significant relationships found between the demographics and training outcome, 

these variables were not used as covariates in any further analyses. 

 

Tests of assumptions for the paired samples t-test comparing pre- and post-

training scores indicated no outliers in the difference values (Appendix V, Figure V.8, pg. 

290). A Shapiro-Wilk test showed that the distribution of the differences is normal, W(21) 

= .970, p = .743. The paired samples t-test revealed a statistically significant difference 

between the pre- and post-training phases, t(20) = 7.52, p < .001. Figure 3.1 shows the 

mean number of successful trials significantly increased from the pre-training phase (first 

80 trials: M = 24.71; SD = 13.96) to the post-training phase (last 80 trials: M = 37.00; SD = 

14.59). The effect size was large and positive, Cohen’s d = 0.88. Participants performed 72 

training trials between the pre- and post-training phases, during the structural and 

diffusion scanning sequences. 
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Figure 3.1. Mean number of successful trials in the pre- and post-training phases of the PCM task 

(out of a total of 80 trials). Error bars indicate the standard error of the mean. 

 

 

3.3.2 fMRI results 

 

ROI analyses 

 

Separate 2 × 2 repeated measures ANOVAs were computed for each ROI with 

testing phase (Pre-training, Post-training) and trial performance (Successful, 

Unsuccessful) as within-subject factors. None of the ROI ANOVAs survived the necessary 

FDR correction for multiple comparisons. Using an exploratory uncorrected threshold of p 

< .005 and k = 5 voxels, we observed a main effect of testing phase bilaterally in 

cerebellum; in striatum (including left caudate and bilaterally in putamen); bilaterally in 

M1, premotor cortex, SMA, and preSMA; bilaterally in anterior cingulate cortex; left 

parahippocampal gyrus, left hippocampus, bilaterally in fusiform gyrus, and right lingual 

gyrus; bilaterally in superior parietal cortex, left inferior parietal cortex, right angular 

gyrus, right supramarginal gyrus, bilateral precuneus, and left postcentral gyrus; 

bilaterally in calcarine sulcus, and right cuneus; in right insula, right dPFC, right vPFC, and 

right oPFC (Table 3.1). There was no main effect of trial performance and no interaction 

between testing phase and trial performance in any of the ROIs. 
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Table 3.1. Exploratory ROI analysis: brain regions with a significant main effect of testing phase 

for the PCM task. Organised by ROI mask used for the analysis. A statistical significance threshold 

of p < .005 (uncorrected) with an extent threshold of 5 voxels was used.  

 

 
 
Brain region 
 

   
 

     
 

                         
 

               F-value 
 

Cluster size       P-value  
(voxels)             uncorrected 

      Cerebellum ROI mask 
     

      Left cerebellum (Crus 2)  -6 -85 -22   39.97       79                  .033 

Right cerebellum (Crus 1)  21 -88 -28   24.22                         

Right cerebellum (Crus 2)  6 -85 -28   14.87 
 Right cerebellum (VI)  15 -82 -19   13.77    

      Cerebellar vermis (10)  3 -46 -34   43.09      65                  .050 

      Left cerebellum (Crus 2) -21 -88 -31   12.56      11                  .400 

      Left cerebellum (IV-V) -6 -55  -4   12.88      7                    .508 

      Striatum ROI mask 
     

      Left putamen -18   8  5 21.24      45                .096 

      Left caudate -15   14  5 15.07      11                .400   

      Right putamen 27   -7  8 12.35       9                 .449 

      M1 ROI mask 
     

      Left precentral gyrus -48  -4 44 17.25     10                 .424   

      Right precentral gyrus 42 -13 41 11.58     10                 .424 

      Left postcentral gyrus -57 -16 35 13.20      9                  .449 

      Left postcentral gyrus -39 -25 56 11.05      5                  .582 

      Premotor cortex ROI mask 
     

      Right posterior-medial frontal  9 -13 53 16.87      55                .069 

      Right superior frontal gyrus 24 -1 59 24.08      32                .155 

      Left paracentral lobule -3 -16 65 13.95      17                .294 

 MNI coordinates   

  x   y  z 
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Left posterior-medial frontal -3 -10 65 13.00 
 

      Left precentral gyrus -48 -4 44 17.25      12                .379 

      Right posterior-medial frontal 6  2 56 11.86      10                 .424 

      Right precentral gyrus 42 -1 41 10.82      7                   .508 

      SMA ROI mask 
     

      Right posterior-medial frontal 9 -13 53 16.87      103              .017 

Left posterior-medial frontal -3 -13 65 14.66 
 

      Right posterior-medial frontal 6 5 59 12.67      31                .161 

      Left posterior-medial frontal -12 8 59 15.94      20                .256 

      Right posterior-medial frontal 6 23 53 15.46      18                .281 

      preSMA ROI mask 
     

      Right precentral gyrus 48 8 41 18.03      14                .341 

      Left posterior-medial frontal 3 23 53 13.02      13                .359 

Right posterior-medial frontal 6 17 47 11.17 
 

      Anterior cingulate ROI mask 
     

      Left anterior cingulate cortex -12 41 -1 22.92      23                .224 

      Right anterior cingulate cortex 9 38 -1 11.22       8                 .477 

      Parahippocampal ROI mask 
     

      Right lingual gyrus 27 -52  -7 20.59      19                .268 

Right fusiform gyrus 30 -58  -10 11.48 
 

      Left hippocampus -21 -25  -13 20.39      12                .379 

Left parahippocampal gyrus -15 -34  -7 11.19 
 

      Left fusiform gyrus -33 -13  -31 15.67       9                 .449 

      Hippocampus ROI mask 
     

      Left hippocampus -21 -22 -13 24.31      27               .189 
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Inferior parietal ROI mask 
     

      Right supramarginal gyrus 63 -43 35 20.40      22               .234 

      Right angular gyrus 33 -55 44 20.03      21               .245 

      Left inferior parietal cortex -30 -52 47 21.48      16               .309 

      Precuneus ROI mask 
     

      Right precuneus 12 -70 44 20.99      68              .046 

Right cuneus 15 -79 41 11.14 
 

      Left precuneus -12 -49 53 22.76      34              .143 

      Left inferior parietal cortex -27 -52 44 17.55      24              .214 

Left superior parietal cortex -24 -61 47 9.70 
 

      Right calcarine sulcus 3 -64 17 11.61      22              .234 

Left calcarine sulcus -3 -70 17 11.34 
 

      Right precuneus 12 -43 53 25.97      20              .256 

      Right superior parietal cortex 27 -61 50 17.04      13              .359 

      dPFC ROI mask 
     

      Right precentral gyrus 48  5 38 18.38      26              .195 

      Left posterior-medial frontal 3 23 53 13.02      13              .359 

Right posterior-medial frontal 6 17 47 11.17 
 

      vPFC ROI mask 
     

      Right precentral gyrus 60  8 20 18.53      13              .359 

Right IFG (p. Opercularis) 57 11 17 16.73 
 

      Right IFG (p. Orbitalis) 39 20 -16 14.62       7               .508 

      Right insula lobe 33 26  2 10.79       5               .582 

      oPFC ROI mask 
     

      Right superior frontal gyrus 24 62  2 17.40      14             .341 

Right middle frontal gyrus 33 53  2 9.07 
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P values are reported at the cluster level. The MNI coordinates refer to the peak F-value. Local maxima that 

are more than 8 mm apart are shown for each cluster. IFG = inferior frontal gyrus. 

 

 

 

To further explore the differences in testing phase, we used an uncorrected 

threshold of p < .005 and k = 5 voxels with the contrasts Pre-training > Post-training and 

Post-training > Pre-training in each ROI. There was increased activity during pre-training 

bilaterally in cerebellum, left parahippocampal gyrus, and left hippocampus (Figure 3.2). 

There was increased activity during post-training bilaterally in cerebellum; in striatum 

(including left caudate and bilaterally in putamen); bilaterally in M1, premotor cortex, 

SMA, and preSMA; bilaterally in anterior cingulate cortex; bilaterally in superior parietal 

cortex, left inferior parietal cortex, right angular gyrus, right supramarginal gyrus, 

bilaterally in precuneus, and postcentral gyrus; bilaterally in cuneus, calcarine sulcus, right 

lingual gyrus, and right middle occipital gyrus; bilaterally in fusiform gyrus; in right insula; 

in right dPFC, right vPFC, and bilaterally in oPFC (Figure 3.3).  

 

 

        

 

 

Figure 3.2. Exploratory ROI analysis for the PCM task: increased activity during pre-training  

a) bilaterally in cerebellum, b) left parahippocampal gyrus and hippocampus. A statistical 

significance of p < .005 (uncorrected) with an extent threshold of 5 voxels was used. 

 

 

 

  a    b 

y = -81  y = -26 
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Figure 3.3. Exploratory ROI analysis for the PCM task: increased activity during post-training 

bilaterally in a) cerebellum; b) striatum; c) M1, premotor cortex, SMA, and preSMA; d) anterior 

cingulate cortex; e) superior parietal cortex, left inferior parietal cortex, right angular gyrus, right 

supramarginal gyrus, bilaterally in precuneus, postcentral gyrus (not shown), cuneus, calcarine 

sulcus (not shown), right lingual gyrus (not shown), right middle occipital gyrus, and bilaterally in 

fusiform gyrus (not shown); f) in right insula (not shown), right vPFC, bilateral oPFC, and right 

dPFC (not shown). Statistical significance was set at p < .005 (uncorrected), k = 5 voxels. 

 

 

Correlations were run between the normalised difference scores and percent 

change in betas in the ROIs that showed a significant effect for the contrasts Pre-training 

> Post-training and Post-training > Pre-training. Percent change in betas in post-training is 

significantly and positively correlated with difference scores bilaterally in putamen, r = 

.493, p = .023; and anterior cingulate cortex, r = .524, p = .015. 
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3.3.3 Diffusion MRI results  

 

Whole-brain analyses 

 

Correlations were run between the normalised difference scores and the DTI and 

NODDI indices of FA, MD, NDI, and ODI. We found a significant negative correlation of the 

difference scores and FA in the grey and white matter of right SMA; a significant negative 

correlation between the difference scores and MD in the grey matter of left middle 

temporal gyrus (specifically in human mid-temporal area: hMT+/V5) and bilaterally in 

cerebellum; and a significant positive correlation of difference scores with ODI in the 

white matter of right SMA (Table 3.2). 

 

Table 3.2. Whole-brain diffusion analysis: brain regions with significant correlations between 

DTI/NODDI indices and normalised difference scores. 

 

 
 
Brain region 
 

   
 

     
 

                         
 

               t-value 
 

Cluster size      P-value  
(voxels)             FDR-corrected 

 
FA negative correlation with 
training outcome 

     

      Right SMA (WM)  18 -20 58   5.28     35                    .002 

Right SMA (WM and GM)  12 -20 60   4.83 
 

      MD negative correlation with 
training outcome 

     

      Left cerebellum (IV-V) (GM)  -20 -48 -22   5.30     95                  <.001 

Left cerebellum (VI) (GM)  -22 -54 -20   5.19 
 

    
      

Left hMT+/V5 (GM)  -48 -54  14   5.61     33                    .038 

Right cerebellum (VI) (GM)  24 -72 -18   4.65     29                    .049 

      ODI positive correlation with 
training outcome 

     

      Right SMA (WM)  16 -22  58   5.25     22                    .014 

      A statistical significance threshold of p < .05 FDR-correction at the cluster level was used, after clusters were 

formed with an uncorrected p < .001. P values are reported at the cluster level. The MNI coordinates refer 

to the peak t-value. Local maxima that are more than 8 mm apart are shown for each cluster. WM = white 

matter, GM = grey matter, hMT+/V5 = human mid-temporal area. 

 MNI coordinates   

   x   y  z 
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3.4 Discussion 
 
 In the present experiment, we investigated the neural correlates of short-term 

training on a novel and complex perceptual-cognitive-motor task in healthy middle-aged 

adults (40-50 years old). We found a significant improvement in performance following 

training. There was an increased engagement of both cortical and subcortical areas in a 

relatively short space of time, supporting improved performance on the task. And finally, 

we found significant associations between brain microstructure and training outcome. 

 
3.4.1 Behavioural findings 
 

We found that the number of successful trials significantly increased from the pre- 

to the post-training phase of the PCM task, and the effect size was large and positive. 

Participants completed 160 trials (31 minutes of training) before the post-training test, 

indicating that with a relatively short training duration and a relatively low number of 

training trials they were able to greatly improve their performance. This is in line with 

several studies showing big improvements on the trained task following training (e.g., 

Howard & Howard, 1992; Singer et al., 2003; Rebok et al., 2007; Spencer et al., 2007; 

Basak et al., 2008; Rieckmann & Bäckman, 2009; Nemeth & Janacsek, 2010; Wilson et al., 

2012; Karbach & Verhaeghen, 2014). This is also in line with studies looking specifically at 

multidomain approaches (i.e., training several cognitive functions within the same task) in 

younger and older adults (Green & Bavelier, 2003; Basak et al., 2008; van Muijden et al., 

2012; for a review see Kueider et al., 2012). Correlations were run to determine if there 

were any relationships between the demographic data and the normalised difference 

scores. As there were no significant relationships found between the participant 

demographics and training outcome, it can be concluded that the training itself was 

effective in improving scores regardless of participant gender, age, and education.  

 
3.4.1.1 Mechanisms underlying improvement on the PCM task 

 
We demonstrated that even short-term training on the PCM task resulted in 

improved performance in middle-aged adults. This is in line with previous research in 

young adults showing that practice at the PCM task led to improved performance 

compared to controls that received no training (M = 22.3 years of age, Bennett et al., 
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2018; M = 21.8 years of age, Uji et al., unpublished data). The control groups in these 

studies remained in their seats facing a blank computer screen for 30 min after the pre-

test in order to closely replicate the time it took the practice group to perform their 

training trials.  

 
Uji et al. (unpublished data) demonstrated that the practice group developed 

specific cognitive processes for decision making and visual search behaviours that 

underpinned their better performance. The practice group exhibited a significantly higher 

proportion of goal-directed visual saccades, more smooth pursuit eye movements, and 

more condition-action statements in the post-test when compared to the pre-test and 

control group. Saccades and smooth pursuit eye movements are two different forms of 

oculomotor control (Orban de Xivry & Lefevre, 2007). Saccades are primarily directed 

toward stationary targets such as the red target in the PCM task, whereas smooth pursuit 

is elicited to track moving targets such as the green objects in the PCM task (Orban de 

Xivry & Lefevre, 2007). Visual search behaviours of both groups were measured using an 

eye movement registration system. In addition, participants were required to write down 

all of the thought processes that they used to complete the task in separate condition-

action formatted statements. Condition-action statements were collected at the end of 

the pre- and post-test. Condition-action pairs match task, environmental, or individual 

conditions to actions designed to achieve a goal (Neves & Anderson, 1981; Anderson et 

al., 2004; Uji et al., unpublished data). In the PCM task, condition statements refer to the 

movements of the objects and the positioning of the cursor, and specify under what 

conditions to apply an action or patterns of actions (Uji et al., unpublished data). Action 

statements in the task are defined by motor responses that involve cursor movement, or 

visual responses that involve fixating or tracking certain information on the screen, and 

may include characteristics of the type of action (e.g., direction, placement, and speed) 

(Uji et al., unpublished data). The authors suggest that development of condition-action 

pairs in the practice group most likely contributed to successful performance by providing 

rule-governed processes used to match certain task conditions with the appropriate 

visual and/or motor actions (McPherson & Thomas, 1989). In the PCM task, these 

processes would include strategies to monitor current conditions (e.g., cursor position; 

movement/location of objects) with respect to previous successful or unsuccessful 
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attempts, and specify under what conditions or when to apply an action or patterns of 

actions to attain the desired goal (McPherson & Thomas, 1989; McPherson & Kernodle, 

2003; McPherson & MacMahon, 2008; Uji et al., unpublished data). The authors propose 

that the significant increase in condition-action pairs for the practice group is a key 

finding because it indicates that in addition to the expected changes in motor 

performance and eye behaviour, training led to the development of cognitive decision 

making processes that facilitated improvement in task performance (Uji et al., 

unpublished data). The mechanisms involved in the acquisition of these perceptual-

cognitive-motor processes may be the same for middle-aged adults. However, we can 

only speculate as to whether this is indeed the case as we did not explicitly examine visual 

search behaviours and condition-action statements in order to test this assumption. 

 
3.4.1.2 PCM acquisition in middle-aged adults compared to young adults 
 

It is important to note that the PCM scores for our participants were very low, and 

there was still much room for improvement. The mean percent of successful trials 

significantly increased from the pre-training phase (M = 30.89%) to the post-training 

phase (M = 46.25%). By comparison, in the study by Uji et al. (unpublished data), the 

practice group significantly increased their mean percent of successful trials from the pre-

training phase (M = 12.5%) to the post-training phase (M = 62.5%). In the study by 

Bennett et al. (2018), performance improved significantly in the post test for the practice 

group (M = 55%) compared to the control group that received no training (M = 20%). 

Furthermore, young adults were able to outperform the middle-aged adults with the 

same amount of training, i.e., 31 minutes of practice (104 trials) (Uji et al., unpublished 

data; Bennett et al., 2018). One explanation for the lower training gains in our experiment 

could be that middle-aged participants are less able to learn the task than young adults. 

This would be in line with studies looking at the acquisition of a complex motor skill that 

showed performance decrements start in middle-age (Gershon, 1978; Voelcker-Rehage & 

Wilimczik, 2006; Janacsek et al., 2012).  

 
However, direct comparisons of the middle-aged adults and young adults of these 

different studies is difficult because the Uji et al. (unpublished data) and Bennett et al. 

(2018) studies were behavioural, whereas the present study was carried out in an MRI 
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scanner. It can be argued that the task would be more difficult in the scanner as 

participants have to habituate to the scanner environment, in addition to completing the 

task while lying down, with a head coil mounted around the face, visualising the 

computer screen through a mirror system, and manipulating an unfamiliar mouse 

apparatus without being able to see one’s hand. In the studies by Uji et al. (unpublished 

data) and Bennett et al. (2018), the participant sat on a chair at a desk so they were 

comfortable when moving a stylus on a digitising tablet to control the cursor location on 

the computer screen. Thus, the extent to which plasticity varies with age could not be 

considered with the present experiment and could only be assessed if younger and older 

adults were also included within the same study.  

 
It is also possible that 31 minutes of training was simply not enough time for the 

middle-aged participants to achieve expertise at such a difficult and complex task. Indeed, 

changes in motor skill performance are known to evolve slowly, requiring many 

repetitions over several training sessions (Karni, 1996; Ungerleider et al., 2002; Doyon et 

al., 2003). Studies have demonstrated that the acquisition of motor skills follows distinct 

stages including an early, fast learning stage in which considerable improvement in 

performance can be seen within a single training session and a later, slow learning stage 

in which further gains can be observed across several sessions of training (Nudo et al., 

1996; Karni et al., 1998; Ungerleider et al., 2002; Doyon et al., 2003). With extended 

practice, the skilled behaviour is thought to become resistant to both interference and 

the simple passage of time, and can thus be readily retrieved with reasonable 

performance despite long periods without practice (Penhune & Doyon 2002; Ungerleider 

et al., 2002; Doyon et al., 2003). While it is clear that the middle-aged participants 

demonstrated significant performance improvements and plasticity in the early fast 

learning stage, longer-term training would be needed to see if further gains could be 

observed, and whether the perceptual-cognitive-motor skills could be trained comparable 

to levels seen in young adults. 

 
 
 
 
 
 



100 
 

3.4.2 fMRI findings 
 
3.4.2.1 Short-term PCM training and functional neuroplasticity 
 

Our results indicate that there was functional plasticity in middle-aged adults 

following training on the PCM task. We demonstrated that experience-related functional 

reorganisation begins to develop within cortical and subcortical regions as training 

progresses. These findings are consistent with the view of neuroplasticity where 

functional changes occur in the brain as a result of training, practice, and experience 

(Jancke, 2009; Dayan & Cohen, 2011).  

 
Successful trial completion required working memory for effective paths of 

navigation to the target, anticipation/prediction of obstacle trajectories, and monitoring 

allocentric spatial relationships between objects, in addition to motor aspects, such as 

fine motor control, and adaptation to kinematics of self-referent motion and to cursor 

movement (i.e., gain of movement). Furthermore, the present protocol used a dynamic 

and complex task environment in which the task goal could be attained in multiple ways 

by executing cursor trajectories from a range of potential options, some of which were 

more effective than others. Using this task, we were able to examine the cognitive and 

motor networks involved in the acquisition of the sensorimotor and decision making 

processes required for successful completion of the task.  

 
As expected, there was increased engagement of both cognitive and motor 

networks with just 31 minutes of training (160 trials), supporting improved performance 

on the PCM task. Using an exploratory uncorrected threshold of p < .005 and k = 5 voxels, 

we observed increased activity post-training bilaterally in cerebellum; in striatum 

(including left caudate and bilaterally in putamen); bilaterally in M1, premotor cortex, 

SMA, and preSMA; bilaterally in anterior cingulate cortex; bilaterally in superior parietal 

cortex, left inferior parietal cortex, right angular gyrus, right supramarginal gyrus, 

bilaterally in precuneus, and postcentral gyrus; bilaterally in cuneus, calcarine sulcus, right 

lingual gyrus, and right middle occipital gyrus; bilaterally in fusiform gyrus; in right insula; 

in right dPFC, right vPFC, and bilaterally in oPFC. Our results are in line with studies 

showing increased activity occurs in short-term training before the task is well-practiced 

(i.e., single-session studies) (e.g., Nyberg et al., 2003; Kelly & Garavan, 2005; Soldan et al., 



101 
 

2008; Braver et al., 2009; Lustig et al., 2009). Activation seen early in training involves 

generic attentional and cognitive control areas —prefrontal cortex, anterior cingulate 

cortex, and posterior parietal cortex together with changes in task-specific areas (Kelly & 

Garavan, 2005; Halsband & Lange, 2006; Voelcker-Rehage, 2008; Lustig et al., 2009; 

Hardwick et al., 2013). Indeed, we found increased activity in a frontoparietal network 

(i.e., SMA, pre-SMA, premotor cortex, parietal cortex, anterior cingulate, prefrontal, and 

orbitofrontal cortex), indicating the recruitment of these regions to support learning on 

the PCM task. The frontoparietal network is suggested to provide top-down control of 

executive resources to support learning in motor and non-motor domains (Hikosaka et al., 

2002; Zanto & Gazzaley, 2013).  

 
3.4.2.2 PCM training and models of motor skill learning 
 

As we were examining the fast early stage of motor skill learning, we expected 

increased activity in the striatum, cerebellum, SMA, preSMA, M1, premotor cortex, 

anterior cingulate, dPFC, and inferior parietal cortex. Indeed, we found activation in these 

regions in middle-aged adults. Activity in this network has been interpreted as 

representing the enhanced need for error correction (cerebellar cortex) and planning 

(premotor cortex) during early learning (Steele & Penhune, 2010). Our results are in line 

with extensive research in young adults showing that the early fast learning phase of 

motor skill acquisition (i.e., session 1) elicits widespread activation in subcortical areas 

(basal ganglia, cerebellum, hippocampus), as well as relevant cortical areas (SMA, 

preSMA, M1, premotor cortex, anterior cingulate, inferior parietal regions, and dPFC) 

(e.g., Grafton et al., 1995; Sakai et al., 1998; Ungerleider et al., 2002; Doyon et al., 2003; 

Floyer-Lea & Matthews, 2005; Albouy et al., 2008; Steele & Penhune, 2010; Albouy et al., 

2012; King et al., 2013).  

 
The Doyon and Ungerleider (2002) model proposes that there are two loop 

circuits, a cortico-striatal and a cortico-cerebellar system, which are both recruited during 

the early learning stage of motor skill training regardless of the type of motor task. 

However, in the later stage, after several sessions of training, the cortico-striatal and 

cortico-cerebellar systems contribute differentially to different types of motor tasks. For 

example, for motor sequence training (learning a new sequence of movements) the 
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cerebellum becomes no longer essential, and the long-lasting retention of the skill will 

now involve representational changes (as reflected through increased activity) in the 

striatum and its associated motor cortical regions, including the parietal and motor-

related structures (Doyon et al., 2003). By contrast, a reverse pattern of plasticity is 

proposed to occur for motor adaptation (learning to adapt to environmental 

perturbations), the striatum is no longer necessary for the execution and retention of the 

acquired skill; increased activity in regions representing this skill will now be present in 

the cerebellum, parietal cortex and motor-related cortical regions (Doyon et al., 2003). 

Thus, both the cortico-striatal and cortico-cerebellar loops are thought to be recruited in 

the early stage of motor skill training, while the later stage of motor sequence learning is 

thought to recruit the cortico-striatal system, whereas motor adaptation skills recruit the 

cortico-cerebellar system. Both the cortico-striatal and cortico-cerebellar systems were 

recruited in middle-aged adults. Indeed, our findings corroborate the regions suggested 

to be recruited in the early learning phase of the model – we found increased activity in 

the striatum, cerebellum, motor cortical regions (e.g., premotor cortex, SMA, pre-SMA, 

anterior cingulate), as well as prefrontal and parietal areas. However, in the present 

experiment we did not assess motor skill acquisition over the entire course of learning, 

and thus cannot assess the late training stage in order to fully examine this model. 

 
In a similar model proposed by Hikosaka et al. (2002), learning spatial coordinates 

during motor skill training is supported by a frontoparietal-associative striatum-cerebellar 

circuit, while learning motor coordinates is supported by an M1-sensorimotor striatum-

cerebellar circuit. The Hikosaka et al. model postulates that the regions engaged in the 

early stage of motor skill training are associative and involved in the fast learning of 

spatial coordinates, whereas in the late stage of training it is sensorimotor areas that are 

involved in the slower learning of motor coordinates. In line with this model, we found 

increased activity in frontoparietal-associative striatum-cerebellar regions (i.e., dPFC, 

inferior parietal cortex, anterior cingulate, caudate, rostrodorsal regions of the putamen, 

and regions in the cerebellum) indicating that this circuit was recruited to learn spatial 

coordinates in the PCM task. We also found increased activation in M1-sensorimotor 

striatum-cerebellar regions (i.e., M1, caudoventral areas of the putamen, and cerebellar 

regions) suggesting this circuit was being recruited to learn motor coordinates in the PCM 
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task, although further increases in activity would be expected in this circuit with 

additional training as more expertise is achieved in the task (i.e., during the late phase of 

learning). In addition, we found increased activity in premotor cortex, SMA, and preSMA, 

supporting the suggestion that transformation from spatial to motor coordinates involves 

these areas. As with the Doyon and Ungerleider model, we did not examine the late 

learning stage of training with the PCM task, as such, we provide partial support for the 

model but cannot fully assess it. 

  
 In addition to the regions discussed above, we also found increased activation in 

the vPFC and precuneus during post-training. This is contrary to several studies where the 

vPFC and precuneus show increased activation during the late stage of motor skill 

learning (e.g., Doyon, 1997; Sakai et al., 1998; Doyon & Ungerleider, 2002; Ungerleider et 

al., 2002; Doyon et al., 2003; Lehéricy et al., 2005). Early activation in these regions may 

be related to the specific demands of the PCM task, with precuneus contributing to the 

need for visual–sensorimotor integration, and visuospatial attention and processing 

(Bushnell et al., 1981; Posner & Rothbart, 1991; Petrides, 1996; Clower et al., 2001; 

Doyon et al., 2002; Cavanna &Trimble, 2006), and vPFC contributing to response 

inhibition, goal-appropriate response selection, and abstract decision and action planning 

processes (Aron et al., 2004; Schendan, 2012; Aron et al., 2014). The studies that found 

activation during the late phase of training in these areas (e.g., Jenkins et al., 1994; Sakai 

et al., 1998; Ungerleider et al., 2002; Doyon et al., 2003; Lehéricy et al., 2005) employed 

motor sequence learning tasks which may have engaged these regions later in training 

owing to different task processes being involved than those required in the PCM task. For 

example, Jenkins et al. (1994) required participants to learn sequences of key presses by 

trial and error while having their eyes closed and using auditory feedback. Furthermore, 

the vPFC and precuneus are association areas of the cerebral cortex and early activation 

in these regions would be in line with the Hikosaka et al. model, which suggests that 

associative regions are engaged early in the learning process to acquire spatial 

coordinates. In addition, it is possible that the observed increase in activation in the 

precuneus and vPFC early during training would increase further with practice on the 

PCM task (i.e., during the late stage of training). However, the present experiment cannot 

assess this and longer-term training would be needed to answer this question. 
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3.4.2.3 PCM training and cerebellar, hippocampal, and parahippocampal function 
 

We found decreased activity post-training in cerebellum, hippocampus, and 

parahippocampal gyrus. This is contrary to what was expected; we expected PCM learning 

to be supported by increased activity in these regions as this was short-term training 

during the early learning stage of motor skill acquisition. The cerebellum is especially 

critical for early motor skill learning and its activity is not thought to decrease until the 

later phase of motor skill acquisition after longer-term training (e.g., Jenkins et al., 1994; 

Grafton et al., 1995; Doyon et al., 1996; Penhune & Doyon, 2002; Tamás Kincses et al., 

2008; Doyon et al., 2009; Orban et al., 2010; Steele & Penhune, 2010). While we did 

indeed find increased activity in the cerebellum in Crus I, lobule IV-V, and cerebellar 

vermis X which is in line with the above studies, we also found decreased activity in 

cerebellum Crus I, Crus II, and lobule VI despite it being the early stage of training. This 

result seems inconsistent but may reflect anatomical and functional differentiation in the 

cerebellum between sensorimotor and cognitive regions (Schmahmann, 2019).  

 
The sensorimotor cerebellum is mostly in the anterior lobe (lobules I through V), 

parts of lobule VI, lobule VIII, and the cerebellar vermis is interconnected with the 

vestibular and other brainstem nuclei which are engaged in midline body control, gait, 

and equilibrium (Schmahmann, 2001; Kelly & Strick, 2003; Schmahmann et al., 2004; 

Habas et al., 2009; Krienen & Buckner, 2009; O’Reilly et al., 2010; Buckner et al., 2011; 

Guell et al., 2018a; Guell et al., 2018b; Stoodley & Schmahmann, 2009; Schmahmann, 

2019); whereas the cognitive cerebellum is in the posterior lobe (Buckner et al., 2011; 

Guell et al., 2018a; Guell et al., 2018b; Schmahmann, 1991; Schmahmann, 2019). Task-

based fMRI using cognitive paradigms has demonstrated that there are functionally 

distinct regions within the cerebellar posterior lobe with lobule VI engaged in visuospatial 

tasks; and lobules VI, Crus I, Crus II, and VIIB are activated by executive functions such as 

working memory, planning, organising, and strategy formation (Stoodley & Schmahmann, 

2009; Stoodley & Schmahmann, 2010; Stoodley et al., 2012; Stoodley et al., 2016; 

Schmahmann, 2019). Interestingly, we found increased activity mostly in sensorimotor 

areas of the cerebellum, i.e., lobule IV-V and cerebellar vermis X; while decreased 

activation was found in the cognitive regions, i.e., Crus I, Crus II, and lobule VI which are 

involved in visuospatial processing and executive functions such as working memory – 
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important processes for the PCM task. Decreases in these regions may indicate more 

efficient processing, however, such efficient processing would be rather unexpected with 

only 31 minutes of training.  

 
Alternatively, our findings may be consistent with a role for the cerebellum in 

correcting motor errors (Flament et al., 1996; van Mier et al., 1998; Imamizu et al., 2000; 

van Mier & Petersen, 2001; van Mier et al., 2004; Orban et al., 2010). A decrease in 

cerebellar activity being associated with a reduction in error rate and improved 

performance (Flament et al., 1996; van Mier et al., 1998; Imamizu et al., 2000; van Mier & 

Petersen, 2001; Doyon et al., 2002; van Mier et al., 2004; Orban et al., 2010). Thus, the 

decrease in cerebellar activity seen in the present experiment may be related to the 

significant improvement in the PCM task. However, it should be noted that although 

there was significant improvement in the task, the error rate was still quite high (M = 

53.75%) and there was further room for improvement.  

 
Climbing fibres in the cerebellum are thought to not only encode sensorimotor 

error signals, but also a timing error (Kitazawa et al., 1998; Doya, 2000; Medina et al., 

2000; Sakai et al., 2000; Hikosaka et al., 2002). Indeed, the cerebellum, and in particular 

lobule VI, is thought to be a key structure for the timing of movement (Medina et al., 

2000; Sakai et al., 2000; Schubotz & von Cramon, 2001; Sakai et al., 2004). In the study by 

Sakai et al. (2000), the authors examined how the brain decides ‘what to do’ (response 

selection) and ‘when to do it’ (timing adjustment). The preSMA was selectively involved in 

response selection, whereas the cerebellar posterior lobe was selectively involved in 

timing adjustment. An essential element for successful completion of the PCM task is the 

timing of movement, for example, when to move the white cursor in order to avoid the 

green objects. Thus, the decreased activity that was found in lobule VI may reflect 

improved timing of movement in the PCM task.  

 
 The decreases in activity in the hippocampus and parahippocampus were also 

contrary to what we predicted. The hippocampus has shown increases in activity in both 

the early and later stages of motor skill learning (Schendan et al., 2003; Albouy et al., 

2008; Fernández-Seara et al., 2009; Gheysen et al., 2010; King et al., 2013). However, 

studies have also found decreases in activity in the hippocampus during the early learning 
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stage, or increased activity only in the later phase of motor skill training (Jenkins et al., 

1994; Schendan et al., 2003; Albouy et al., 2008; Steele & Penhune, 2010; Rieckmann et 

al., 2010). For example, Jenkins et al. (1994) found an extensive decrease in the activity of 

the hippocampus in both new learning during the initial stage of motor skill training, and 

during the overlearned sequence in the later stage of training. The authors suggest that 

this is evidence that motor learning need not engage the hippocampal system. In the 

study by Steele and Penhune (2010), hippocampal regions increased in activity on day 2 

of training, but were not part of the early learning network identified on day 1. The 

relatively few studies investigating the role of the hippocampus in motor skill training 

have yielded heterogeneous findings that are likely to be the result of different types of 

tasks tapping into different cognitive processes. Thus, the research on hippocampal 

activation in motor skill learning remains contradictory and inconclusive.  

 
The parahippocampal cortex is involved in many cognitive processes, including 

visuospatial processing (van Strien et al., 2009; Aminoff et al., 2013; Hohenfeld et al., 

2020). This region is highly engaged by tasks involving scene perception, spatial 

representation, and navigation (e.g., Aguirre et al., 1996; Epstein & Kanwisher, 1998; 

Maguire et al., 1998; Mellet et al., 2000; Ekstrom et al., 2003; Janzen et al., 2007; 

Kravitz et al., 2011; Mullally & Maguire, 2011; Park et al., 2011; Stevens et al., 2012; 

Aminoff et al., 2013). Visuospatial processing is a key aspect of the PCM task. For 

example, monitoring the location of the green objects with respect to the cursor and to 

each other is a necessary component of the task. Thus, we predicted increased activation 

in this region. The observed decreased activation after half an hour may be an indication 

of early increased efficiency in this region for this particular task. 

 
3.4.2.4 PCM training outcome and activity in the putamen and anterior cingulate cortex  
 

We found that increased activity post-training was significantly and positively 

correlated with training outcome in the putamen and anterior cingulate cortex. This 

suggests that increased activity in these areas might underlie the improvements seen in 

performance on the task. This is in line with studies showing that the rostrodorsal 

(associative) regions of the putamen are involved early in the learning process and are 

critical for acquiring a new motor skill (Jueptner et al., 1997; Lehericy et al., 2005; King et 
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al., 2013). By contrast, activity in the caudoventral (sensorimotor) areas of the putamen 

increases as a function of practice, suggesting that this region is involved in the execution 

of well-learned motor skills (Jueptner et al., 1997; Lehericy et al., 2005; King et al., 2013). 

Lehericy et al. (2005) demonstrated that performance (movement accuracy) was 

positively correlated with signal changes in areas activated during early learning, including 

the associative putamen, whereas reaction time (movement speed) was negatively 

correlated with signal changes in areas activated during late learning stages, including the 

sensorimotor putamen. In addition, Jueptner et al. (1997) showed that the shift of 

activation from the associative to the sensorimotor territories of the putamen was 

already completed after 50 min of training. These results indicate that motor 

representations shift from the associative to the sensorimotor territories of the putamen 

during early learning, and do so relatively rapidly (Jueptner et al., 1997; Hikosaka et al., 

2002; Lehericy et al., 2005). Notably, we found increased activation in both rostrodorsal 

and caudoventral areas of the putamen, providing support for the notion that motor 

representations shift from the associative to the sensorimotor territories of the putamen 

during learning. However, longer-term training with more sessions would better 

demonstrate that this shift is indeed taking place. 

 
The pivotal role of the putamen in motor skill learning is thought to be the 

processing of reward error signals originating from midbrain neurons that provide the 

basal ganglia with dopaminergic inputs (Aosaki et al., 1994; Jog et al., 1999; Doya, 2000; 

Hikosaka et al., 2002; Schultz et al., 2003; Orban et al., 2010). Reward error signals attach 

a positive value to movements and decisions accurately produced during the early stage 

of learning, which can then be stored long term (Doya, 2000; Hikosaka et al., 2002; Orban 

et al., 2010). In the PCM task, increased putamen activation may reflect the intrinsic 

positive reward associated with successfully reaching the target and an error signal for 

when a trial is unsuccessful.  

 
Furthermore, it is likely that putamen activation in our experiment reflects not 

only the sensorimotor aspects of the PCM task, but also the cognitive aspects. This would 

be in line with reports of striatal activations in the early phase of motor skill learning 

when participants have to rely more strongly on the use of cognitive strategies and 
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working memory (Jenkins et al., 1994; Jueptner et al., 1997; Toni et al., 1998; Dagher et 

al., 1999; Lehericy et al., 2005). Improved performance on the PCM task requires working 

memory for successful trajectories to the target.  

 
Moreover, activation in the putamen has been shown to increase in non-motor 

tasks involving a reward prediction error (Daniel & Pollmann, 2012; Sommer & Pollmann, 

2016). Sommer & Pollmann (2016) investigated if the occurrence of a target in a visual 

search display would elicit an increase of activation if the target's location is predicted by 

a previously learnt spatial context. They compared target appearance at locations 

predicted with 50% probability, at locations predicted with 100% probability, and at 

unpredicted locations. If putamen activation reflects an internal reward prediction error, 

it should be increased if the target appears at the learnt (versus the changed) location in 

the 50% probability displays. No prediction error signal would be expected for the 

displays that predict the target location with 100% certainty. They observed increased 

putamen activation when visual search targets were presented at the location predicted 

by the spatial context and when the prediction was uncertain (50% probability = 

prediction error) rather than certain (100% probability = no prediction error). Thus, they 

demonstrated an intrinsic prediction error signal in the putamen in memory-driven visual 

search (i.e., visual search in repeated displays). Similarly, in the PCM task, participants 

performed a visual search of the spatial context to monitor cursor position in relation to 

the movement/location of green objects and to the target. There were a total of eight 

repeating movement patterns of the green objects. A successful trial would result in a 

positive intrinsic reward for a particular pattern and for the trajectory taken to the target, 

whereas an unsuccessful trial would generate a prediction error signal because at the 

early stage of learning, the possibility of reward is still very uncertain. Thus, it is possible 

that the increased activity in the putamen reflected a reward prediction error signal for 

the PCM task. As the activity in the putamen increases, indicating processing of reward 

prediction error signals, so the training outcome improves. 

 
As with the putamen activation, the positive correlation of activity in the anterior 

cingulate cortex and training outcome in the PCM task might also reflect a reward 

prediction error signal. The anterior cingulate is thought to be involved in error detection 
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and performance monitoring (Carter et al., 1998; Gehring & Knight, 2000; Luu et al., 2000; 

Procyk et al., 2000; Daniel & Pollmann, 2010). Anterior cingulate cortex activation in 

response to negative feedback has been shown in a large body of research (Carter et al., 

1998; Gehring & Knight, 2000; Luu et al., 2000; Procyk et al., 2000; Daniel & Pollmann, 

2010; for an overview, see Ridderinkhof et al., 2004a). This activation is often interpreted 

as reflecting the transmission of a reward prediction error signal that conveys the 

increased need for control and to induce behavioural adjustments thereby maximising 

performance (Carter et al., 1998; Gehring & Knight, 2000; Luu et al., 2000; Procyk et al., 

2000; Ridderinkhof et al., 2004b; Daniel & Pollmann, 2010; for an overview, see 

Ridderinkhof et al., 2004a). In addition, in the study by Daniel and Pollmann (2010), the 

observed activations within the anterior cingulate cortex were not modulated by the 

types of reward presented, i.e., whether monetary reward or cognitive feedback/intrinsic 

reward. The PCM task required evaluation of the trial outcomes based on whether a 

trajectory to the target was successful or not, i.e., cognitive feedback/intrinsic reward. 

Interestingly, in the current experiment, increased activity in both the putamen and 

anterior cingulate was associated with a better training outcome — both regions are 

thought to process reward prediction error signals, indicating this might be a critical 

learning mechanism in the early stage of PCM training as a way for behaviour to be 

modified and maximise performance. 

 
It is also possible that activity in the anterior cingulate cortex may reflect the 

decision-making component of the PCM task, in line with other published work (e.g., 

Shima & Tanji, 1998; Bush et al., 2000; Bush et al., 2002). In the PCM task, the goal could 

be attained in multiple ways by executing cursor trajectories from a range of potential 

options. Thus, deciding which option to take may be mediated by activity in anterior 

cingulate cortex.  

 
Alternatively, it has been suggested that the anterior cingulate cortex contributes 

to the attentional brain network, composed of the prefrontal, anterior cingulate, and 

posterior parietal cortices, which has previously been proposed to have a “scaffolding” 

role that allows coping with unskilled performance (Petersen et al., 1998; Kelly & 

Garavan, 2005; Orban et al., 2010). Jenkins et al. (1994) showed that the anterior 
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cingulate was activated during new learning but not during automatic performance. The 

authors suggest that the anterior cingulate cortex plays a role in directed attention as the 

participants had to attend to the task during new learning, but not when the task had 

become automatic. In addition, the ability to solve complex problems has been shown to 

be initially supported by extensive attentional and strategic resources, which engage a 

prefrontal, orbitofrontal, and anterior cingulate network (Minati & Sigala, 2013). With 

practice, these resources are gradually replaced by access to long term working memory 

for familiar material, which engages predominantly occipital and medial temporal areas 

(Minati & Sigala, 2013). Indeed, we found increased activity in prefrontal, orbitofrontal, 

and anterior cingulate cortex. Thus, in the PCM task, the anterior cingulate may be part of 

a network including the prefrontal and orbitofrontal cortex which is engaged during 

unskilled performance in the early learning stage, while significant attentional resources 

are required for new learning.  

 
3.4.2.5 Patterns of activity in middle-aged adults compared to young and older adults 

 

In contrast to the increased activity in the putamen seen in middle-aged adults in 

the PCM task, motor skill learning in older adults is associated with decreased activation 

in the putamen (Aizenstein et al., 2006; Van Impe et al., 2009; Goble et al., 2012; King et 

al., 2013). This decreased activation in the putamen is especially surprising given that 

widespread age-related and task-dependent increases in activation are frequently 

reported (Mattay et al., 2002; Ward & Frackowiak, 2003; King et al., 2013). Dennis and 

Cabeza (2011) showed increased activity in the medial temporal lobe for motor skill 

learning in older adults, while striatal activity decreased compared with young adults. Still 

other studies have found increases in striatal activity in older adults (Schendan et al., 

2003; Albouy et al., 2008; Rieckmann et al., 2010; King et al., 2013). Specifically, in young 

adults, hippocampal activity was shown to decrease and striatal activity increased as a 

function of motor sequence learning, whereas in the older adults, activity in both the 

medial temporal lobe, including the hippocampus, and the striatum increased (Schendan 

et al., 2003; Albouy et al., 2008; Rieckmann et al., 2010; King et al., 2013). The increased 

hippocampal activity during motor sequence learning in older adults may serve a 

compensatory function in order to maintain similar levels of performance despite age-
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related decreases in the structure and function of the striatum (Rieckmann & Bäckman, 

2009; Rieckmann et al., 2010; King et al., 2013). However, in task conditions with an 

increased cognitive load (i.e., greater task complexity), the performance of older adults 

during the initial learning is not maintained, potentially due to an inability of the medial 

temporal lobe and other neural substrates to compensate for age-related degradations in 

the striatum (Rieckmann & Bäckman, 2009; King et al., 2013). Findings in the middle-aged 

participants in the present experiment mostly corroborate what is found in the young 

adults. However, it is difficult to make direct comparisons between the age groups as 

different tasks are used in the experiments. In order to assess possible similarities and 

differences in brain function, young, middle-aged, and older adults would need to be 

included within the same PCM study.  

 

3.4.2.6 PCM trial performance and brain activity 
 
We did not observe a main effect of trial performance, nor an interaction between 

testing phase and trial performance in any of the ROIs. This is possibly due to the same 

skills and same processes being used to solve the task. Therefore, the regions involved in 

those processes will be activated regardless of whether the trial is successful or 

unsuccessful. It may be that because it is the very early stage of learning, an exploratory 

stage, the patterns for successful and unsuccessful trials are not yet differentiated at the 

fMRI resolution level – i.e., the patterns are yet indistinguishable, at least with this 

method.  

 
Some studies have shown increases in brain activity for successful vs. unsuccessful 

trials (Daniel & Pollmann, 2010; Swann et al., 2012). Specifically, posterior putamen 

activation was increased for successful vs. unsuccessful categorisation with either 

monetary reward or informative (correct/incorrect) feedback (Daniel & Pollmann, 

2010). In addition, Swann et al. (2012) found significantly increased activity in preSMA 

and inferior frontal gyrus for successful vs. unsuccessful trials on an inhibitory motor task 

(preparing to stop finger presses and stopping action outright in response to a particular 

cue). However, direct comparison of these studies is difficult as the tasks used were very 

different and examining processes which were not investigated by the PCM task. For 

example, the study by Daniel and Pollmann (2010) was examining classification learning 
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with complex visual stimuli (selecting the category membership of a particular stimulus 

during stimulus presentation).  

 
Another possibility is that we may have been under-powered due to low trial 

numbers when comparing activation in successful and unsuccessful trials, especially if it is 

a subtle effect as might be expected given that training was only for 31 minutes. The 

mean number of pre-training successful trials was about 24, pre-training unsuccessful 

trials was 56, post-training successful trials was 37, and post-training unsuccessful was 43. 

Whereas comparing all 80 pre-training trials with all 80 post-training trials allowed us to 

detect activation differences between pre- and post-training phases. 

 
3.4.2.7 Multiple comparisons 

 

It is important to note that these results were observed without a correction for 

multiple comparisons and therefore should be interpreted with caution. It is possible that 

such a relatively short time frame, i.e., 31 minutes of training, would only result in small 

functional brain changes that would be difficult to detect with a stringent correction for 

multiple comparisons. Indeed, in motor skill learning studies, training is relatively longer 

and ranges from 60 – 120 minutes for the early learning stage (e.g., Jenkins et al., 1994; 

Jueptner et al., 1997; Doyon et al., 2002; Orban et al., 2010; Steele & Penhune, 2010). 

Furthermore, despite the longer length of training in the above mentioned studies, some 

of them did not correct for multiple comparisons in order to reveal the full extent of 

performance related responses (Jueptner et al., 1997; Doyon et al., 2002; Orban et al., 

2010; Steele & Penhune, 2010). In addition, in the study by Orban et al. (2010), inferences 

were drawn at an uncorrected threshold because strong a priori hypotheses on brain 

regions were driven by the large existing literature on motor skill learning. 

 
In sum, this is the first study to examine training on a perceptual-cognitive-motor 

task in middle-aged adults. Our results corroborate a wealth of findings in motor skill 

learning and add a more complex cognitive component. There were changes in activity in 

both cognitive and motor networks with a relatively short training period, indicating 

training-induced functional neuroplasticity in this age group. Furthermore, some of the 

functional changes were associated with better training outcome (i.e., increased activity 
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post-training in the putamen and anterior cingulate), suggesting that changes specifically 

in these areas might play a key role in learning the task. 

 

3.4.3 Diffusion MRI findings 

 

3.4.3.1 Microstructure and training outcome in middle-aged adults 

 

Diffusion indices can be used to indirectly localise microstructural variation that 

might be indicative of learning outcome. Indeed, we found significant relationships 

between MD, FA, ODI, and PCM training outcome in middle-aged adults. These results 

indicate that inter-individual variation in brain structure was associated with extent of 

learning. This is in line with studies using diffusion MRI in young adults to demonstrate 

relationships between tissue microstructure and performance on cognitive and motor 

tasks (Klingberg et al., 2000; Moseley et al., 2002; Madden et al., 2004; Tuch et al., 2005; 

Johansen-Berg et al., 2007; Sasson et al., 2010; Sagi et al., 2012; Hofstetter et al., 2013). 

For example, Johansen-Berg et al. (2007) used DTI to show that variation in white matter 

integrity (as reflected by FA) in the corpus callosum is significantly associated with 

variation in performance of a bimanual coordination task, supporting the idea that 

variation in brain structure reflects inter-individual differences in skilled performance. Our 

results are also in line with diffusion imaging studies in older adults investigating 

associations between brain microstructure and performance in cognitive and motor 

domains (Bennett et al., 2011; Nazeri et al., 2015). For example, Bennett et al. (2011) 

found that caudate–dPFC and hippocampus-dPFC tract integrity were significantly related 

to motor skill learning in healthy older adults (aged 63–72 years). Specifically, for both 

tracts, higher integrity as indexed by FA was related to greater motor sequence learning. 

Thus, our results are in line with those found in both young and older adults, and provide 

strong evidence of a relationship between brain microstructure and learning outcome, 

such that pre-existing inter-individual differences in brain structure could determine 

variations in skill learning. 
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3.4.3.2 DTI findings 

 

We used diffusion imaging to analyse potential mechanisms underlying learning 

on the PCM task. Correlation of the diffusion indices with PCM training outcome was 

explored with the anticipation that parameters indicating grey matter complexity and 

white matter integrity would be associated with better learning. With regards to the DTI 

indices, we found a significant negative correlation between the training outcome and 

MD in the grey matter of left middle temporal gyrus (specifically in human mid-temporal 

area: hMT+/V5) and bilaterally in cerebellum; and a significant negative correlation of the 

training outcome and FA in the grey and white matter of right SMA.  

 

MD maps represent the overall water diffusion in a voxel whereby high intensities 

indicate higher diffusion rates, and are similar for both white and grey matter. Lower 

levels of MD indicate lower diffusion rates which would be the result of being restricted 

by tissue boundaries. MD is generally believed to depict tissue density (Basser, 1995; 

Pierpaoli & Basser, 1996; Assaf & Pasternak, 2008; Sagi et al., 2012; Hofstetter et al., 

2013). Greater tissue density would restrict the overall rate of diffusion. Therefore, lower 

MD would indicate greater tissue density, i.e., a greater density of axons or dendrites, 

which in turn could indicate greater dendritic complexity and axonal integrity. Thus, we 

expected lower MD to be associated with greater improvement in PCM performance and 

indeed, this was the case in the grey matter of left hMT+/V5 and bilaterally in cerebellum. 

This is in line with studies using DTI that demonstrated an association between reduced 

MD in grey and white matter and greater task improvement (Sagi et al., 2012; Hofstetter 

et al., 2013). For example, Sagi et al. (2012) used DTI to examine grey matter 

microstructure in individuals that performed a spatial navigation task. Analysis revealed 

significant negative correlations between improvement rates on the task and MD 

reduction in the left hippocampus and right parahippocampus. Using the same spatial 

learning and memory task, Hofstetter et al. (2013) used DTI to investigate white matter 

microstructure and found that more improvement on the task correlated with reductions 

in MD in the fornix. However, although diffusion metrics are sensitive markers for subtle 

microstructural tissue organisation, they are not specific and are difficult to attribute to 

particular biological processes (Dowell et al., 2019). For example, lower MD might be 
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attributed to extracellular volume, swelling of cells, or glia cell volume (Ransom et al., 

1985; Sykova, 1997; Kleim et al., 2007; Le Bihan, 2007; Theodosis et al., 2008; Markham 

et al., 2009; Hofstetter et al., 2013). Therefore, lower MD might reflect increased tissue 

density due to neuronal or glial processes, or due to strengthened axonal or dendritic 

backbones (Assaf & Pasternak, 2008; Sagi et al., 2012), and these processes might result 

in strengthened communication between the cortical areas involved in motor skill 

training. Thus, although we have established a clear relationship between lower MD and 

better training outcome on the PCM task, we can only speculate as to the cellular 

mechanisms underlying the variation in structure that supports better learning on this 

task. 

 

FA is a commonly used measure of fibre organisation and “integrity” that refers to 

the orientation of water diffusion, independent of rate, and is calculated as the fraction of 

total diffusion that is anisotropic (Basser, 1995; Basser & Pierpaoli, 1996; Pierpaoli & 

Basser, 1996; Assaf & Pasternak, 2008; Bennett et al., 2011; Sagi et al., 2012). Higher FA 

values indicate that the diffusion of water molecules is restricted in the direction along 

axons, whereas lower values would indicate that the water molecules are going in the 

perpendicular direction. Thus, higher values would indicate that fibres are more coherent 

and aligned which is thought to reflect more tissue integrity. Tissue features such as axon 

diameter and myelination are thought to underlie behavioural improvements by altering 

conduction velocity and synchronisation of nervous signals (Jack et al., 1983; Tuch et al., 

2005; Fields, 2008; Scholz et al., 2009). Fine tuning the timing and integration of 

sensorimotor signals is an important step in skill learning (Serrien & Brown, 2003; Fields, 

2008; Sampaio-Baptista et al., 2013). For example, increased FA could reflect increased 

myelin thickness and faster nerve conduction velocity, which would result in better 

communication between the functional networks involved in PCM training. As such, we 

expected higher FA to be associated with greater improvement in PCM performance. 

Contrary to this prediction, we found that lower FA was associated with better training 

outcome in the grey and white matter of right SMA. This result is surprising, as stated, it is 

increased FA that would be expected to be associated with better training outcome. 

Indeed, previous studies have shown that higher FA is associated with improved 

behavioural performance on visuospatial and cognitive tasks (e.g., Klingberg et al., 2000; 

https://www-sciencedirect-com.ezproxy.sussex.ac.uk/science/article/pii/S0197458010001491#bib6
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Madden et al., 2004; Wolbers et al., 2006; Johansen-Berg et al., 2007; Sampaio-Baptista 

et al., 2013). For example, higher FA in white matter underlying the inferior parietal 

cortex is associated with more efficiency in mental rotation (Wolbers et al., 2006). 

Madden and colleagues (2004) reported that increased FA correlated with better 

performance on a visual target detection oddball task in the corpus callosum in young 

adults. In the study by Sampaio-Baptista and colleagues (2013), rate of motor skill 

learning in rats was positively correlated with FA in white matter of the external capsule, 

cingulum, corpus callosum, and internal capsule. However, there are also studies that 

have reported counterintuitive results with regards to correlations between FA and 

performance (Tuch et al., 2005; Hofstetter et al., 2013). For example, Hofstetter and 

colleagues (2013) showed that reductions in FA in the fornix were correlated with 

improvement on a spatial learning and memory task. Tuch et al. (2005) demonstrated 

that reaction time performance on a visuospatial task was significantly correlated with FA 

in white matter of the right optic radiation, right posterior thalamus, right medial 

precuneus, and left superior temporal sulcus. Specifically, increasing (i.e., slower) reaction 

times correlated with higher FA. As with our results, these relationships are less intuitive 

as higher FA should indicate more ‘integrity’, for example reflecting increased packing 

density or myelination, which should correlate with better performance on the PCM task, 

or with faster response times in the Tuch et al. (2005) study, and with improvement in the 

Hofstetter et al. (2013) study.  

 

However, FA is a complex measure that is influenced not only by myelination, 

axon diameter, and axon density (Beaulieu, 2002; Beaulieu, 2009), but also by path 

geometry and the presence of crossing fibre pathways (Johansen-Berg et al., 2007; Jones 

et al., 2013; Jeurissen et al., 2013). In anatomical regions containing intravoxel fibre 

crossings, higher FA of an individual fibre population can result in a lower overall FA 

(Wiegell et al., 2000; Pierpaoli et al., 2001; Tuch et al., 2003; Tuch et al., 2005). For 

example, in the junction between the optic radiation and the posterior forceps a selective 

increase in the FA of the optic radiation could result in less overall FA (Tuch et al., 2005). 

The fibre crossing effect might also be a factor when rapidly bending fibres produce 

intravoxel orientation dispersion (Tuch, 2004; Tuch et al., 2005). Thus, the interpretation 

of DTI indices in microstructural environments containing crossing fibres or fanning as 
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found in areas of complex axonal or dendritic architecture is not straightforward (Vos et 

al., 2012; Jeurissen et al., 2013; Jones et al., 2013; Broad et al., 2019). Furthermore, the 

relationship between axon diameter and FA is not fully understood, although increased 

axon diameter could result in lower FA due to an increase in the mobility of water in the 

intraaxonal compartment (Takahashi et al., 2002; Tuch et al., 2005). In addition, FA is very 

small in grey matter and more sensitive to noise, making it more difficult to interpret 

(Beaulieu, 2009; Zhang et al., 2012). Therefore, although we have demonstrated a strong 

relationship between lower FA in both grey and white matter of the SMA and better 

training outcome on the PCM task, the exact nature of this association remains unknown. 

 

3.4.3.3 NODDI findings 

 

Using NODDI, we found a significant positive correlation of training outcome with 

ODI in white matter of the right SMA, indicating higher ODI in white matter was 

associated with better learning outcome. This was contrary to what we predicted as 

lower ODI values in white matter would indicate less dispersion of water molecules and 

thus less fanning of the axons, i.e., the tracts are more compact, parallel, very directional 

and aligned (Zhang et al., 2012), which is thought to result in faster signal transmission 

(Jack et al., 1983; Tuch et al., 2005). Thus, lower ODI values would be expected to 

correlate with improved performance, as low values indicate high axonal coherence and 

faster signal transmission. Therefore, our result of higher white matter ODI being 

associated with better training outcome is not in line with this expectation. With regards 

to grey matter ODI, higher values indicate more dispersion and thus more fanning, 

therefore areas that are rich in multi-directional dendritic structure would have higher 

values of ODI (Dowell et al., 2019). A rich and complex dendritic structure would result in 

better signal transmission. As such, we predicted that higher grey matter ODI would 

correlate with better training outcome on the PCM task. Previous research has 

demonstrated a significant relationship between grey matter ODI and cognition in the 

context of normal ageing (Nazeri et al., 2015). Higher levels of frontal pole and 

hippocampal ODI contributed positively to working memory/processing speed 

performance (Nazeri et al., 2015). However, we did not find an association between grey 

matter ODI and training outcome on the PCM task. 
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Higher levels of NDI indicate a greater density of axons in white matter and 

dendrites in grey matter, i.e., NDI values are high in neurite rich areas (Zhang et al., 2012). 

The branching complexity of dendritic trees can be measured in terms of dendritic 

density, such that a greater density indicates greater complexity (Zhang et al., 2012). A 

higher density of axons and dendrites might be indicative of faster or better signal 

transmission. Therefore, we expected that higher NDI in both grey and white matter 

would correlate with improved performance on the PCM task. Previous studies have 

found associations between grey matter NDI and cognitive performance (Nazeri et al., 

2017; Parker et al., 2018). For example, throughout the frontotemporal cortical areas, 

higher NDI was associated with better performance in spatial working memory (Nazeri et 

al., 2017). Specifically, performance in spatial span was significantly associated with 

higher grey matter NDI in areas such as the dPFC; orbitofrontal, medial prefrontal, 

superior temporal, and cingulate cortices; and temporal pole, insula, hippocampus, and 

striatum (Nazeri et al., 2017). However, no associations were found between grey and 

white matter NDI and training outcome in the present study. Therefore, NDI may not play 

a significant role in PCM training outcome and it is possible other processes such as 

myelination of axons would play a bigger role. As both DTI and NODDI indices cannot tell 

us specifically about the myelination of axons, diffusion methods that give us more 

information about myelin content would be beneficial in a study investigating the 

relationship of PCM training outcome and underlying structure. 

 

3.4.3.4 Diffusion MRI findings and functional significance 

 

Quantifying neurite morphology in terms of its density and orientation distribution 

provides a window into the structural basis of brain function (Zhang et al., 2012). We 

demonstrated that functional neuroplasticity occurred as a result of training on the PCM 

task in middle-aged adults. We sought to link this functional plasticity as a result of 

training, with underlying structure. These functional changes may be supported by 

underlying brain structure such that diffusion indices indicating more structural integrity 

were associated with better learning outcome. Better structural integrity could result in 

faster or better signal transmission resulting in increased functional activity in PCM task 

related regions. We demonstrated significant relationships between training outcome 
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and MD in human mid-temporal area (hMT+/V5) and cerebellum; between training 

outcome and FA in SMA; and between training outcome and ODI in SMA, suggesting that 

structural variation has functional consequences. These structure and training outcome 

relationships are colocalised to regions within which functional alterations occurred 

following training on the PCM task. For example, we observed increased activity post-

training on the PCM task in cerebellum and SMA. Thus, functional plasticity occurred 

within the same cortical regions as the structure-behaviour correlations, and this provides 

evidence that morphological variation contributes to the training outcome of a skilled 

motor behaviour. Indeed, functional MRI studies in healthy individuals have shown that 

these regions (i.e., cerebellum, SMA, and hMT+/V5) become consistently activated during 

visuomotor tasks (e.g., Jenkins et al., 1994; Sakai et al., 1999; Doyon et al., 2003; 

Oreja‐Guevara et al., 2004; Floyer-Lea & Matthews, 2005; Steele & Penhune, 2010; van 

Kemenade et al., 2014). 

 

Task-based fMRI has demonstrated that the cerebellum is engaged by visuospatial 

processing, and also activated by executive functions such as working memory (e.g., 

Stoodley & Schmahmann, 2009; Stoodley & Schmahmann, 2010; Stoodley et al., 2012; 

Stoodley et al., 2016). In addition, the cerebellum has a role in detecting and correcting 

motor errors, and in the timing of movement (Doya, 2000; Imamizu et al., 2000; Medina 

et al., 2000; Schubotz & von Cramon, 2001; Sakai et al., 2004; van Mier et al., 2004).  

 
The SMA is also a key structure for motor skill learning (Jenkins et al., 1994; 

Hikosaka et al., 1995; Hikosaka et al., 1996; Nakamura et al., 1998; van Mier et al., 1998; 

Sakai et al., 1999; Brass & von Cramon, 2002; Garavan et al., 2003). Activation in SMA is 

associated with planning of self-initiated or externally generated movements (Cunnington 

et al., 2002; Grèzes & Decety, 2002; Vollmann et al., 2013). The SMA is thought to play a 

crucial role in motor memory formation (Tanaka et al., 2010). The SMA is also thought to 

play an important role in short-term visuomotor learning (Vollmann et al., 2013). In 

addition, it has been suggested that the SMA represents learned sequences of hand–eye 

movements (Hikosaka et al., 2002). In line with these studies, successful completion of 

the PCM task requires these functions and indeed, we demonstrated increased activity 

post-training in cerebellum and SMA. 

https://onlinelibrary-wiley-com.ezproxy.sussex.ac.uk/action/doSearch?ContribAuthorStored=Oreja-Guevara%2C+C
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Learning a new visuomotor skill has been shown to induce grey matter structural 

change in the human mid-temporal area (hMT+/V5) (Draganski et al., 2004). Specifically, 

Draganski et al. (2004) used voxel-based morphometry to show expansion in grey matter 

of hMT+/V5 following juggling training and found a close relationship between the 

structural grey matter changes in hMT+/V5 and visuomotor performance. The hMT+/V5 is 

thought to play a crucial role in motion processing (e.g., Oreja‐Guevara et al., 2004; 

Kamitani & Tong, 2006; Castelo-Branco et al., 2009; Seymour et al., 2009; van Kemenade 

et al., 2014). Furthermore, Oreja‐Guevara and colleagues (2004) demonstrated that 

hMT+/V5 contributes to the control of visually guided hand movements, comparable to 

its contribution to the cortical network that controls visually guided eye movements. 

Participants performed visually guided right hand movements, either continuously 

tracking a horizontally moving target, or moving the cursor to a stationary target (ballistic 

tracking). There was greater activation of hMT+/V5 during continuous tracking than 

during ballistic tracking. To separate the influence of arm movements, replay conditions 

were used where only visual motion of the identical target and cursor trajectories on the 

screen were watched. Activation was increased significantly during continuous tracking 

movements in comparison to the replay of the identical visual scene. Ballistic tracking vs. 

replay also showed activation in hMT+/V5, but less than during continuous tracking. Thus, 

Oreja‐Guevara and colleagues (2004) demonstrated a role for hMT+/V5 not only in visual 

motion perception, but also in the control of action during visually guided hand 

movements. This study highlights the importance of hMT+/V5 in visuomotor integration 

and not only in visual motion analysis, i.e., hMT+/V5 has an important role in 

transforming visual information into motor behaviour.  

 
Furthermore, hMT+/V5 is activated not only by visual motion, but also by tactile 

(Beauchamp et al., 2007; Blake et al., 2004; Hagen et al., 2002; Ricciardi et al., 2007; Sani 

et al., 2010; Wacker et al., 2011; van Kemenade et al., 2014) and auditory motion (Poirier 

et al., 2005, 2006; Wolbers et al., 2011), suggesting that hMT+/V5 may be a multimodal 

motion processing area. The PCM task involves visual tracking of the moving green balls, 

as well as tactile information processing from moving the computer mouse to move the 

cursor, and motor output in the form of avoiding the green balls and moving the cursor to 

the target. Therefore, a correlation between PCM training outcome and MD in hMT+/V5 

https://onlinelibrary-wiley-com.ezproxy.sussex.ac.uk/action/doSearch?ContribAuthorStored=Oreja-Guevara%2C+C
https://onlinelibrary-wiley-com.ezproxy.sussex.ac.uk/action/doSearch?ContribAuthorStored=Oreja-Guevara%2C+C
https://onlinelibrary-wiley-com.ezproxy.sussex.ac.uk/action/doSearch?ContribAuthorStored=Oreja-Guevara%2C+C
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is in line with the functional role of this area. We have shown that the cerebellum, SMA, 

and hMT+/V5 are involved in functions that are important for successful completion of 

the PCM task. Thus, the structure and training outcome relationships were demonstrated 

in regions with functional significance for the PCM task.  

 
The learning of a novel skill relies upon changes in brain function. Differences in 

functional plasticity could reflect variation in underlying structure as reflected by diffusion 

indices. We determined the functional correlates of variations in grey and white matter 

structure by relating this microstructural variation to the behavioural data. However, it is 

important to note that diffusion indices were not correlated with the functional changes 

seen within these regions. To further strengthen the evidence for a structure–function 

relationship with the PCM task, it would be beneficial not only to demonstrate 

associations between structure and behavioural outcome, but also between structure and 

functional changes in the brain. 

 

3.4.4 Limitations 

 

3.4.4.1 Behavioural study limitations 

 

The primary limitations we identified for this study include issues common to 

within-subjects study designs. Results observed after PCM training could be attributed to 

test-retest effects (typically performing better the second time, regardless of training), or 

the fact that participants would have higher expectations of themselves due to the 

training (Collie et al., 2003; McCarney et al., 2007; Green & Bavelier, 2012). For example, 

the practice effect might mean that performance improved not because of the training, 

but simply because the general experience of participating in an experiment made 

participants more confident and accomplished at taking tests. This may have skewed the 

results and made it more difficult to determine if the effect is due solely to the training. 

However, the very short training duration in the current experiment mitigates that 

possibility. To further resolve these issues, a between-subjects design could be 

implemented, such that a training condition could be compared to an active control 

treatment to ensure that any group differences that are observed are not attributed to 

test-retest effects, or to participants’ higher expectations of themselves. 
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A further limitation of our study is that we did not assess the cognitive function of 

our sample with standardised tests, such as the Mini Mental State Exam (MMSE; Folstein 

et al., 1975). However, we investigated a group of healthy middle-aged adults, which 

should have minimised the influence of relevant age-related changes, such as atrophy or 

amyloid plaques (Emch et al., 2019). Furthermore, individuals had no self-reported history 

of neurological and psychiatric disorders, or brain injuries. Nonetheless, we cannot be 

certain that participants with cognitive impairments were excluded from the study. 

   

 An important issue that has been overlooked in this experiment is whether 

benefits of training with the PCM task can transfer to untrained tasks testing the same 

cognitive processes (near transfer), or even to tasks measuring different abilities (far 

transfer) leading to a general improvement in the level of cognitive functioning or motor 

control. Interventions targeting age-associated cognitive decline should be trying to 

maximise the transfer of skills as much as possible. Indeed, identifying tasks that can lead 

to improvement in other tasks is crucial and recommends investigation of transfer effects. 

 

3.4.4.2 fMRI study limitations 

 

With a complex task such as the PCM task, it is inherently difficult to draw from 

alternative explanations the exact role of the brain regions that were activated, due to 

the lack of manipulations to isolate the processes involved in the task. It is one thing to 

say that particular regions were involved in PCM training, but another to identify the 

specific roles these regions played. Putative functional roles of these regions in the PCM 

task could only be inferred from previous neuroimaging research. Future research could 

attempt to disentangle the relative contributions of these regions to PCM learning using 

tasks that isolate the various functions involved.  

 

In addition, the present experiment does not provide data on how the activated 

regions interact with one another and how information is transferred from one circuit to 

another during the course of motor training (for example, from the associative circuit to 

the sensorimotor circuit, i.e., transformation from spatial to motor coordinates; Hikosaka 

et al., 2002). Functional and effective connectivity approaches could be used to assess 
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connections between regions of a network, as well as between networks. Functional 

connectivity is classically defined as the temporal correlation between regions' time 

courses of the BOLD signal (Friston, 1994). This method is aimed at assessing functional 

interactions between several regions and is a way to measure correlations within and 

between large-scale networks. Effective connectivity, on the other hand, describes the 

causal influences that neural units exert over one another (Friston, 1994;  Stephan 

& Friston, 2010). Effective connectivity can be understood as the experiment‐ and time‐ 

dependent, simplest possible circuit diagram that would replicate the observed timing 

relationships between the recorded neurons, and requires a causal model of the 

interactions between the elements of the neural system of interest (Aertsen & Preißl, 

1999; Stephan & Friston, 2010). Applying these approaches to examine PCM training 

would allow us to characterise the interactions within each network, as well as 

information exchanges between them, during learning.  

 

3.4.4.3 Diffusion MRI study limitations 

 

Biological interpretation of diffusion measures is challenging and it is important to 

emphasise that diffusion indices provide only an indirect marker of microstructural 

properties. Diffusion imaging works by sensitising MRI measurements to the 

displacement pattern of water molecules undergoing diffusion (Zhang et al., 2012). As the 

water displacement pattern is influenced by tissue microstructure, by measuring this 

displacement pattern, diffusion MRI is able to distinguish different structural properties 

(Zhang et al., 2012). The question regarding the detailed underlying biological 

mechanisms of the observed relationships between the diffusion indices and training 

outcome in the PCM task cannot be addressed in this study. Histology offers the 

possibility to validate diffusion indices and to shed light on the cellular events that 

underlie the measures obtained in human neuroimaging studies of motor skill training 

(Sampaio-Baptista et al., 2013).  An animal study with a similar PCM protocol that 

correlates diffusion indices with histological measures such as the number of synaptic 

vesicles, number of dendritic spines, number of astrocytic processes, myelin staining, etc. 

would provide further information on the mechanisms underlying better training 

outcomes. Indeed, evidence suggests that in both grey and white matter, there is a strong 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Stephan%20KE%5BAuthor%5D&cauthor=true&cauthor_uid=21209846
https://www.ncbi.nlm.nih.gov/pubmed/?term=Friston%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=21209846
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stephan%20KE%5BAuthor%5D&cauthor=true&cauthor_uid=21209846
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stephan%20KE%5BAuthor%5D&cauthor=true&cauthor_uid=21209846
https://www.ncbi.nlm.nih.gov/pubmed/?term=Friston%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=21209846
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link between neurite morphology determined from diffusion MRI and independent 

measures derived from histology (Sagi et al., 2012; Zhang et al., 2012; Hofstetter et al., 

2013; Sampaio-Baptista et al., 2013). 

 

We have demonstrated specific associations between diffusion indices and 

training outcome in healthy middle-aged adults, suggesting that inter-individual variation 

in brain structure influences variation in skill learning. However, as this is a correlation 

study, we cannot confirm a causal role of brain structure on differences in skill learning 

behaviour. It is possible that common genetic factors influence both brain structure and 

the propensity to train (Scholz et al., 2009). In addition, genotype has been shown to not 

only influence brain structure (Bueller et al., 2006; Johansen-Berg et al., 2007), but also 

the degree of functional plasticity in the motor system (Kleim et al., 2006; Johansen-Berg 

et al., 2007). Therefore, it is not clear whether inter-individual differences in brain 

structure are responsible for inter-individual differences in PCM training outcome, i.e., 

the results reported here reflect associative, as opposed to causal relationships, and we 

acknowledge the limited interpretability of these single-session correlation data.  

 

Moreover, we did not examine structural neuroplasticity with regards to the PCM 

task. Certainly, our current experiment would not be expected to induce changes in 

diffusion metrics with such a short timescale, and in order to examine structural 

neuroplasticity it is likely that longer-term training would be necessary. Further research 

should use a longitudinal design to investigate whether training with the PCM task can 

indeed result in structural changes and whether these changes can be related with better 

training outcome. There is emerging evidence that changes in diffusion indices can also 

occur in response to short-term training (Sagi et al., 2012; Hofstetter et al., 2013; Marins 

et al., 2019). For example, Marins and colleagues (2019) trained healthy individuals to 

reinforce brain patterns related to motor execution while performing a motor imagery 

task. After just 1 h of training, participants showed increased FA in the sensorimotor 

segment of corpus callosum. Therefore, it may also be possible to design a pre- and post-

training study of structural brain changes with short-term training. 
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3.4.5 Conclusions 

 

Despite these limitations, our findings suggest that even with short-term practice, 

middle-aged adults show significant plasticity in cognitive and motor abilities as 

evidenced by the training gains made on the task. As there were no significant 

relationships found between the demographics and training outcome, it can be concluded 

that it is very likely the training itself was effective in improving performance regardless 

of gender, age, and education. The effect size was large and indicates that PCM training 

had a substantial outcome. Thus, this particular form of training may be useful as an 

intervention for preventing cognitive decline. 

 

In addition, we provide novel evidence for training-induced functional 

neuroplasticity in middle-aged adults. There was increased engagement of both cognitive 

and motor networks in a relatively short space of time, supporting improved performance 

on the task. We demonstrated that experience-related functional reorganisation begins 

to develop within cortical and subcortical regions as training progresses. Some of the 

functional changes were associated with better training outcome (i.e., increased activity 

post-training in putamen and anterior cingulate), suggesting that changes specifically in 

these areas might underlie learning of the task. Thus, targeting these areas in training 

could be particularly beneficial in improving cognitive function. 

 

We found significant relationships between brain microstructure and training 

outcome, indicating that inter-individual variation in brain structure was associated with 

extent of learning. Thus, the diffusion findings suggest that individual differences in brain 

structure had behavioural relevance, such that pre-existing structural differences could 

determine variations in skill learning. Therefore, inducing changes in these indices with 

training, i.e., inducing changes in brain structure, may be a way to mitigate cognitive 

decline in later life. 

 

In the next experiment, we aimed to address some of the limitations discussed 

above and included an active control treatment as well as an assessment of transfer 

effects. We investigated if functional and structural neuroplasticity could be induced with 

longer-term cognitive training in middle-aged adults. Changes in structural properties 
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might underlie cognitive improvements by altering conduction velocity and 

synchronisation of neural signals (Fields, 2008), supporting functional brain changes. If 

cognitive training can induce structural changes in addition to functional changes, then 

this may be a way to prevent cognitive decline in later life. 
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Chapter 4: Working memory, attention, and 

executive function training in middle-aged adults: 

Behavioural findings 
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4.1 Introduction 
 
4.1.1 Cognitive training and transfer 
 

The goal of improving cognitive abilities through training has been pursued in 

numerous intervention studies, particularly with older adults (e.g., Verhaeghen et al., 

1992; Kramer & Willis, 2002; Rebok et al., 2007; Hertzog et al., 2009; Lustig et al., 2009; 

Noack et al., 2009; Schmiedek et al., 2010). However, cognitive training research faces 

criticisms that effects are often limited to the trained tasks, whereas transfer to untrained 

tasks is inconsistent (Dougherty et al., 2016; Melby-Lervag & Hulme, 2013; Melby-Lervag 

et al., 2016; Soveri et al., 2017; Flegal et al., 2019; Pappa et al., 2020). Thus, an important 

issue to consider is whether benefits transfer to untrained tasks testing the same 

cognitive function as the trained tasks (near transfer), or transfer to untrained tasks 

measuring different abilities (far transfer). 

 
Far transfer has been demonstrated in young adults from working memory 

training to fluid intelligence measures such as the Raven Progressive Matrices (Klingberg 

et al., 2002, 2005; Jaeggi et al., 2008, 2010; Schmiedek et al., 2010; Jaeggi et al., 2011). 

For example, in a study conducted by Schmiedek et al. (2010), young (age: 20–31 years) 

and older adults (age: 65–80 years) were trained for over 100 days on perceptual speed, 

working memory, and episodic memory tasks. While near transfer effects were observed 

for working memory updating tasks in both the young and older age groups, far transfer 

effects to fluid intelligence measures were observed only in the younger age group.  

 
In older adults, far transfer effects have been demonstrated from working 

memory training to tests of attention (Brehmer et al., 2011), and to long-term memory 

retrieval (Brehmer et al., 2011; Richmond et al., 2011). In contrast, far transfer effects 

were not found in older adults from working memory training to fluid intelligence 

measures (Dahlin et al., 2008; Schmiedeck et al., 2010; Brehmer et al., 2011; Richmond et 

al., 2011). In addition, studies that trained reasoning, speed, or memory in older adults 

did not obtain far transfer (Neely & Backman, 1995; Ball et al., 2002; Edwards et al., 2002; 

Rebok et al., 2007). On the other hand, studies that trained complex strategy use, 

problem solving, task-switching, and auditory perception did obtain far transfer (Basak et 

al., 2008; Stine-Morrow et al., 2008; Karbach & Kray, 2009; Strenziok et al., 2014). For 
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instance, Karbach and Kray (2009) observed far transfer effects in 62 to 76 year olds 

following task-switching training. Older adults improved performance on executive 

control tasks related to interference control, verbal and spatial working memory, and 

fluid intelligence.  

 
It should be noted that the literature is not balanced, such that working memory 

training is the predominant type studied in young adults, but complex skills training is the 

predominant type studied in older adults (Strenziok et al., 2014). Therefore, a possible 

reason for the negative results reported in older participants could be the type of training 

they underwent. While previous programmes focused more on strategy-based exercises, 

such as in the mnemonic memory component tasks of the ACTIVE study (Rebok et al., 

2014), which reliably enhanced performance on the practiced tasks but did not induce far 

transfer, Karbach and Kray’s (2009) study focused more on process-based training. 

Process-based training targets broad cognitive abilities rather than explicit training of 

strategies to use for a particular task. Karbach and Kray (2009) achieved this by using 

variable task-switching exercises in order to train executive control abilities, such as 

inhibition of task-irrelevant information and maintenance of task-relevant goals.  

 
Indeed, transfer is thought to occur more readily if cognitive functions that are 

presumed to form the basis of general cognitive abilities are trained, rather than training 

task-specific strategies (Schmiedek et al., 2010). Examples for such processes are working 

memory and other executive functions, perceptual speed, and sensory discrimination 

(Klingberg et al., 2005; Mahncke et al., 2006; Ball et al., 2007; Diamond et al., 2007; 

Dahlin et al., 2008; Jaeggi et al., 2008; Li et al., 2008; Karbach & Kray, 2009; Schmiedek et 

al., 2010). Training general cognitive functions should extend to other activities that 

engage the same processes (Westerberg & Klingberg, 2007; Klingberg, 2010; Takeuchi et 

al., 2010; Astle et al., 2015; Barnes et al., 2016; Caeyenberghs et al., 2016; Salmi et al., 

2018; Gathercole et al., 2019). 

 
4.1.2 Methodological considerations 
 

As discussed, different cognitive training studies have presented contradictory 

findings regarding the key issue of transfer (Soveri et al., 2017; Flegal et al., 2019; Pappa 
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et al., 2020). One reason for the inconsistent findings may be that there are large 

differences in the type, intensity, and duration of the training regimes as well as different 

methodologies adopted in the studies (Karbach & Verhaeghen, 2014; Flegal et al., 2019; 

Pappa et al., 2020). For example, as stated above, strategy-based training (such as with 

mnemonic techniques) often results in large improvements to the trained task, but rarely 

in any transfer (Rebok et al., 2007; von Bastian et al., 2013; Karbach, 2014; Rebok et al., 

2014). On the other hand, process-based training that targets more general processing 

capacities, such as reasoning or working memory, has yielded widespread near transfer 

and some far transfer in different age groups (Hertzog et al., 2009; Karbach & Kray, 2009; 

Karbach & Unger, 2014; Karbach & Verhaeghen, 2014). 

 
With regards to the methodological heterogeneity of the studies, issues also 

include variation in the age of the study samples, neglecting the fact that older 

populations present differences not only in brain function, but also in behavioural 

performance compared to younger populations (Emch et al., 2019). Thus, participant age 

variation may contribute to contradicting results regarding transfer and the overall 

efficacy of cognitive training programmes. This implication is highlighted in two studies 

conducted by the same colleagues, using the same design on adults aged under 60 (Owen 

et al., 2010), and over 60 (Corbett et al., 2015). While the older age group improved 

cognitive performance following training and demonstrated transfer, the younger age 

group did not, leading to different conclusions regarding transfer and the effectiveness of 

cognitive training. While Owen and colleagues (2010) concluded that cognitive training 

does not confer any benefits beyond the trained tasks, the follow-up study in older adults 

(Corbett et al., 2015) concluded that training benefits do indeed transfer to general 

cognitive ability.  

 
A further issue is the intensity and duration of the training programme, which can 

lead to weaker or stronger effects depending on whether training is of a shorter or longer 

duration (Jaeggi et al., 2008; von Bastian & Oberauer, 2014; Salmi et al., 2018; Emch et 

al., 2019; Pappa et al., 2020). For example, more training sessions and increased total 

duration of training raises the probability that effects carry over to cognitive processes 

not directly practiced during the training, i.e., transfer (Jaeggi et al., 2008; von Bastian & 
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Oberauer, 2014; Salmi et al., 2018; Emch et al., 2019; Pappa et al., 2020). Thus, training 

duration can modify the effect of training, favouring training of longer duration (more 

than 10 hours), while studies with shorter training durations (less than 10 hours) are less 

likely to result in transfer effects (Pappa et al., 2020). 

 
Inconsistencies regarding the use of an active or passive control group have also 

been reported, such that the type of control condition can significantly modify the effect 

of training (Emch et al., 2019; Pappa et al., 2020). Passive control groups involve 

participants completing the pre- and post-training assessments, but not engaging in any 

training. Active control conditions refer to the participants completing some form of 

training (usually less difficult and less challenging) in addition to the pre- and post-training 

tests. Some authors have determined there is little to no evidence of far transfer when 

comparing training groups against active control groups, suggesting that transfer effects 

are overestimated when employing passive control conditions (Shipstead et al., 2012; 

Strenziok et al., 2014; Dougherty et al., 2016; Melby-Lervag et al., 2016; Pappa et al., 

2020). In a meta-analysis by Pappa and colleagues (2020), there was a significant 

difference between the training effect sizes from the control group analyses, such that 

the training effect size was very large for studies with a passive control group, while a 

moderate effect was revealed for studies with an active control group. It is important to 

note that designs employing passive control conditions do not control for a potential 

placebo effect, thus making it difficult to discern whether the effect sizes stem from true 

training gains or perhaps are mediated by non-specific factors such as practice effects or 

increased effort (Shipstead et al., 2012; Strenziok et al., 2014; Dougherty et al., 2016; 

Melby-Lervag et al., 2016; Pappa et al., 2020). 

 
Comparisons across studies are therefore difficult to draw when training protocols 

differ not only in the type of training tasks employed, but also frequency and duration of 

training, sample age, outcome measurement, and type of control group (Karbach & 

Verhaeghen, 2014; Emch et al., 2019; Flegal et., 2019, Pappa et al., 2020). These 

methodological issues should be considered when investigating the effects of any training 

intervention. In response to recent critiques of the wide variability in training study 

methodology, there has been an emphasis on the need for greater experimental rigour 
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and protocol standardisation (Shipstead et al., 2012; Green et al., 2014; Noack et al., 

2014; Flegal et al., 2019). 

 
4.1.3 Mechanisms of cognitive training and transfer 
 

An explanation for transfer is that the effects observed following training reflect 

plasticity in the neural system underpinning the particular function that has been trained; 

training might therefore lead to changes in the brain and improved neural efficiency 

which should extend to other activities that engage the same processes (Westerberg & 

Klingberg, 2007; Klingberg, 2010; Takeuchi et al., 2010; Astle et al., 2015; Barnes et al., 

2016; Caeyenberghs et al., 2016; Salmi et al., 2018; Gathercole et al., 2019).  

 
According to a recent theoretical model (Lovden et al., 2010; Flegal et al., 2019), 

transient cognitive challenges are only sufficient to promote task-specific gains, sustained 

cognitive challenges are required to elicit lasting neural changes that underlie transfer 

and improvement of general cognitive function. If environmental demand briefly 

approaches the upper limit of functional supply, then all available resources will be 

flexibly employed, but actually raising the level of maximum function requires a 

prolonged mismatch in which environmental demand exceeds functional supply (Lovden 

et al., 2010; Flegal et al., 2019).  

 
Based on this framework, it is suggested that adapting the difficulty of training 

tasks to an individual’s current level of ability would provide the necessary prolonged 

mismatch, thereby driving cognitive and neural plasticity leading to broader transfer. 

Indeed, previous studies have proposed that adaptivity may be a key to effective transfer 

(Holmes et al., 2009; Jaeggi et al., 2010; Brehmer et al., 2012; Rudebeck et al., 2012; 

Anguera et al., 2013; Heinzel et al., 2016; Flegal et al., 2019). For example, Flegal and 

colleagues (2019) investigated whether dynamically increasing task demands during 

adaptive working memory training would lead to successful transfer compared to non-

adaptive training. Training task difficulty was individually adapted within sessions in 

response to performance in the adaptive group, or individually assigned on the basis of 

pre-training working memory capacity and fixed in the non-adaptive group. Adaptive 

training resulted in near transfer to other working memory tasks and far transfer to an 
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untrained episodic memory task (Object-Location Association), while non-adaptive 

training did not result in significant transfer. Furthermore, activation decreases were 

found in striatum and hippocampus on a trained working memory task, and the amount 

of training task improvement was associated with hippocampal activation changes on 

both near and far transfer tasks. Thus, the authors conclude that an optimal design 

should use adaptive, rather than non-adaptive training, in order to induce neuroplasticity 

and therefore broader transfer of training gains. 

 
4.1.4 Experiment aims and design 
 

The aim of the current experiment was to test the effectiveness of cognitive 

training in improving cognitive function in healthy middle-aged adults (40-50 years old). In 

terms of using cognitive training as a pre-emptive strategy to maintain cognitive function 

and prevent decline in later life, it seems likely that middle-age presents an ideal 

opportunity to train cognitive abilities before they start to significantly decline. 

 
We compared the training condition to an active control treatment to ensure that 

any effects observed in the cognitive training group could not be attributed to test-retest 

effects, or to the Hawthorne effect (Landsberger, 1958), or to participants having higher 

expectations of themselves (Collie et al., 2003; McCarney et al., 2007; Green & Bavelier, 

2012). Therefore, to make sure that training conditions were the same for both groups, 

participants in the experimental condition completed an adaptive cognitive training 

programme, while the active control group completed a non-adaptive version of the 

same training. 

 
The cognitive training programme in this study included several tasks targeting 

working memory, attention, and other executive functions, such as inhibition. Cognitive 

decline is well documented in healthy older adults across these domains (for review see 

Karbach & Verhaeghen, 2014; Au et al., 2015; Soveri et al., 2017; Pergher et al., 2018). 

Therefore, a goal of our training programme was to induce plasticity in brain regions that 

would result in an improvement in these domains, translating to an overall improvement 

in cognitive function. 
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Furthermore, process-based training that targets more general capacities, such as 

working memory and other executive functions, has yielded widespread transfer in 

different age groups (e.g., Hertzog et al., 2009; Karbach & Kray, 2009; Schmiedek et al., 

2010; Karbach & Verhaeghen, 2014; Pappa et al., 2020). Indeed, transfer is thought to 

occur more readily if cognitive functions that are presumed to form the basis of general 

cognitive ability are trained, rather than training task-specific strategies (Klingberg, 2010; 

Schmiedek et al., 2010; Astle et al., 2015; Barnes et al., 2016; Salmi et al., 2018; 

Gathercole et al., 2019). Therefore, we aimed to target these particular processes in our 

training programme with a view to improving broad cognitive abilities, thus increasing the 

probability of transfer to untrained tasks. 

 
A varied selection of tasks was a key feature of our programme not only to train 

more processes and increase the likelihood of transfer, but also to keep it interesting and 

motivating for participants. This issue is of particular importance because recent work has 

identified motivation as a key condition for transfer to occur (Green & Bavelier, 2008; 

Jaeggi et al., 2014).  

 
In addition, previous studies have proposed that adaptive training in particular 

may be important for effective transfer (Holmes et al., 2009; Jaeggi et al., 2010; Brehmer 

et al., 2012; Rudebeck et al., 2012; Anguera et al., 2013; Heinzel et al., 2016; Flegal et al., 

2019). Adapting the difficulty of tasks to an individual’s current level of ability, is thought 

to provide the sustained cognitive challenges required to elicit lasting neural changes that 

underlie transfer and improvement of general cognitive function (Lovden et al., 2010; 

Flegal et al., 2019). As such, for participants assigned to the adaptive group, training 

dynamically changed relative to performance, keeping task demands challenging and at a 

high level of difficulty. For participants in the non-adaptive group, task difficulty remained 

within a constant limited range over the entirety of training, regardless of the 

participant’s performance. Non-adaptive training remained less challenging and at a low 

level of difficulty. Therefore, participants in the adaptive group were expected to be 

operating at a more plasticity-inducing difficulty level than the non-adaptive group. 

 
CogniPlus software (SCHUHFRIED GmbH, Austria) was chosen for the training 

programme as it provided us with a selection of process-based tasks designed to train 
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working memory, attention, and other executive functions, such as inhibition. This 

software allowed us to select a variety of different tasks which kept the programme 

interesting and motivating for participants. Furthermore, this software allowed us to 

manipulate whether tasks were adaptive or non-adaptive – a feature that was not 

available with other software packages, and which was deemed necessary in order for us 

to test adaptive training against a rigorous active control group. 

 
As discussed, in a systematic review and meta-analysis of working memory 

training studies, Pappa and colleagues (2020) concluded that training programmes of 

longer duration (more than 10 hours) are more likely to result in transfer effects. In 

addition, Cheng et al. (2012) have suggested that programmes exceeding ten sessions 

produce more reliable transfer. Thus, in the current experiment, participants in both the 

adaptive and non-adaptive groups completed 12 sessions of cognitive training. To 

measure transfer of training-related cognitive improvements, we used the Raven 

Advanced Progressive Matrices (RAPM: Raven & Court, 1998), an associative learning task 

(PAL), an associative memory task (PAR), and a working memory task (N-back). 

 
In sum, the present cognitive training study was carefully designed to overcome 

some of the methodological limitations faced by previous research. As such, we included 

an active control group, process-based training of general cognitive abilities (i.e., working 

memory, attention, and inhibition), an adaptive training design, a varied selection of 

training tasks to keep the programme interesting, a total of 12 sessions and training 

duration of 10 hours, and participants within a limited age range of 40–50 years old. 

 
4.1.5 Experiment hypotheses 
 

We tested two hypotheses for this experiment. First, if cognitive training results in 

improved cognitive function in middle-aged adults, then significant gains in performance 

should be observed for the training tasks. Several studies have shown substantial 

improvements on trained tasks in both young and older adults (e.g., Green & Bavelier, 

2003; Singer et al., 2003; Rebok et al., 2007; Basak et al., 2008; Owen et al., 2010; 

Schmiedek et al., 2010; Rebok et al., 2014). Therefore, we also expected significant 

improvements in training-task performance in middle-aged adults. 
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Second, if cognitive training results in an improvement in the general cognitive 

functioning of middle-aged adults, then significant gains in performance should be 

demonstrated for the transfer tasks. Near transfer effects following cognitive training 

have been widely reported for both young and older adults (e.g., Klingberg et al., 2005; 

Willis et al., 2006; Jaeggi et al., 2008; Mozolic et al., 2009; Schmiedek et al., 2010; 

Dunning et al., 2013; Karbach & Verhaeghen, 2014; Caeyenberghs et al., 2016; Emch et 

al., 2019). Near transfer is thought to occur when training and transfer tasks engage the 

same processes (Westerberg & Klingberg, 2007; Klingberg, 2010; Takeuchi et al., 2010; 

Astle et al., 2015; Barnes et al., 2016; Salmi et al., 2018; Gathercole et al., 2019). We 

therefore predicted that cognitive training in middle-aged adults would lead to 

significantly improved performance on the near transfer tasks (PAR, N-back). The PAR 

task involves working memory, in addition to retrieval and recognition processes, and 

therefore we expected near transfer to this task due to its working memory component 

that is shared with our training programme. The N-back task involves executive functions 

besides working memory, including inhibitory control and selective attention, thus, we 

expected near transfer to this task as it includes the working memory, attention, and 

inhibition components of the training programme used in this study. 

 
Evidence of far transfer following cognitive training is reported much less 

frequently (Dahlin et al., 2008; Moody, 2009; Owen et al., 2010; Shipstead et al., 2012; 

Melby-Lervag & Hulme, 2013; Melby-Lervag et al., 2016; Soveri et al., 2017; Flegal et al., 

2019). Indeed, transfer should only be expected if training and transfer tasks both place 

demands on the same underlying processes (Dahlin et al., 2008; Dahlin et al., 2009; 

Holmes et al., 2009; Shipstead et al., 2012; Sprenger et al., 2013; von Bastian et al., 2013; 

Dunning & Holmes, 2014; Minear et al., 2016; Soveri et al., 2017; Gathercole et al., 2019; 

Pappa et al., 2020). We therefore predicted that cognitive training in middle-aged adults 

would not lead to significantly improved performance on the far transfer tasks (RAPM, 

PAL). The RAPM is designed to test abstract reasoning and fluid intelligence, and 

therefore we did not expect far transfer to this task because these abilities were not 

directly trained by our programme. The PAL task involved the participant learning to form 

new associations between pairs of different black-and-white fractal pictures. Again, we 
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did not expect far transfer to this task as few cognitive processes and perceptual features 

were shared with the training tasks. 

 

4.2 Summary of methods 
 

4.2.1 Participants  
 

A total of 40 participants between 40 and 50 years of age took part in this study. 

Of these, 20 were part of the adaptive (experimental) training group (14 females, 6 males; 

M age = 44.15 years, SD = 2.94), and 20 were part of the non-adaptive (control) training 

group (14 females, 6 males; M age = 45.80 years, SD = 3.04). The mean number of years 

of education for the adaptive group was 17.30 (SD = 3.80). The mean number of years of 

education for the non-adaptive group was 17.15 (SD = 3.10). There were 18 right handed 

participants in the adaptive group, and 19 in the non-adaptive group. Participants had 

normal or corrected-to-normal vision. They were carefully screened for MRI 

contraindications. The participants had no history of psychiatric or neurological illness, or 

brain injury. Participants also had no history of alcohol or drug use disorders. Participants 

were not taking prescribed medications at the time of the experiment.  

 

4.2.2 Procedure  
 

To investigate whether regular cognitive training leads to overall improvement in 

cognitive function in middle-aged adults, we used a mixed design with group (cognitive 

training, active control) as a between-subjects factor, transfer task as a within-subjects 

factor (RAPM, PAL, PAR, N-back), and session (pre-training, post-training) as a within-

subjects factor. To make sure that training conditions were the same for both groups, 

participants in the experimental condition completed an adaptive cognitive training 

programme, while the active control group completed a non-adaptive version of the 

same training. Cognitive function and transfer effects were assessed using a fluid 

intelligence test: RAPM (far transfer), a paired associative learning task: PAL (far transfer), 

a paired associative memory task: PAR (near transfer), and a working memory task: N-

back (near transfer).  
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Participants first completed a pre-training session of the transfer tasks including 

the RAPM, PAL, PAR, and N-back. Participants then completed 12 sessions of either the 

adaptive or non-adaptive training over 4-6 weeks (2-3 sessions per week). The training 

programme consisted of 5 computer-based exercises that aimed to train working 

memory, attention, and executive function. Each task was 10min long and total training 

time per session was 50min. Post-training, participants again completed the RAPM, PAL, 

PAR, and N-back tasks to measure possible changes in cognitive ability and transfer.  

 
4.2.3 Data analysis 
 

Multiple independent samples t-tests were performed comparing the groups 

(adaptive vs non-adaptive) on the demographic data and baseline (pre-training) 

performance for each transfer task. All tests for demographic and baseline data were 

two-tailed; significance level was set at p < .05. 

 
Performance on the CogniPlus training exercises was analysed using paired 

samples t-tests comparing session 1 to session 12 for all tasks in adaptive and non-

adaptive groups. Statistical significance was set at p < .05 (two-tailed). 

 

Post-training performance scores on the near and far transfer tasks (RAPM, PAL, 

PAR, 3-back, 4-back) were entered as dependent variables in separate one-way analyses 

of covariance (ANCOVA), with group (adaptive, non-adaptive) as a between-subjects 

factor, and baseline performance entered as covariates. Statistical significance for all tests 

was set at p < .05 (two-tailed). We then ran paired samples t-tests comparing pre- and 

post-training performance on each of the transfer tasks for the total sample (combined 

adaptive and non-adaptive training groups, N = 40), with statistical significance set at p < 

.05 (two-tailed).   

 
In addition, we conducted Kendall's tau-b correlations of performance on 

CogniPlus tasks with post-training performance on transfer tasks. This was to determine 

whether a specific type of training (i.e., working memory, attention, or inhibition) was 

associated with improved performance on particular transfer tasks. Significance for the 

correlations was set to p < .05 (two-tailed). 
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4.3 Results  
 

Independent samples t-tests were performed on both the demographic data 

(Table 4.1) and baseline transfer task performance (Table 4.2) to ensure there were no 

significant differences between experimental and control groups prior to training. Indeed, 

there were equal numbers of males and females in each group, and all p values exceeded 

.05. Thus, the two groups did not differ significantly on age, gender, handedness, and 

years of education, nor did they differ significantly on baseline performance of RAPM, 

PAL, PAR, and N-back tasks. Therefore, any differences that were observed can be 

attributed to the cognitive training and type of programme (adaptive or non-adaptive), 

rather than to previous underlying differences between the groups. 

 

 

Table 4.1. Summary of demographic data for adaptive and non-adaptive groups. Results of 

independent t-tests.  
 

 
 
 
 

   
 

     
 

                         
 

                
 

 

      Age (years)                     44.15 2.94 
 

45.80         3.04              1.75            .089 

Education (years)          17.30 3.80 
 

17.15         3.10             -0.14            .892 

Right-handed                 n = 18   
 

n= 19 
 

             0.36
a
           .548 

Female                            n = 14 
  

n= 14    
 Male                                n = 6 

 
         n=6 

  

            a. Results of Chi-Square test, χ
2
 value shown.  

 

 

 

 

Table 4.2. Baseline transfer task performance for adaptive and non-adaptive groups. Results of 

independent t-tests. 

 

 
 
 
 

   
 

     
 

                         
 

                
 

 

      RAPM                            8.20 3.30 
 

8.20         2.93             0.00           1.000 

PAL                               71.70 17.98 
 

76.55         18.95             0.83            .412 

Adaptive 

  Mean           + SD 

Non-adaptive 

   Mean             + SD 

 

  t                  p 

Adaptive 

  Mean           + SD 

Non-adaptive 

   Mean             + SD 

 

 t                 p 
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PAR                              32.10 7.28 
 

32.55         6.50             0.21            .838 
0-back                          79.80          0.52 

 
78.35         5.33            -1.21            .234 

1-back                          79.10 1.55 
 

78.25         2.49            -1.30            .203 

3-back                          66.30 4.07 
 

67.50         3.86                         0.96            .345 

4-back                          63.10              3.21          62.05         4.14            -0.90            .375 

             

 

 

Figure 4.1 shows the performance on each of the 5 CogniPlus exercises that made 

up the training programmes for both the adaptive experimental and non-adaptive control 

groups. This illustrates how the control group was restricted to lower difficulty levels, 

whereas for the experimental group, task difficulty progressively increased in line with 

performance for the duration of the 12 sessions over 4-6 weeks. However, paired t-tests 

comparing session 1 and session 12 showed significant increases in performance for all 

tasks for the adaptive training group (Table 4.3), but also for the non-adaptive group in all 

tasks except DIVID (Table 4.4). Effect sizes for both the adaptive and non-adaptive groups 

were positive and very large for most of the training tasks (Table 4.3 and Table 4.4). 
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Figure 4.1. Mean level reached per session for the training tasks in non-adaptive and adaptive 

groups. A) Divided Attention. B) Spatial Coding. C) Spatial Updating. D) Response Inhibition. E) 

Mental Rotation and Spatial Processing. Error bars indicate the standard error of the mean. 

 

 

 

Table 4.3. Adaptive group: cognitive training performance comparing session 1 and session 12 of 

the CogniPlus tasks. Results of paired t-tests.  

 

 
 
 
 

   
 

     
 

                         
 

                
 

 

      DIVID         4.75         0.55 14.55 0.83   49.00     <.001         14.28    1.000                       

CODING     5.80        0.89             18.25 4.03   14.80     <.001          4.38    1.000                        
DATEUP     4.00        0.00             14.10 1.71   26.36     <.001          8.57    1.000                    
HIBITR        2.30        0.73               6.75 1.37   13.90     <.001          4.16    1.000                   

ROTATE     4.20        1.20             22.85 1.95          52.18     <.001         11.82    1.000                   

             

 

 

 

 

 

 

 

Session 1 

     Mean        + SD 

Session 12 

    Mean          + SD 

 

    t                  p         Cohen’s d     Power 
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Table 4.4. Non-adaptive group: cognitive training performance comparing session 1 and session 

12 of the CogniPlus tasks. Results of paired t-tests.  

 

 
 
 
 

   
 

     
 

                         
 

                
 

 

      DIVID          4.80        0.41             4.90 0.45     0.70     .494           0.11   0.075                   

CODING     4.40        0.68            4.85 0.37     2.93     .009           0.84   0.945                          
DATEUP     4.05        0.22           4.95 0.22    13.08   <.001           4.20   1.000                     
HIBITR        1.80        0.70             2.75 0.91     5.15   <.001           1.20   0.999                         

ROTATE     3.70         0.87           5.90 0.31           11.80   <.001           3.46   1.000                       

       

 

 

Correlations were run to determine if there were any relationships between the 

demographic data (gender, age, education) and transfer task post-training scores. Both 

the non-adaptive and adaptive groups were combined for these correlations (N = 40). 

Tests of assumptions for the point-biserial correlation of gender x post-training RAPM 

scores indicated no significant outliers in the scores for females and males (Appendix VI, 

Figure VI.1, pg. 291). A Shapiro-Wilk test for females showed that RAPM post-training 

scores are normally distributed, W(28) = .974, p = .697; as did a Shapiro-Wilk test for 

males, W(12) = .924, p = .316. Levene’s test found that the assumption of homogeneity of 

variance for female and male RAPM post-training scores was met, F(1,38) = .003, p = .955. 

The point-biserial correlation demonstrated there was no significant relationship between 

gender and post-training RAPM scores, rpb = -.047, p = .774. 

 

Tests of assumptions for the point-biserial correlation of gender x post-training 

PAL scores indicated no outliers in the scores for females and males (Appendix VI, Figure 

VI.2, pg. 292). A Shapiro-Wilk test for females showed that PAL post-training scores are 

normally distributed, W(28) = .955, p = .271; as did a Shapiro-Wilk test for males, W(12) = 

.987, p = .999. Levene’s test found that the assumption of homogeneity of variance for 

female and male PAL post-training scores was met, F(1,38) = .420, p = .521. The point-

biserial correlation demonstrated there was no significant relationship between gender 

and post-training PAL scores, rpb = .029, p = .858. 

         Session 1 

    Mean       + SD 

      Session 12 

 Mean         + SD 

 

t                 p          Cohen’s d     Power 
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Tests of assumptions for the point-biserial correlation of gender x post-training 

PAR scores indicated no significant outliers in the scores for females and males (Appendix 

VI, Figure VI.3, pg. 292). A Shapiro-Wilk test for females showed that the distribution of 

PAR post-training scores is significantly different from normal, W(28) = .882, p = .004; as 

did a Shapiro-Wilk test for males, W(12) = .830, p = .021. Levene’s test found that the 

assumption of homogeneity of variance for female and male PAR post-training scores was 

met, F(1,38) = .002, p = .969. As the Shapiro-Wilk test for the distribution of female post-

training PAR scores is highly significant (p = .004), a Mann-Whitney U test was employed 

as this non-parametric test does not require this assumption to be met. The Mann-

Whitney U test for post-training PAR scores demonstrated there were no significant 

differences in performance between females and males, U = 165.50, p = .941. 

 

As both the 0- and 1-back scores were at ceiling in the pre-training session (Non-

adaptive 0-back: M = 78.35, SD = 5.33; Adaptive 0-back: M = 79.80, SD = 0.52; Non-

adaptive 1-back: M = 78.25, SD = 2.49; Adaptive 1-back: M = 79.10, SD = 1.55; out of a 

total of 80 trials), we did not include these conditions in any further analyses. Indeed, we 

did not expect to see differences between the groups nor between the pre- and post-

training sessions for the 0-back as this was a control condition that did not test working 

memory. Nor did we expect to see differences for the low working memory load of 1-back 

(McElree, 2001; Jaeggi et al., 2010; Heinzel et al, 2014; Beatty et al., 2015; Flegal et al., 

2019). We expected near perfect scores for both these conditions and this was what was 

found (Non-adaptive post-training 0-back: M = 78.80, SD = 2.73; Adaptive post-training 0-

back: M = 79.90, SD = 0.31; Non-adaptive post-training 1-back: M = 77.75, SD = 2.59; 

Adaptive post-training 1-back: M = 78.25, SD = 1.77; out of a total of 80 trials). Therefore, 

we restricted all N-back analyses to the 3- and 4-back conditions. 

 

Tests of assumptions for the point-biserial correlation of gender x post-training 3-

back scores indicated no outliers in the scores for females and males (Appendix VI, Figure 

VI.4, pg. 293). A Shapiro-Wilk test for females showed that 3-back post-training scores are 

normally distributed, W(28) = .975, p = .717; as did a Shapiro-Wilk test for males, W(12) = 

.979, p = .980. Levene’s test found that the assumption of homogeneity of variance for 

female and male 3-back post-training scores was met, F(1,38) = 1.064, p = .309. The point-
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biserial correlation demonstrated there was no significant relationship between gender 

and post-training 3-back scores, rpb = .103, p = .526. 

 

Tests of assumptions for the point-biserial correlation of gender x post-training 4-

back scores indicated no significant outliers in the scores for females and males (Appendix 

VI, Figure VI.5, pg. 294). A Shapiro-Wilk test for females showed that 4-back post-training 

scores are normally distributed, W(28) = .954, p = .246; as did a Shapiro-Wilk test for 

males, W(12) = .908, p = .203. Levene’s test found that the assumption of homogeneity of 

variance for female and male 4-back post-training scores was met, F(1,38) = .125, p = 

.726. The point-biserial correlation demonstrated there was no significant relationship 

between gender and post-training 4-back scores, rpb = .115, p = .479. 

 

Tests of assumptions for the Pearson’s correlation of age x post-training RAPM 

scores indicated no significant outliers for age and scores (Appendix VI, Figures VI.6 and 

VI.7, pgs. 294 and 295). A Shapiro-Wilk test showed that age is not normally distributed, 

W(40) = .938, p = .030. However, as the Shapiro-Wilk test for the distribution of age is not 

highly significant (p = .030) and the assumption requires the data to be only 

approximately normally distributed (see Appendix VI, Figure VI.8, pg. 296), Pearson’s 

correlations were run with this variable unless otherwise specified. A Shapiro-Wilk test for 

post-training RAPM scores indicated that scores are normally distributed, W(40) = .970, p 

= .364. A scatterplot of age x post-training RAPM scores indicated that the assumption of 

homoscedasticity was met (Appendix VI, Figure VI.9, pg. 296). The Pearson’s correlation 

demonstrated there was no significant relationship between age and post-training RAPM 

scores, r = -.129, p = .427. 

  

Tests of assumptions for the Pearson’s correlation of age x post-training PAL 

scores indicated no outliers for scores (Appendix VI, Figure VI.10, pg. 297). Tests of 

assumptions for age were not violated with the exception of normality (as discussed) and 

are reported above. A Shapiro-Wilk test showed that post-training PAL scores are 

normally distributed, W(40) = .980, p = .695. A scatterplot of age x post-training PAL 

scores indicated that the assumption of homoscedasticity was met (Appendix VI, Figure 
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VI.11, pg. 298). The Pearson’s correlation demonstrated there was no significant 

relationship between age and post-training PAL scores, r = .064, p = .694. 

 

Tests of assumptions for the Pearson’s correlation of age x post-training PAR 

scores indicated no outliers for scores (Appendix VI, Figure VI.12, pg. 298). Tests of 

assumptions for age were not violated with the exception of normality and are reported 

above. A Shapiro-Wilk test showed that post-training PAR scores are not normally 

distributed, W(40) = .873, p < .001. A scatterplot of age x post-training PAR scores 

indicated that the assumption of homoscedasticity was met (Appendix VI, Figure VI.13, 

pg. 299). However, as the Shapiro-Wilk test for the distribution of post-training PAR 

scores is highly significant (p < .001), Kendall's tau-b was used because this non-

parametric test statistic does not require this assumption to be met. Kendall’s tau-b 

demonstrated there was a significant relationship between age and post-training PAR 

scores, τb = .250, p = .033. 

 

Tests of assumptions for the Pearson’s correlation of age x post-training 3-back 

scores indicated no outliers for scores (Appendix VI, Figure VI.14, pg. 300). Tests of 

assumptions for age were not violated with the exception of normality and are reported 

above. A Shapiro-Wilk test showed that post-training 3-back scores are normally 

distributed, W(40) = .988, p = .931. A scatterplot of age x post-training 3-back scores 

indicated that the assumption of homoscedasticity was met (Appendix VI, Figure VI.15, 

pg. 301). The Pearson’s correlation demonstrated there was no significant relationship 

between age and post-training 3-back scores, r = .124, p = .446. 

 

Tests of assumptions for the Pearson’s correlation of age x post-training 4-back 

scores indicated no significant outliers for scores (Appendix VI, Figure VI.16, pg. 301). 

Tests of assumptions for age were not violated with the exception of normality and are 

reported above. A Shapiro-Wilk test showed that post-training 4-back scores are normally 

distributed, W(40) = .965, p = .248. A scatterplot of age x post-training 4-back scores 

indicated that the assumption of homoscedasticity was met (Appendix VI, Figure VI.17, 

pg. 302). The Pearson’s correlation demonstrated there was no significant relationship 

between age and post-training 4-back scores, r = .072, p = .661. 
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Tests of assumptions for the Pearson’s correlation of education x post-training 

RAPM scores indicated no outliers for education (Appendix VI, Figure VI.18, pg. 303). 

Tests of assumptions for post-training RAPM scores were not violated and are reported 

above. A Shapiro-Wilk test showed that education is normally distributed, W(40) = .956, p 

= .125. A scatterplot of education x post-training RAPM scores indicated that the 

assumption of homoscedasticity was not met (Appendix VI, Figure VI.19, pg. 303). As 

such, Kendall's tau-b was employed as this test statistic does not require this assumption 

to be met. Kendall’s tau-b demonstrated there was no significant relationship between 

education and post-training RAPM scores, τb = .033, p = .777. 

 

Tests of assumptions for the Pearson’s correlation of education x post-training PAL 

scores were not violated and are reported above. However, a scatterplot of education x 

post-training PAL scores indicated that the assumption of homoscedasticity was 

potentially violated (Appendix VI, Figure VI.20, pg. 304). As such, Kendall's tau-b was 

included as this non-parametric test statistic does not require this assumption to be met. 

The Pearson’s correlation demonstrated there was no significant relationship between 

education and post-training PAL scores, r = -.011, p = .945; as did Kendall’s tau-b, τb = -

.007, p = .953. 

 

Tests of assumptions for the Pearson’s correlation of education x post-training 

PAR scores indicated that some assumptions were not met. A scatterplot of education x 

post-training PAR scores showed that the assumption of homoscedasticity was violated 

(Appendix VI, Figure VI.21, pg. 305). In addition, the Shapiro-Wilk test for the distribution 

of post-training PAR scores is highly significant (p < .001). Thus, Kendall's tau-b was 

employed as this test statistic does not require these assumptions to be met. Kendall’s 

tau-b demonstrated there was no significant relationship between education and post-

training PAR scores, τb = .048, p = .680. 

  

 Tests of assumptions for the Pearson’s correlation of education x post-training 3-

back scores were not violated and are reported above. A scatterplot of education x post-

training 3-back scores indicated that the assumption of homoscedasticity was met 

(Appendix VI, Figure VI.22, pg. 305). The Pearson’s correlation demonstrated there was 
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no significant relationship between education and post-training 3-back scores, r = .082, p 

= .616. 

 

Tests of assumptions for the Pearson’s correlation of education x post-training 4-

back scores were not violated and are reported above. A scatterplot of education x post-

training 4-back scores indicated that the assumption of homoscedasticity was met 

(Appendix VI, Figure VI.23, pg. 306). The Pearson’s correlation demonstrated there was 

no significant relationship between education and post-training 4-back scores, r = -.053, p 

= .745. As there were no significant relationships found between the demographics and 

post-training scores, these variables were not used as covariates in any further analyses, 

with the exception of age which was positively correlated with post-training PAR scores 

(τb = .250, p = .033). Thus, age was included as a covariate in the ANCOVA examining post-

training PAR scores.  

 

Figure 4.2 shows the changes in performance following training for the RAPM, 

PAL, PAR, 3-back, and 4-back tasks. Figure 4.2A shows that for the non-adaptive group 

there was a small increase in RAPM performance from pre- to post-training (Pre-training: 

M = 8.20, SD = 2.93; Post-training: M = 8.30, SD = 2.98). The increase was slightly greater 

for the adaptive group (Pre-training: M = 8.20, SD = 3.30; Post-training: M = 8.80, SD = 

3.22). Figure 4.2B shows that for the non-adaptive group there was a slight decrease in 

PAL performance from pre- to post-training (Pre-training: M = 76.55, SD = 18.95; Post-

training: M = 75.55, SD = 23.44). For the adaptive group there was a small increase in 

performance (Pre-training: M = 71.70, SD = 17.98; Post-training: M = 73.05, SD = 15.66). 

Figure 4.2C demonstrates that for the non-adaptive group there was a small increase in 

PAR performance from pre- to post-training (Pre-training: M = 32.55, SD = 6.50; Post-

training: M = 33.90, SD = 6.63). The adaptive group exhibited a similar increase in 

performance (Pre-training: M = 32.10, SD = 7.28; Post-training: M = 33.95, SD = 5.17). 

Figure 4.2D shows that for the non-adaptive group there was a decrease in 3-back 

performance from pre- to post-training (Pre-training: M = 67.50, SD = 3.86; Post-training: 

M = 66.55, SD = 3.90). For the adaptive group there was also a decrease in performance 

(Pre-training: M = 66.30, SD = 4.07; Post-training: M = 64.80, SD = 5.45). Figure 4.2E 

demonstrates that for the non-adaptive group there was an increase in 4-back 
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performance from pre- to post-training (Pre-training: M = 62.05, SD = 4.14; Post-training: 

M = 64.70, SD = 4.07). For the adaptive group there was also an increase in performance 

(Pre-training: M = 63.10, SD = 3.21; Post-training: M = 64.15, SD = 3.57). 
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Figure 4.2. Mean performance for non-adaptive and adaptive groups in the pre- and post-training 

sessions of the A) RAPM, B) PAL, C) PAR, D) 3-back, and E) 4-back tasks. Error bars indicate the 

standard error of the mean. 
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To determine whether there were significant differences between training 

programmes on transfer task performance, separate one-way ANCOVAs were conducted 

with group (adaptive, non-adaptive) as the independent variable, and post-training scores 

(RAPM, PAL, PAR, 3-back, 4-back) as the dependent variables, while controlling for 

baseline performance. 

 

The first assumption to consider for the following ANCOVAs is that the covariate is 

independent of the treatment effect (i.e., the covariate and independent variable are 

independent of each other), therefore, the covariate should not be different across the 

groups. Independent samples t-tests at baseline show that pre-training scores were not 

significantly different between the adaptive and non-adaptive groups for RAPM, PAL, 

PAR, 3-back, and 4-back (see Table 4.2). In addition, the post-training PAL scores used as a 

covariate in the PAR ANCOVA showed no significant differences between the groups 

[t(38) = .40, p = .694], nor did the covariate of age (see Table 4.1). Thus, this assumption 

has been met for all the following ANCOVAs. 

 

Tests of assumptions for the ANCOVA examining post-training RAPM scores with 

pre-training RAPM scores as a covariate indicated no outliers for non-adaptive and 

adaptive training (Appendix VI, Figure VI.24, pg. 306). A Shapiro-Wilk test for the non-

adaptive group showed that RAPM post-training scores are normally distributed, W(20) = 

.950, p = .367; as did a Shapiro-Wilk test for the adaptive group, W(20) = .971, p = .785. 

Levene’s test found that the assumption of homogeneity of variances across groups was 

met, F(1,38) = .096, p = .759. A scatterplot indicated that the relationship between the 

covariate (pre-training RAPM scores) and the dependent variable (post-training RAPM 

scores) for the non-adaptive group was linear (Appendix VI, Figure VI.25, pg. 307); as did a 

scatterplot for the adaptive group (Appendix VI, Figure VI.26, pg. 308). The ANCOVA 

demonstrated no significant differences between the groups in post-training RAPM scores 

while controlling for baseline RAPM performance, F(1, 37) = .63, p = .432, power = .121. 

 

Tests of assumptions for the ANCOVA examining post-training PAL scores with 

pre-training PAL scores as a covariate indicated no outliers for non-adaptive and adaptive 

training (Appendix VI, Figure VI.27, pg. 308). A Shapiro-Wilk test for the non-adaptive 
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group showed that PAL post-training scores are normally distributed, W(20) = .962, p = 

.590; as did a Shapiro-Wilk test for the adaptive group, W(20) = .967, p = .694. Levene’s 

test found that the assumption of homogeneity of variances across groups was met, 

F(1,38) = 3.30, p = .077. A scatterplot indicated that the relationship between the 

covariate (pre-training PAL scores) and the dependent variable (post-training PAL scores) 

for the non-adaptive group was linear (Appendix VI, Figure VI.28, pg. 309); as did a 

scatterplot for the adaptive group (Appendix VI, Figure VI.29, pg. 310). The ANCOVA 

demonstrated no significant differences between the groups in post-training PAL scores 

while controlling for baseline PAL performance, F(1, 37) = .03, p = .874, power = .053. 

 

 Tests of assumptions for the ANCOVA examining post-training PAR scores with 

pre-training PAR, post-training PAL, and age as covariates indicated no outliers for non-

adaptive and adaptive training (Appendix VI, Figure VI.30, pg. 310). Pearson’s correlations 

demonstrated that the covariates were not highly correlated, i.e., r > .80 (Hinkle et al., 

2003; Leech et al., 2005; Doncaster & Davey, 2007; Huitema, 2011; Field, 2018): pre-

training PAR x post-training PAL (r = .538), pre-training PAR x age (r = -.014), post-training 

PAL x age (r = .064). A Shapiro-Wilk test for the non-adaptive group showed that PAR 

post-training scores are not normally distributed, W(20) = .828, p = .002; as did a Shapiro-

Wilk test for the adaptive group, W(20) = .897, p = .036. ANCOVAs are robust to violations 

of normality (Hinkle et al., 2003; Leech et al., 2005; Doncaster & Davey, 2007; Huitema, 

2011; Field, 2018), therefore, we proceeded with this analysis. Levene’s test found that 

the assumption of homogeneity of variances across groups was met, F(1,38) = .960, p = 

.333. Scatterplots indicated that the relationship between each covariate (pre-training 

PAR, post-training PAL, age) and the dependent variable (post-training PAR scores) for the 

non-adaptive group was linear (Appendix VI, Figures VI.31, VI.32, VI.33, pgs. 311 and 312); 

as did scatterplots for the adaptive group (Appendix VI, Figures VI.34, VI.35, VI.36, pgs. 

313, 314, and 315). The ANCOVA demonstrated no significant differences between the 

groups in post-training PAR scores while controlling for baseline PAR performance, post-

training PAL performance, and age, F(1, 37) = 1.02, p = .319, power = .166. 

 

Tests of assumptions for the ANCOVA examining post-training 3-back scores with 

pre-training 3-back scores as a covariate indicated no outliers for non-adaptive and 
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adaptive training (Appendix VI, Figure VI.37, pg. 315). A Shapiro-Wilk test for the non-

adaptive group showed that 3-back post-training scores are normally distributed, W(20) = 

.937, p = .209; as did a Shapiro-Wilk test for the adaptive group, W(20) = .994, p = 1.00. 

Levene’s test found that the assumption of homogeneity of variances across groups was 

met, F(1,38) = 1.23, p = .275. A scatterplot indicated that the relationship between the 

covariate (pre-training 3-back scores) and the dependent variable (post-training 3-back 

scores) for the non-adaptive group was linear (Appendix VI, Figure VI.38, pg. 316); as did a 

scatterplot for the adaptive group (Appendix VI, Figure VI.39, pg. 317). The ANCOVA 

demonstrated no significant differences between the groups in post-training 3-back 

scores while controlling for baseline 3-back performance, F(1, 37) = .84, p = .366, power = 

.145. 

 

 Tests of assumptions for the ANCOVA examining post-training 4-back scores with 

pre-training 4-back scores as a covariate indicated no significant outliers for non-adaptive 

and adaptive training (Appendix VI, Figure VI.40, pg. 317). A Shapiro-Wilk test for the non-

adaptive group showed that 4-back post-training scores are normally distributed, W(20) = 

.962, p = .592; as did a Shapiro-Wilk test for the adaptive group, W(20) = .941, p = .247. 

Levene’s test found that the assumption of homogeneity of variances across groups was 

met, F(1,38) = .153, p = .698. A scatterplot indicated that the relationship between the 

covariate (pre-training 4-back scores) and the dependent variable (post-training 4-back 

scores) for the non-adaptive group was linear (Appendix VI, Figure VI.41, pg. 318); as did a 

scatterplot for the adaptive group (Appendix VI, Figure VI.42, pg. 319). The ANCOVA 

demonstrated no significant differences between the groups in post-training 4-back 

scores while controlling for baseline 4-back performance, F(1, 37) = 1.32, p = .258, power 

= .201. 

 

Given that the ANCOVAs for RAPM, PAL, PAR, 3-back, and 4-back were 

underpowered, and given that there were no significant group effects found, we decided 

to run paired samples t-tests comparing pre- and post-training for these tasks with both 

the non-adaptive and adaptive groups combined (N = 40). Moreover, we found a 

significant increase in performance from session 1 to session 12 in the CogniPlus tasks 

(except for the DIVID task) for the non-adaptive group, indicating that participants in this 
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group also benefitted from the cognitive training despite being the control group. As 

there is evidence to indicate that both groups received significant training, this was a 

further reason to combine the groups in addition to increasing the power of the t-tests.  

 

Figure 4.3 shows mean performance in the pre- and post-training sessions for 

each of the transfer tasks (N = 40). For the RAPM there was a small increase in 

performance from pre- to post-training (Pre-training: M = 8.20, SD = 3.08; Post-training: 

M = 8.55, SD = 3.07). For the PAL there was a small increase in performance from pre- to 

post-training (Pre-training: M = 74.13, SD = 18.40; Post-training: M = 74.30, SD = 19.71). 

For the PAR there was an increase in performance from pre- to post-training (Pre-

training: M = 32.33, SD = 6.82; Post-training: M = 33.93, SD = 5.87). For the 3-back 

working memory load there was a small decrease in performance from pre- to post-

training (Pre-training: M = 66.90, SD = 3.96; Post-training: M = 65.68, SD = 4.76). And 

finally, for the 4-back working memory load there was an increase in performance from 

pre- to post-training (Pre-training: M = 62.58, SD = 3.69; Post-training: M = 64.43, SD = 

3.79). 
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Figure 4.3. Mean performance for both the non-adaptive and adaptive groups combined (N = 40) 

in the pre- and post-training sessions for each of the transfer tasks: A) RAPM, B) PAL, C) PAR, D) 3-

back, and E) 4-back. Error bars indicate the standard error of the mean. 

 

 

Tests of assumptions for the paired samples t-test comparing pre- and post-

training RAPM scores indicated no outliers in the difference values (Appendix VI, Figure 

VI.43, pg. 319). A Shapiro-Wilk test showed that the distribution of the differences is 

normal, W(40) = .916, p = .060. The paired samples t-test revealed no significant 

difference between the pre- and post-training RAPM scores, t(39) = 1.06, p = .294, power 

= .115. 

  

Tests of assumptions for the paired samples t-test comparing pre- and post-

training PAL scores indicated no significant outliers in the difference values (Appendix VI, 

Figure VI.44, pg. 320). A Shapiro-Wilk test showed that the distribution of the differences 

is normal, W(40) = .949, p = .072. The paired samples t-test revealed no significant 

difference between the pre- and post-training PAL scores, t(39) = .068, p = .946, power = 

.050. 

  

Tests of assumptions for the paired samples t-test comparing pre- and post-

training PAR scores indicated no significant outliers in the difference values (Appendix VI, 

Figure VI.45, pg. 321). A Shapiro-Wilk test showed that the distribution of the differences 
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is normal, W(40) = .971, p = .374. The paired samples t-test revealed no significant 

difference between the pre- and post-training PAR scores, t(39) = 1.69, p = .099, power = 

.338. 

  

Tests of assumptions for the paired samples t-test comparing pre- and post-

training 3-back scores indicated no significant outliers in the difference values (Appendix 

VI, Figure VI.46, pg. 322). A Shapiro-Wilk test showed that the distribution of the 

differences is normal, W(40) = .967, p = .289. The paired samples t-test revealed no 

significant difference between the pre- and post-training sessions for the 3-back 

condition, t(39) = -1.49, p = .145, power = .408. 

 

Tests of assumptions for the paired t-test comparing pre- and post-training 4-back 

scores indicated no significant outliers in the difference values (Appendix VI, Figure VI.47, 

pg. 323). A Shapiro-Wilk test showed that the distribution of the differences is normal, 

W(40) = .978, p = .633. The paired samples t-test between pre- and post-training 

performance revealed that improvement in the 4-back task was significant and the effect 

size was moderate, t(39) = 3.30, p = .002, d = .50, power = .869. 

  

We correlated performance on each of the CogniPlus training tasks (DIVID, 

CODING, DATEUP, HIBITR, ROTATE) with transfer task post-training scores (RAPM, PAL, 

PAR, 3-back, 4-back). As the non-adaptive data have little to no variability due to the 

training tasks being restricted to a lower level, these correlations only included data from 

the adaptive group (N = 20), which showed some variability in performance due to the 

training adjusting to an individual’s ability. We used Kendall's tau-b for ranked data for 

these analyses as CogniPlus performance was measured as last level reached in session 

12. Furthermore, tests of assumptions indicated that data for the CogniPlus tasks were 

not normally distributed, i.e., a Shapiro-Wilk test for the distribution of DIVID data is 

highly significant, W(20) = .618, p < .001; as is a Shapiro-Wilk test for CODING, W(20) = 

.700, p < .001; for DATEUP, W(20) = .714, p < .001; for HIBITR, W(20) = .815, p = .001; and 

for ROTATE, W(20) = .652, p < .001. In addition, the Kendall’s tau-b does not require the 

assumption of no outliers to be met, nor the assumption of homoscedasticity. As such, 

this was deemed the most appropriate test to use for these data. 
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We predicted there would be a positive relationship between performance on the 

working memory training tasks (DATEUP and CODING) and post-training performance on 

the near transfer tasks (PAR and N-back). There was no significant correlation between 

DATEUP and post-training PAR, τb = .184, p = .313; no significant correlation between 

DATEUP and post-training 3-back, τb = .199, p = .268; and no significant correlation 

between DATEUP and post-training 4-back, τb = .313, p = .088. CODING and post-training 

PAR did not show a significant association, τb = .213, p = .232; CODING and post-training 

3-back also did not show a significant association, τb = .316, p = .072. However, CODING 

did show a positive relationship with post-training 4-back, τb = .386, p = .031; and also 

with post-training RAPM, τb = .421, p = .018. There were no significant associations 

between the remaining 3 cognitive training tasks (DIVID, HIBITR, ROTATE) and post-

training performance on any of the transfer tasks (RAPM, PAL, PAR, 3-back, 4-back), p > 

.05 for all correlations. 

 

4.4 Discussion  
 
4.4.1 Summary of main findings 
 

We tested the effectiveness of cognitive training in improving overall cognitive 

function in healthy middle-aged adults (40-50 years old). Participants completed 12 

sessions of either adaptive or non-adaptive (active control) training. Exercises in the 

training programme targeted working memory, attention, and other executive functions 

such as inhibition. To test for transfer of training-related cognitive improvements, we 

used a fluid intelligence task (RAPM), an associative learning task (PAL), an associative 

memory task (PAR), and a working memory task (N-back). These tasks were completed 

before and after training. 

 

 We did not find any significant differences between adaptive and non-adaptive 

training on transfer task performance. However, the ANCOVAs comparing adaptive and 

non-adaptive training for RAPM, PAL, PAR, 3-back, and 4-back were underpowered. 

Furthermore, we found significant increases in performance on the training tasks not only 

for the adaptive group, but also for the non-adaptive group, indicating that control group 

participants also benefitted from the cognitive training. Therefore, we decided to 
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compare pre- and post-training scores on transfer tasks with both the non-adaptive and 

adaptive groups combined (N = 40). As expected, there were no significant differences 

comparing pre- and post-training scores for the far transfer tasks of RAPM and PAL. We 

also did not find differences between pre- and post-training scores for the near transfer 

task of PAR. As predicted, we found a significant difference between pre- and post-

training scores for the near transfer task of N-back, specifically for the 4-back condition, 

indicating that the cognitive training was successful and resulted in transfer in middle-

aged adults. As there were no significant relationships found between the demographics 

and post-training 4-back scores, it can be concluded that the training itself was effective 

in improving scores regardless of participant gender, age, and education. Moreover, there 

was a significant positive relationship between working memory training outcome and 

post-training 4-back scores, providing support for the conclusion that improvements in 

working memory in particular transferred to an untrained task requiring the same ability. 

 

4.4.2 Adaptive vs. non-adaptive training 

 

 We found no significant differences between adaptive and non-adaptive training 

on any of the transfer tasks (RAPM, PAL, PAR, 3-back, and 4-back). This is contrary to 

multiple studies that have shown that adaptive training leads to larger and more 

consistent improvements in performance on untrained tasks, as compared to non-

adaptive training (e.g., Holmes et al., 2009; Smith et al., 2009; Jaeggi et al., 2010; Brehmer 

et al., 2012; Rudebeck et al., 2012; Anguera et al., 2013; Heinzel et al., 2016; Flegal et al., 

2019). Methodological variations may partly account for why our adaptive training 

protocol was not associated with transfer while others were (e.g., Rudebeck et al., 2012; 

Flegal et al., 2019). Continuously adaptive training task difficulty with no upper limit was a 

feature which both the Flegal et al. (2019) and Rudebeck et al. (2012) studies shared, and 

these studies showed transfer to episodic memory from adaptive working memory 

training. This is different from our training study where many participants achieved the 

highest available level of training task difficulty and remained at this ceiling level for the 

final sessions of training. Therefore, it is possible that our adaptive training programme 

potentially led to less than optimal performance demands, such that participants were 

not operating at a more plasticity-inducing difficulty level than the non-adaptive group. A 
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recent theoretical framework proposes that cognitive challenges must be sustained (e.g., 

continuously increasing environmental demands) rather than transient in order to 

increase functional supply (Lovden et al., 2010; Flegal et al., 2019), therefore, our 

adaptive training protocol in which the level of difficulty was capped may have been 

insufficient to induce plasticity that is associated with transfer.  

 

On the other hand, it is likely that our active control was too stringent and non-

adaptive participants benefitted significantly from training. This is supported by the 

finding that significant increases in performance for the training tasks were found not 

only for the adaptive group, but also for the non-adaptive group. While the evidence from 

previous studies is skewed in favour of adaptive over non-adaptive training, our findings 

suggest that adaptively increasing training task difficulty is neither necessary nor 

sufficient to promote transfer (Flegal et al., 2019). Indeed, there are some reviews that 

have concluded there is a lack of consistency in the evidence favouring training protocols 

with adaptive task difficulty (von Bastian & Oberauer, 2014; Pappa et al., 2020). As 

discussed by Morrison and Chein (2011), small effect sizes with regards to training may 

represent either little adaptive training-induced benefit, or unexpected cognitive 

enhancements related to the non-adaptive control training. With this in mind, future 

studies would benefit from developing training and active control programmes that differ 

more extensively on difficulty levels, and include control training with different tasks that 

are strategy-specific instead of process based. However, it is important to note that the 

cognitive demand of an active control treatment while being less challenging and fixed at 

a relatively low level of difficulty, cannot be deliberately set so low as to induce boredom 

and disengagement (which has been a complaint rightly levied against less-active non-

adaptive control conditions in previous training studies; as discussed in Morrison & Chein, 

2011; and Flegal et al., 2019). Therefore, finding the right balance of low difficulty while 

remaining engaging, is a very challenging task. A possible solution may be for active 

control training to be done with a different set of demanding tasks that do not engage the 

same processes as the experimental group, as well as the inclusion of a passive control 

group to assess test-retest effects and psychological factors. 
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4.4.3 Near transfer 
 

As expected, adaptive participants showed substantial improvements over the 

course of training, as indicated by significant increases in performance for all training 

tasks. The non-adaptive group also showed significant increases in performance for all 

training tasks except for divided attention. Indeed, effect sizes were very large for both 

groups. While such gains in training task performance are notable, transfer effects are of 

greater interest. Indeed, if cognitive training effects are restricted to the trained tasks, 

such benefits would have little practical significance (Schmiedek et al., 2010).  

   

Evidence indicated that both adaptive and non-adaptive groups received 

considerable training, therefore we combined the groups to test for transfer. As 

expected, there was near transfer of training gains to an untrained 4-back task. The 

improvement in the 4-back task was significant and the effect size was moderate. 

Furthermore, there were no significant relationships found between the demographics 

and post-training 4-back scores, strengthening the conclusion that this effect was due to 

the training and was not related to gender, age, and education. This finding is in line with 

several studies showing near transfer when training and untrained tasks share the same 

cognitive processes (e.g., Klingberg et al., 2005; Willis et al., 2006; Jaeggi et al., 2008; 

Mozolic et al., 2009; Schmiedek et al., 2010; Dunning et al., 2013; Karbach & Verhaeghen, 

2014; Caeyenberghs et al., 2016; Emch et al., 2019). Moreover, our finding is consistent 

with meta-analyses of working memory training in reporting moderate-sized near transfer 

effects (Melby-Lervag et al., 2016; Soveri et al., 2017; Pappa et al., 2020). 

 

The N-back task involved various working memory functions including the 

encoding of incoming stimuli, monitoring, maintenance, and updating of the sequence to 

store the last N elements, and stimulus matching (matching the current stimulus to the 

one presented N positions back in the sequence) (Jaeggi et al., 2010; Schmiedek et al., 

2014; Pergher et al., 2018; Pappa et al., 2020). Similar working memory processes were 

specifically targeted by two of our cognitive training tasks: CODING and DATEUP. CODING 

trained visuospatial working memory. This task involved comparing a new arrangement of 

a set of vehicles with the previously stored layout of their original arrangement and 

identifying any differences. The DATEUP task in particular trained the updating function of 
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spatial working memory. Throughout the task, one butterfly lands and another starts its 

flight until eventually, at irregular intervals, the participant is asked to highlight the 

butterflies in a specific order, for example, the last three butterflies to land. Both of the 

training tasks involve the encoding of incoming stimuli, maintenance and storage, and in 

the case of the DATEUP task, updating the stimuli. Thus, although the stimuli were 

different for the N-back, CODING, and DATEUP tasks (letters, cars, and butterflies, 

respectively), and the task goals were different, all three tasks engaged overlapping 

processing components, and as such, training resulted in transfer. While changes in 

cognitive strategies and plasticity-based acquisition of knowledge are probably 

responsible for the lion’s share of improvements in the trained tasks, the observed 

transfer effect is unlikely to be a mere result of such task-specific changes (Schmiedek et 

al., 2010). As discussed, the tasks were based on different content material and had 

different goals, thus, the near transfer observed in the middle-aged adults suggests that 

aspects of working memory processing efficiency have been improved (Lovden et al., 

2010; Schmiedek et al., 2010). 

 

The N-back task also involved a number of executive functions besides working 

memory, such as inhibitory control and cognitive flexibility, problem solving, decision 

making, and selective attention (Kane & Engle, 2002; Pergher et al., 2018). Therefore, 

near transfer to this task could also have been the result of these processes being 

targeted by our training programme rather than, or in addition to, the working memory 

component. For example, the DIVID task in our programme trained attention processes. 

Participants simultaneously observed a range of scenes on several control monitors, and 

their task was to deal with problems as they occurred in different monitors by pressing a 

response key as quickly as possible. The HIBIT-R task trained the executive ability to 

suppress unwanted reactions (response inhibition). Participants were asked to pay 

attention to specific cues that indicated when they needed to react and when they did 

not. Therefore, the variability in our training programme which included tasks that train 

working memory, attention, and inhibition, has made it difficult to say which aspect 

resulted in near transfer to the 4-back task. However, it is notable that performance on 

the CODING task in particular was significantly correlated with post-training 4-back 

scores, such that better working memory training outcome was associated with greater 
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post-training performance on the 4-back; while no significant relationships were found 

between the attention and inhibition training tasks and post-training 4-back scores. This 

suggests that it is likely the working memory training that contributed significantly to 

transfer in the 4-back task, although we cannot rule out that improved attention and 

inhibition might also have played a role. Moreover, no significant relationships were 

found between any of the other transfer and training tasks, indicating that training may 

have been less effective at resulting in transfer for these tasks. Indeed, no significant 

transfer effects were found to the near transfer task of PAR, nor to the far transfer tasks 

of RAPM and PAL. There is one exception to this, in that CODING performance did show a 

significant positive association with post-training RAPM. This is discussed further in the 

next section (4.4.4 Far transfer). 

 

 It is also interesting to note that performance gains on the N-back task were only 

observed for the 4-back working memory load, and no transfer was found for the 3-back 

condition. This is consistent with studies showing transfer effects only at higher working 

memory loads (Jaeggi et al., 2010; Heinzel et al, 2014; Beatty et al., 2015; Flegal et al., 

2019). For example, in the study by Flegal and colleagues (2019), transfer effects were 

revealed by high difficulty N-Back trials and transfer was not found for their 3-back 

condition. This is consistent with the theory that raising the level of maximum function 

through sustained neurocognitive challenge and plasticity would enable previously 

unattainable high levels of task difficulty to be met (Lovden et al., 2010; Flegal et al., 

2019). It is therefore possible that near transfer was not found for the 3-back working 

memory load in our study because this trial type was not sufficiently difficult for healthy 

middle-aged adults, and improvement was only captured by the 4-back condition because 

participants’ level of maximum function had been increased through training. This 

interpretation is further supported by the relatively high scores achieved by participants 

on the pre-training 3-back condition (M = 84% correct, SD = 4.95), while there was more 

room for improvement on the pre-training 4-back level (M = 78% correct, SD = 4.62). 

 

 Near transfer was also not found for the PAR task. As with the 3-back task, pre-

training scores for PAR were at near-ceiling levels (M = 81% correct, SD = 17.04), and as 

such, it may be difficult to reveal significant post-training improvements. On the other 
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hand, there was still some room for improvement, and it is possible that the PAR task was 

simply too different from the training tasks for transfer to occur. In particular, the specific 

features of the exercises used for training and the tasks used for assessing transfer must 

be taken into account. Previous research has shown that working memory transfer varies 

with training task features, whereby transfer is strongest when both trained and 

untrained tasks involve similar or overlapping properties and paradigms (Gathercole et 

al., 2019). Task features may include stimulus modality (auditory, visual), stimulus domain 

(verbal, visuo-spatial), stimulus category (words, letters, digits for verbal stimuli; objects 

and spatial locations for visuo-spatial stimuli), and paradigm (e.g., serial recall, complex 

span, backward span) (Gathercole et al., 2019). While the PAR task is similar to the 

training exercises of DATEUP and CODING in that they all involve working memory, they 

differ in a number of ways. For example, the paradigms themselves vary from a spatial 

updating exercise (DATEUP) and a spatial coding task (CODING), to a paired-associates 

retrieval paradigm (PAR). On each PAR trial, participants actively used the cue to retrieve 

an associated abstract picture from memory and maintained this associated image across 

a delay, following which, a decision was made as to whether the maintained picture 

matched the currently presented target image or not. Thus, although all three paradigms 

require working memory, what makes them vary could include the use of different 

strategies, the different degree to which familiarity information might be employed, the 

different degrees to which shifting the focus of attention is required, and the involvement 

of different retrieval processes from long-term memory (Oberauer, 2003; Oberauer, 

2005; Unsworth & Engle, 2007; Shing et al., 2012; Schmiedek et al., 2014).  

 

Furthermore, no task or paradigm, as valid as it might be, is process-pure; rather, 

in addition to the processes of interest, a host of task- and paradigm-specific processes 

contribute to performance (Schmiedek et al., 2014). Indeed, successful associative 

retrieval reaches beyond successful binding, drawing on multiple cognitive mechanisms 

that include bottom-up perception and top-down imagery, as well as attention, in 

addition to working memory (Curtis & D'Esposito, 2003; Ranganath, 2006; Ciaramelli et 

al., 2008; Albright, 2012; Pfeifer et al., 2014; 2016). As such, the PAR and training tasks 

may have differed on several features and processes, and it may not have been sufficient 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274887/#B12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274887/#B13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274887/#B13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274887/#B28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274887/#B25
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for working memory gains to result in significant improvements on a paired-associates 

retrieval task. 

 

It’s important to note that contrary to our result, there are previous reports of 

transfer to associative memory from cognitive training (Schmiedek et al., 2010; Rudebeck 

et al., 2012; Toril et al., 2016; Flegal et al., 2019). However, the tasks used for training in 

these studies shared more features and processes with the transfer tasks than in our 

study. For example, Flegal and colleagues (2019) used a visuospatial working memory 

training programme and found transfer to an untrained Object-Location Association task. 

The Object-Location Association task was based on a paired-associates learning paradigm 

– the task consisted of blocks of trials arranged into an encoding phase followed by a 

retrieval phase. Stimuli were kaleidoscope images that were presented sequentially at 

random locations within a 4×4 matrix during the encoding phase, and participants were 

instructed to remember which object appeared in which cell for the subsequent retrieval 

phase. On each retrieval trial, one of the cells in which an object had appeared was 

highlighted, and the task was to select the object associated with that location from 

among three options displayed at the bottom of the screen. Therefore, the Object-

Location Association task used to assess transfer in this study shared features with the 

visuospatial working memory training tasks such as the binding of items and spatial 

context, in addition to demands on executive function and working memory updating 

processes (Flegal et al., 2019). Whereas the working memory training tasks in our 

programme were visuospatial, yet our paired-associates retrieval task was not. 

 

4.4.4 Far transfer 

 

As predicted, we did not find any evidence of far transfer. Our results are in line 

with the consensus that there are data to support near transfer to other similar tasks, but 

mostly no indication of far transfer (e.g., Shipstead et al., 2012; Melby-Lervag & Hulme, 

2013; Rapport et al., 2013; Sonuga-Barke et al., 2013; Karbach & Verhaeghen, 2014; 

Cortese et al., 2015; Redick et al., 2015; Schwaighofer et al., 2015; Melby-Lervag et al., 

2016; Simons et al., 2016; Weicker et al., 2016; Soveri et al., 2017; Gathercole et al., 2019; 

Pappa et al., 2020). For the PAL task, there were no significant differences between the 
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pre- and post-training scores. This finding is not surprising given that process-based 

training would only be expected to transfer if the same processes were engaged by the 

transfer tasks. The PAL is a test of visual associative learning (Pfeifer et al, 2014; 2016). 

The task involved the participant learning to form new associations between pairs of 

different black-and-white fractal pictures, and learn the correct pairing of the pictures 

through trial and error. Thus, the PAL task shares few cognitive processes and perceptual 

features with the training tasks, i.e., associative learning abilities were not a target for 

training in our programme which focused on working memory, attention, and executive 

function processes such as inhibition. Consequently, it can be concluded that far transfer 

to visual associative learning abilities did not occur because the PAL was too dissimilar to 

the training tasks and did not share the same underlying processes. This is consistent with 

the notion that overlapping cognitive processes are necessary for transfer to occur as 

previously suggested (e.g., Dahlin et al., 2009; Holmes et al., 2009; Shipstead et al., 2012; 

Sprenger et al., 2013; von Bastian et al., 2013; Dunning & Holmes, 2014; Minear et al., 

2016; Soveri et al., 2017; Pappa et al., 2020). 

 

 However, process-based accounts of transfer suggest that when broad cognitive 

abilities are trained, gains in general mechanisms and capacities should lead to improved 

performance across a wide range of tasks and everyday functions (Schmiedek et al., 

2010). Indeed, if training successfully improves processing efficiency, then training gains 

should generalise beyond superficially similar tasks to untrained tasks that rely on the 

same processing elements, resulting in far transfer (Jonides, 2004; Dahlin et al., 2008; 

2009; Flegal et al., 2019). Certainly, one would not expect far transfer to tasks that do not 

engage any of the same cognitive processes as the training tasks. One could make the 

case that training working memory, attention, and executive functions should have 

resulted in far transfer if process-based theories are to be convincing, as these processes 

underlie most tasks to some degree. In fact, we have shown that even when training and 

transfer tasks share some of the same processes, such as working memory for the PAR 

and training tasks, it may still not be enough for near transfer to occur, let alone far 

transfer. Why is it that shared underlying processes are not sufficient for transfer to 

occur? This was discussed with regards to task features and process overlap in the 
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previous section (4.4.3 Near transfer), and can be elaborated further using process-based 

theories of transfer. 

 

Process-based explanations suggest that rather than expanding the fundamental 

capacity of a cognitive system in an undifferentiated manner, training enhances the 

specific processes within the system that are engaged by particular tasks (Dahlin et al., 

2008; Holmes et al., 2009; Shipstead et al., 2012; Sprenger et al., 2013; Dunning & 

Holmes, 2014; von Bastian & Oberauer, 2014; Minear et al., 2016; Soveri et al., 2017; 

Gathercole et al., 2019). This accounts for the absence of transfer across working memory 

paradigms by assuming that training results in increases in the efficiency of individual 

processes within the working memory system, such as updating, inhibitory function, and 

short-term memory storage that are engaged by some, but not all working memory tasks 

(Dahlin et al., 2008; Minear et al., 2016; Gathercole et al., 2019). Thus, the magnitude of 

transfer is related to the extent of task overlap, with the highest levels of transfer for 

tasks with the greatest numbers of shared processes (Soveri et al., 2017; Gathercole et 

al., 2019). Our findings are consistent with this interpretation, in that we found near 

transfer to the N-back task which shared several working memory processes including the 

encoding of incoming stimuli, monitoring, maintenance, and updating, as well as a 

number of other executive functions such as inhibitory control, and selective attention 

with the training tasks, while transfer was not found for PAR which is an associative 

retrieval task that involved the binding of stimuli, bottom-up perception and top-down 

imagery, in addition to working memory, and thus shared fewer processes with the 

training tasks, and finally, no transfer was found for the PAL task which trained visual 

associative learning and shared still fewer processes with the training tasks. Therefore, it 

might be more useful to conceptualise breadth of transfer along a continuum (Barnett & 

Ceci, 2002; Flegal et al., 2019), as opposed to categorising it as either “near” or “far”, such 

that the fewer the shared features and processes, the further the transfer, and indeed, 

the less likely the transfer. 

 

It is also important to point out that there are discrepancies in what authors 

identify as “near” and “far” transfer across studies (Pappa et al., 2020). For example, 

while we considered the PAR as a near transfer task given the substantial working 
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memory component that was shared with the training tasks, the study by Flegal et al. 

(2019) considered a similar task as far transfer owing to it being in the cognitive domain 

of associative memory, while their training tasks were in the cognitive domain of working 

memory. Certainly, the use of these terms is not consistent in the cognitive training 

literature, contributing to the difficulty of defining the concept of transfer adequately and 

ultimately reaching a consensus (Pappa et al., 2020). We acknowledge the complexity of 

this issue and suggest it may be best to drop these terms altogether, focusing instead on 

designing training programmes whereby tasks share several features and processes. 

Indeed, training various processes with a variety of tasks should lead to more transfer. 

This was evident in our N-back result where processes involved in this task were trained 

by two working memory tasks (CODING, DATEUP), and also by the attention (DIVID) and 

inhibition (HIBITR) tasks; whereas our training programme may not have been extensive 

enough to result in transfer to the PAR and PAL tasks as fewer processes were shared in 

those cases. Therefore, whether the transfer is “near” or “far” becomes irrelevant when 

designing programmes with a view to preventing cognitive decline. What is important is 

that many processes are trained with a wide variety of tasks so that it is more likely there 

is transfer to everyday functioning. 

 

 With regards to the RAPM, there were no significant differences between the pre- 

and post-training scores. Again, this was as predicted because this task shared few 

features and processes with the training tasks. Specifically, the RAPM is designed to test 

abstract reasoning and fluid intelligence, and therefore we did not expect transfer to this 

task as these abilities were not trained by our programme. Indeed, a measure of fluid 

intelligence such as the RAPM may be considered to represent transfer “farther” from the 

training tasks in the present study, than a measure of working memory such as the N-

back task (Flegal et al., 2019).  

 

However, the literature is inconsistent with respect to the RAPM in that some 

positive transfer effects have been found to this test from cognitive training (e.g., Basak 

et al., 2008; Karbach & Kray, 2009; Strenziok et al., 2014), and also from working memory 

training in particular (Klingberg et al., 2002, 2005; Jaeggi et al., 2008, 2010; Schmiedek et 

al., 2010). The differences in findings may reflect the methodological variation of the 



169 
 

studies. For example, in the studies by Klingberg and colleagues (2002; 2005), working 

memory training was undertaken by children with ADHD, making these results less 

generalisable – it is possible that there was more room for improvement of working 

memory processes in the children with ADHD than in healthy middle-aged adults, and this 

resulted in positive transfer to fluid abilities. The studies by Schmiedek et al. (2010) and 

Jaeggi et al. (2008, 2010) employed a no-training control group, the study by Basak et al. 

(2008) employed a no-training/no-contact control group, and the study by Karbach & 

Kray (2009) employed no control group – this raises the question to what degree non-

specific factors such as practice effects, increased motivation, and increased effort 

contributed to their results, and indeed there’s the possibility of placebo effects. 

 

 Interestingly, there was a significant positive relationship found between working 

memory training outcome (CODING task) and post-training RAPM. Notably, studies have 

established close links between working memory and fluid intelligence (Kyllonen & 

Christal, 1990; Engle et al., 1999; Wiley et al., 2011; Chooi, 2012; Emch et al., 2019; 

Gathercole et al., 2019). Indeed, fluid intelligence is thought to share anatomical 

substrates with working memory mechanisms (Barbey et al., 2014), and predominantly 

those that are engaged by executive control processes (Ramnani & Owen, 2004). 

However, this positive relationship did not translate to a transfer effect for the RAPM task 

in our study. Although working memory may play a role in fluid intelligence, there are 

several other processes required for successful RAPM performance, such as the 

application of rules to transform the spatial form of one stimulus for another (Cattell, 

1963; Raven, 2003). As these processes didn’t overlap with our training protocol, working 

memory gains may not have been sufficient to result in a significant improvement on the 

RAPM. Alternatively, it is possible that the RAPM task was simply too difficult for middle-

aged adults. Indeed, participants were performing at below chance on both the pre-

training (M = 8.20 out of a total of 18, SD = 3.08) and post-training (M = 8.55 out of a total 

of 18, SD = 3.07) sessions. This task was timed and participants only had 10 minutes to 

complete as many problems as possible, conceivably restricting the opportunity for 

middle-aged adults to display improvements in fluid intelligence. Indeed, in a study by 

Schmiedek et al. (2010), transfer to fluid intelligence was not reliable in older adults, such 

that improvements were not found on tests of transfer that were paced, however, 
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positive effects were found for tests of fluid intelligence that were carried out under less 

time pressure. Therefore, it is possible that middle-aged adults would also show transfer 

to the RAPM if given more time to perform this task. 

 

4.4.5 Limitations 

 

There were no significant differences between the training (adaptive) and active 

control (non-adaptive) groups on the transfer assessments, however, this study was 

underpowered due to the limited sample size obtained (N = 20 per group). Indeed, post-

hoc power calculations demonstrated that achieved power for the RAPM, PAL, PAR, 3-

back, and 4-back ANCOVAs was very low (range from .053 to .201). Subtle changes in the 

efficiency of cognitive processes may generate relatively small degrees of transfer that 

cannot be reliably detected in the low- to moderately-powered studies that dominate 

training research (Gathercole et al., 2019). As such, future research in this area should 

focus on investigating the effects of training on large-scale samples. It is possible that 

with increased sample sizes we might have observed a significant training advantage for 

adaptive relative to non-adaptive participants. However, the high p-values (range from p 

= .258 to .874) coupled with small effect sizes (range from ηp
2 = .001 to .034) suggest that 

adaptive and non-adaptive training were not different in our study, and as discussed, our 

active control group received a significant amount of training making it difficult to discern 

differences between our groups. 

 

Our total sample size included 28 females and 12 males, and therefore, the gender 

imbalance has to some degree affected the generalisability of the data. However, 

independent samples t-tests indicated that there were no significant differences in 

performance between females and males on any of the pre-training transfer assessments, 

nor on the post-training transfer assessments (see Appendix VII for results of t-tests, pg. 

324). Thus, it is reasonable to assume that the findings from this study would generalise 

across other populations of middle-aged adults, although further data with larger sample 

sizes are required to confirm this. 
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A potential explanation for the absence of significant transfer on the RAPM, PAL, 

PAR, and 3-back, and a possible limitation of our study, is the length of the training 

programme. A total of 12 sessions and training duration of 10 hours (50min per session) 

was used in our study. This total duration was chosen as previous work has demonstrated 

dose-dependent transfer effects such that the longer the training, the more likely there is 

transfer (Jaeggi et al., 2008; von Bastian & Oberauer, 2014; Salmi et al., 2018; Emch et al., 

2019; Pappa et al., 2020). In addition, Cheng et al. (2012) have suggested that 

programmes exceeding 10 sessions produce more reliable and transferrable results, as 

demonstrated by the increased effect size between their 24-session study compared with 

the ACTIVE (Ball et al., 2002) 10-session study. However, the 12 sessions of training used 

in the current study is at the lower end of what may be required to produce transfer 

effects. Indeed, the 12 sessions equated to a total of 10 hours of training, and a recent 

systematic review and meta-analysis of working memory training studies concluded that 

programmes of more than 10 hours are more likely to result in transfer effects (Pappa et 

al., 2020). Furthermore, it should be noted that only 10 minutes per day was spent on 

attention training, 10 minutes on inhibition, 10 minutes on spatial rotation, and 20min on 

working memory. This equates to a total of just 2 hours of training on each cognitive 

domain, and 4 hours for working memory; far less than the more than 10 hours of 

training on one cognitive domain (i.e., working memory) that was shown to be more likely 

to produce transfer effects (Pappa et al., 2020). Interestingly, we found an association 

between the working memory training (CODING) and a working memory transfer task (4-

back), and a significant transfer effect to this task; as there was more time spent on the 

working memory domain than the others (i.e., 4 hours), this suggests that more hours of 

training on the other domains might have resulted in more transfer effects. Therefore, a 

higher number of sessions and total hours of training may be required to show effects 

that translate to a behavioural change for these tasks. 

 

It must be noted that transfer may only occur once a threshold for training 

performance level has been reached, in addition to a magnitude of improvement. For 

example, Dahlin et al. (2008) found that younger participants achieved a superior level of 

performance on the training tasks compared to older adults, despite both groups 

displaying improvement over the course of training. The authors suggested that the lack 
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of transfer observed for the older adults was due to this group failing to reach a certain 

level of task proficiency. While significant improvements were observed in our training 

exercises for both the adaptive and non-adaptive groups, perhaps the performance 

threshold required for significant transfer to untrained tasks was not reached during the 

programme, thus explaining why significant transfer was not observed for most of the 

post-training assessments in our study. Therefore, future studies should consider the 

inclusion of a learning or performance criterion that must be reached as part of the aim of 

the training exercises. However, while this may be important for the comparison of 

different age groups, this would not be possible when comparing adaptive training to an 

active control group, as the point is for the adaptive training to remain challenging and 

the active control not to receive substantial training. Certainly, this would have been 

useful in our analyses which combined adaptive and non-adaptive groups, as the non-

adaptive group was kept to low task difficulty and could therefore not reach performance 

levels that may have been required for transfer, however, this was not possible in our 

study as this was not part of our original design (i.e., training group vs. active control). 

 

Furthermore, participants were not required to reach a performance criterion in 

the PAL task, and this may be a reason that improvements were not observed for the PAR 

exercise. If participants did not learn the paired-associates well enough in the PAL, then 

performance on the subsequent PAR memory task would not be expected to show 

improvements. The studies by Pfeifer et al. (2014; 2016) employed a learning paradigm 

for the PAL task in which participants were trained to a performance criterion to 

guarantee sufficient exposure to the pair-associates and satisfy subject-specific learning 

requirements. This was done to account for an age-related encoding deficit found in older 

adults (see Naveh-Benjamin, 2000; and Shing et al., 2010 for reviews), and to assess 

associative retrieval after participants had reached the same performance level. In the 

present experiment, the ANCOVA examining post-training PAR scores included post-

training PAL performance as a covariate to mitigate this issue. Moreover, the PAR scores 

in our study were quite high in both the pre- and post-training sessions (M = 81% correct; 

M = 85% correct, respectively), indicating that the pair-associates were successfully 

encoded during the PAL task and that middle-aged adults likely do not have the same 

encoding deficit found in older adults. 
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With regards to the PAR and N-back tasks, participants in our study could 

potentially have responded to the target items using familiarity information rather than, 

or in addition to associative and working memory processes, leading to better scores 

(Oberauer, 2005; Schmiedek et al., 2009; Schmiedek et al., 2014; Emch et al., 2019). For 

the PAR task, we addressed this issue by using recombinations of same-set stimuli which 

constitutes a more powerful test of associative memory, requiring participants to retrieve 

the intact combination of pair-associates out of equally familiar stimuli rather than 

rejecting lures on the basis of their novelty (Mayes et al., 2007; Pfeifer et al., 2014; 2016). 

In the N-back task, lure items are non-target items that match an item earlier in the 

sequence but not at the current critical target position (Oberauer, 2005; Schmiedek et al., 

2009; Schmiedek et al., 2014; Emch et al., 2019). Therefore, we used lure stimuli in the N-

back to make the task more difficult and not possible to solve based solely on familiarity, 

although this does not completely eliminate the contribution of familiarity items to 

working memory performance in this task. 

 

We must consider the limitations of using multiple assessment tasks to investigate 

transfer. The use of multiple assessments in a single session makes the study more 

susceptible to confounds such as participant boredom and exhaustion (Morrison & Chein, 

2011). This means that the quality of performance on the transfer tasks may be 

diminished over the course of each session, whereby performance on the N-back is less 

reliable due to participants completing this assessment last. Indeed, this may have been 

the case for the 3-back task in our study, as indicated by a decrease in performance 

scores from pre- to post-training, whereas performance improved on the RAPM, PAL, and 

PAR. However, this seems unlikely given that there was significantly improved 

performance on the 4-back task. 

 

Along similar lines, there are a number of other confounding variables that may 

have influenced transfer to the post-training assessments, or lack thereof. An individual’s 

level of effort and investment in the assessment tasks, as well as expectancy concerning 

the benefits from training, have previously been shown to influence transfer (e.g., Carretti 

et al., 2011; Boot et al., 2013; Jaeggi et al., 2014; Linares et al., 2019). For example, when 

investigating placebo effects within cognitive training, Boot et al. (2013) observed that 
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participants expecting to perform better on a given assessment (due to beliefs that the 

training programme had enhanced their performance) display increased effort and 

motivation to do well in that assessment. Moreover, Jaeggi et al. (2014) found that 

transfer was enhanced for participants that believed intelligence was malleable, and for 

those that reported stable engagement and motivation levels throughout the 

programme. Thus, with respect to the 4-back task in our study, post-training increases in 

performance may have occurred as a result of motivation, effort, and beliefs, rather than 

the training itself. The reverse of this may also be possible. Specifically, participants in our 

study may have expected the training programme to have no effect, or believed that their 

cognitive abilities had not improved, therefore they may have been less motivated and 

effortful when completing the post-training transfer tasks and their performance would 

have been negatively affected, as demonstrated by the lack of significant transfer on the 

RAPM, PAL, PAR, and 3-back tasks. However, the fact that there was significant transfer to 

the 4-back task suggests that participants were motivated to do well on the tests. 

Nonetheless, in order for these variables to be ruled out as confounds in future studies, 

experiments should include a self-report measure of expectancy, effort, and motivation, 

as well as a measure of implicit beliefs about the malleability of intelligence, to show 

explicitly that these factors do not correlate with transfer assessments. This may also be 

useful for studies employing passive control groups, where transfer effects could be 

ascribed to such factors as increased motivation, effort, and expectancy rather than to 

the training itself. 

 

Indeed, by combining the adaptive and non-adaptive groups for paired samples t-

tests comparing pre- and post-training sessions, we essentially had a within-subjects 

study design without a control group. Therefore, as suggested above, the significant 

transfer effect found for the 4-back task was susceptible to non-specific factors such as 

test-retest effects, expectancy effects, and increased motivation. That is, performance 

may have improved not because of the training, but due to these other factors. However, 

this finding is supported by the correlation showing that better performance on the post-

training 4-back task was related to improvements in working memory. This suggests that 

the working memory training specifically in this case may have led to the significant 

improvement in the 4-back. Furthermore, the same non-specific factors would have been 
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present for the RAPM, PAL, PAR, and 3-back, yet no significant improvements were found 

in these tasks. This strengthens the interpretation of the 4-back transfer effect as being 

training-related, rather than due to potential effects generated by general improvements 

in motivation or due to expectancy. 

 

In addition, the study was single-blind in that participants did not know whether 

they were in the training group or in the active control group. However, the study was not 

double-blind and the experimenter knew which group participants belonged to. Thus, 

there was the potential for the researcher to treat the study groups differently and 

introduce the risk of various types of biases, such as observer bias or confirmation bias, or 

increased attention paid to one of the groups, which may have influenced performance 

(Landsberger, 1958; Collie et al., 2003; McCarney et al., 2007; Green & Bavelier, 2012). To 

mitigate this issue, participants in both groups were given the same written instructions, 

and in fact, most of the task instructions were delivered on the computer, thus, contact 

with the researcher was kept to a minimum. Indeed, we did not see any significant 

differences between the groups on any of the post-training transfer tasks, indicating that 

any possible differences in treatment by the experimenter did not translate to a benefit 

for one group over the other. Certainly, an optimal study design for future research would 

be double-blind and include an active control wherever possible. However, employing an 

active control group bears the risk of missing or underestimating the effects of training 

(von Bastian & Oberauer, 2014; Pappa et al., 2020). For this reason, there should be a 

dynamic balance between employing an active control group and a control group that 

does not receive any contact (von Bastian & Oberauer, 2014; Pappa et al., 2020). 

 

4.4.6 Conclusions 

 

Our study provides novel evidence that a course of cognitive training in healthy 

middle-aged adults can result in considerable improvements on the trained tasks, and 

transfer to untrained tasks. This was demonstrated by the significant gains in training task 

performance coupled with very large effect sizes, and by the significant transfer effect in 

the 4-back task. Therefore, we conclude that there is substantial cognitive plasticity and 
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behavioural improvement following training not only at younger age, but also in middle-

age. 

 

Furthermore, we found that the more process overlap between tasks, the more 

likelihood of transfer. Therefore, tasks that shared more processes with the training 

programme, such as the N-back task, showed transfer effects, while tasks that shared 

fewer processes with the training programme, such as PAR, PAL, and RAPM did not show 

transfer effects. Thus, although the variability of our training protocol may make the 

results more difficult to interpret, such that it is unclear which specific aspects of the 

training were effective, this was a key feature of our programme in order to train more 

processes and induce transfer, as well as to keep it interesting and motivating for 

participants. To be able to better identify factors that  influence the effectiveness of the 

programme, future studies could also include groups that receive more specific training 

(e.g., only working memory tasks) (Schmiedek et al., 2010). However, practically speaking, 

in order for training to have an impact on everyday functioning and to prevent cognitive 

decline, we conclude that a varied programme targeting multiple processes would be 

more beneficial. 

 

Having established that cognitive training in middle-aged adults improved 

performance substantially on the trained tasks and resulted in transfer to an untrained 

task, we next analysed diffusion and fMRI data in order to determine the neural 

mechanisms of these behavioural findings. An explanation for transfer is that the effects 

observed following training reflect plasticity in the neural system underpinning the 

particular function that has been trained; training might therefore lead to durable 

neuronal changes and improved neural efficiency which should extend to other activities 

that engage the same processes (Westerberg & Klingberg, 2007; Klingberg, 2010; 

Takeuchi et al., 2010; Astle et al., 2015; Barnes et al., 2016; Caeyenberghs et al., 2016; 

Salmi et al., 2018; Gathercole et al., 2019). With this in mind, in the next chapter, we 

examined the structural and functional neural correlates of cognitive training in middle-

aged adults. 
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Chapter 5: Working memory, attention, and 

executive function training in middle-aged adults: 

MRI findings 
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5.1 Introduction 
 
5.1.1 Cognitive training and neural plasticity 
 

Given that decline in cognitive function is paralleled by neurochemical, structural, 

and functional changes in the aging brain, the study of cognitive training as an 

intervention to induce neural plasticity and slow down decline, has gained considerable 

interest from the research community (Bopp & Verhaeghen, 2005; Yang et al., 2006; 

Kundu et al., 2013; Blacker et al., 2017; Pergher et al., 2018). Although the degree of 

plasticity varies across studies, the potential of the brain to reorganise itself in response 

to environmental demands is observed across the lifespan (Craik & Salthouse, 2002; 

Bialystok & Craik, 2006; Yang et al., 2006; Heinzel et al., 2014; Lawlor‐Savage & Goghari, 

2016; Loosli et al., 2016; Pergher et al., 2018). Cognitive training is thought to improve 

different functions such as attention, perception, and memory in young and older adults 

by tapping into this plasticity to increase the efficiency of the neural system (Mahncke et 

al., 2006; Yang et al., 2006; Dahlin et al., 2008; Schmiedek et al., 2010; Lawlor‐Savage & 

Goghari, 2016; Loosli et al., 2016; Salminen et al., 2016; Heinzel et al., 2017; Pergher et 

al., 2018). Therefore, following training on a cognitive task, the neural system’s response 

to the training, such as improved cognitive performance, as well as functional and 

structural changes in the brain, are considered indications of plasticity (Lovden et al., 

2010; Pappa et al., 2020). For example, brain plasticity has been demonstrated in 

response to working memory training with changes in functional activity in frontal and 

parietal cortex (e.g., Olesen et al., 2004; Klingberg, 2010; Jolles et al., 2013; Kundu et al., 

2013; Caeyenberghs et al., 2016). Structural changes have also been found in response to 

cognitive training such as modified cortical thickness, grey matter volume changes, 

changes in white matter tracts, and changes in structural connectivity (e.g., Engvig et al., 

2010; Takeuchi et al., 2010; Takeuchi et al., 2011; Caeyenberghs et al., 2016). It should be 

noted that the above functional changes were demonstrated on the trained tasks. 

 
What are the neural mechanisms that might underlie transfer from cognitive 

training? The few studies that have assessed the neural effects of transfer by scanning 

both trained as well as untrained tasks at pre- and post-training sessions, have revealed 

that training-induced plasticity generalises across tasks that engage overlapping brain 
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areas (Dahlin et al., 2008; Schneiders et al., 2012; Schweizer et al., 2013; Heinzel et al., 

2016; Flegal et al., 2019). The underlying assumption here is that if two different tasks 

show robust recruitment of a particular brain region, it is likely that they both engage the 

cognitive process(es) subserved by that region (Lustig et al., 2009). Therefore, improving 

the function of that brain region (and presumably that process) by inducing neural 

plasticity through training on Task A, should have beneficial effects for its use in Task B 

(Lustig et al., 2009). If neural overlap indicates functional (process) overlap, there is the 

potential for transfer of training between different cognitive domains (Persson & Reuter-

Lorenz, 2008; Lustig et al., 2009). The principle that neural overlap predicts functional 

overlap is a critical one that may be key to effective transfer and the development of 

successful interventions (Persson & Reuter Lorenz, 2008; Lustig et al., 2009). 

 
5.1.2 Cognitive training and functional imaging  
 

In studies investigating plasticity with neuroimaging outcome measures for the 

trained tasks, there is no consensus regarding the pattern of training-induced functional 

changes (Dahlin et al., 2009; Brehmer et al., 2011; Salmi et al., 2018; Emch et al., 2019; 

Pappa et al., 2020). For example, activation increases and decreases have been reported, 

as well as functional reorganisation, and more complex dynamics of brain activity changes 

are also found over the course of training (Klingberg, 2010; Morrison & Chein, 2011; Hsu 

et al., 2014; Flegal et al., 2019). Activation increases in training studies are explained as 

added recruitment of brain regions or as response strengthening within a cortical region, 

and are thought to reflect increases in capacity (Kelly & Garavan, 2005; Lustig et al., 2009; 

Lovden et al., 2010; Flegal et al., 2019; Pappa et al., 2020). Activation decreases, on the 

other hand, are thought to reflect neural efficiency, i.e., fewer resources are needed to 

perform the same task after training than before training (Kelly & Garavan, 2005; Lustig et 

al., 2009; Lovden et al., 2010; Flegal et al., 2019; Pappa et al., 2020). This interpretation is 

consistent with the concept of plasticity in which the neural system responds to 

environmental demands (e.g., a continuously challenging cognitive task) that exceed 

functional supply (i.e., neural resources), with plastic changes leading to increases in 

capacity or increased neural efficiency (Lovden et al., 2010; Pappa et al., 2020). 
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A mix of activity increases and decreases over time have been reported in studies 

that employed three scanning sessions, i.e., pre-training, early training, and post-training 

(Hempel et al., 2004; Kuhn et al., 2013; Pappa et al., 2020). Studies such as these provide 

valuable insight into the pattern of training-related activation increases and decreases 

elapsing over time (Pappa et al., 2020). For example, Hempel et al. (2004) and Kuhn et al. 

(2013) reported initial increases in activity between sessions 1 and 2, i.e., pre-training and 

early training fMRI sessions, respectively, followed by decreases between sessions 2 and 

3, i.e., from early training to post-training (Pappa et al., 2020). Specifically, Kuhn et al. 

(2013) reported striatum increases at first followed by striatal and frontal decreases after 

several dozen intervening sessions of training, while Hempel et al. (2004) reported an 

initial increase at the right intraparietal sulcus and superior parietal lobe two weeks into a 

four-week training programme, and a subsequent decrease in these areas post-training 

(Pappa et al., 2020). Thus, some of the variability in the direction of activation changes in 

the literature could be due to a dynamic process being captured at a single post-training 

timepoint for comparison to a pre-training baseline, defining an interval that ranges 

widely across studies (Pappa et al., 2020).  

 
As discussed in Chapter 3 (Perceptual-cognitive-motor training in middle-aged 

adults, pg. 78), Doyon and Ungerleider (2002) proposed a framework for interpreting the 

dynamic pattern of brain activation underlying motor skill training – including a fast early 

learning stage, and a slow later stage. Different changes in activity are observed in the 

cortico-striatal and cortico-cerebellar systems as well as in prefrontal and parietal regions 

at different stages in the motor learning process. If this motor learning model is applied to 

cognitive training, then fronto-parietal increases should be observed at the beginning, 

followed by potential decreases or a mixture of increases and decreases in these 

networks (Lustig et al., 2009; Pappa et al., 2020). However, cognitive intervention studies 

rarely have the multiple assessments of brain activity needed to fully test whether the 

stages suggested by Doyon and Ungerleider apply to non-motor functions (Lustig et al., 

2009), although the cognitive training studies by Hempel et al. (2004) and Kuhn et al. 

(2013) do provide some support for the hypothesis of early stage activity increases and 

late stage decreases (Pappa et al., 2020). 

 



181 
 

 The above activation patterns are discussed with respect to training tasks. 

Training-related activity changes in transfer tasks have not been examined as extensively 

as for trained tasks (Pappa et al., 2020). Overall, studies that did investigate functional 

outcomes on transfer tasks reported activation increases (Dahlin et al., 2008; Backman et 

al., 2011; Schweizer et al., 2013; Salminen et al., 2016; Clark et al., 2017). For example, 

Dahlin et al. (2008) found post-training increases in striatum and frontal, parietal and 

temporal cortex when assessing a near transfer task. Salminen et al. (2016) found 

increased activity in the striatum, cuneus and calcarine gyrus for a near transfer task. 

Clark and colleagues (2017) found increased activity post-training in frontal areas, as well 

as in the precentral and postcentral gyrus for a far transfer task. This is consistent with 

working memory training meta-analyses by Salmi et al. (2018) and Pappa et al. (2020) 

reporting mostly frontal and striatum increases in transfer tasks.  

 
A few studies have reported transfer task activity decreases after training (Heinzel 

et al., 2016; Miro-Padilla et al., 2020). For example, Heinzel et al. (2016) reported activity 

decreases in middle and superior frontal areas for a near transfer task. Miro-Padilla et al. 

(2020) reported activity decreases in dorsolateral prefrontal cortex (dPFC) for a far 

transfer auditory serial addition task after working memory training. Even though the 

study by Miro-Padilla et al. (2020) exhibited decreases in a far transfer task following N-

back training, there were no significant behavioural transfer effects, and thus it is difficult 

to assign a meaningful interpretation to these neural findings (Pappa et al., 2020).  

 
Other studies observed no significant changes in activity post-training for far 

transfer tasks (Dahlin et al., 2008; Schneiders et al., 2011; 2012; Opitz et al., 2014; Flegal 

et al., 2019). For example, the study by Flegal et al. (2019) examined subcortical ROIs that 

revealed no differences in activity changes between the adaptive training group and a 

non-adaptive, active control group. Opitz et al. (2014) found no changes for the training 

or active control group. These findings are not surprising given the lack of behavioural far 

transfer effects observed in the cognitive training literature. 

 
Returning to the fast-early and slow-late stage model first applied to motor skill 

training (Doyon & Ungerleider, 2002), Pappa and colleagues (2020) suggest this can be 

extended to account for the commonly observed activation increases for transfer tasks 
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following cognitive training. Similar to the dynamic activation increases and decreases 

over time for training tasks scanned early and then again later in training (Hempel et al., 

2004; Kuhn et al., 2013), activation profiles for transfer tasks may also follow the same 

pattern, but at a different rate reflecting their less frequent exposure to participants 

(Pappa et al., 2020). In other words, a post-training functional activity decrease would 

eventually occur if participants were repeatedly exposed to the transfer task, 

consequently approaching the slow-late learning stage. Thus, there is a hypothesised 

time-lag in the activation curve as a function of time for transfer tasks, compared to 

training tasks (Pappa et al., 2020). 

 
In sum, repeated exposure to, and practice with the training task, is associated 

with functional changes observed as early-stage activity increases, followed by late-stage 

activity decreases that may represent neural efficiency resulting from training-induced 

plasticity (Pappa et al., 2020). Although participants have had repeated exposure to the 

training task, at post-training the transfer task is still relatively novel and challenging, 

thus, performance is still effortful—similar to a training task at the early stage of 

learning—and the activation change from baseline is observed as an increase 

representing the added recruitment of brain regions (Pappa et al., 2020). Therefore, 

neural changes associated with training follow a fast-early activity increase and a late-

slow decrease in task-related regions, while those associated with transfer of training 

appear to follow the same pattern albeit with a lag (Pappa et al., 2020). 

 
5.1.3 Cognitive training and structural imaging  
 

Few studies to date have focused on structural changes after cognitive training 

(Pappa et al., 2020). Of those that have, changes in brain structure as a result of training 

have involved grey matter volume or cortical thickness in task-relevant regions, as well as 

white matter volume and architecture (Takeuchi et al., 2011; Colom et al., 2016; Melby-

Lervag et al., 2016; Metzler-Baddeley et al., 2016). For example, one study reported 

reduced grey matter in frontal and parietal cortices following working memory training 

(Takeuchi et al., 2011), while another found both increases and decreases in cortical 

thickness in frontal areas (Metzler-Baddeley et al., 2016), and the study by Colom et al. 

(2016) found an increase in grey matter volume in the right temporal lobe, left posterior 
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cingulate cortex, and right cerebellum. Other studies found no significant training-related 

changes in grey matter volume, surface, or thickness (Heinzel et al., 2014; Lawlor-Savage 

et al., 2019; Biel et al., 2020; Pappa et al., 2020). However, microstructural techniques 

such as diffusion-weighted MRI are more likely to detect small-scale changes as a result of 

cognitive training than alternative structural MRI techniques (Kodiweera et al., 2016). 

Indeed, microstructural imaging biomarkers, such as those derived from diffusion tensor 

imaging (DTI), are potentially more sensitive and altered earlier than the traditional 

technique of volumetric analyses (Kodiweera et al., 2016). 

 
Evidence from DTI studies indicates that cognitive training can modify grey and 

white matter microstructure (Takeuchi et al., 2010; Zatorre et al., 2012; Lovden et al., 

2013; Wolf et al., 2014). For example, increased fractional anisotropy (FA) in the 

intraparietal sulcus and anterior corpus callosum has been demonstrated in response to 

working memory training (Takeuchi et al., 2010). Structural connectivity increases in the 

fronto-parietal network have also been reported following training (Takeuchi et al., 2010; 

Caeyenberghs et al., 2016; Roman et al., 2017; Pappa et al., 2020). In a study by Nazeri et 

al. (2017), better performance in a working memory task (spatial span) was significantly 

associated with higher white matter FA in the corpus callosum. Higher FA is thought to 

reflect greater white matter integrity, which may underlie the strengthened neural 

connections observed in brain networks following cognitive training (Lovden et al., 2010; 

Engvig et al., 2012; Metzler-Baddeley et al., 2017). Although frequently concluded that 

greater myelination in response to increased neuronal firing underpins training-induced 

FA changes, FA can be modulated by a variety of biological factors, including myelination, 

packing density, and diameter of the axonal fibres (Zatorre et al., 2012; Jones et al., 2013; 

Caeyenberghs et al., 2016). Indeed, a change in DTI indices such as FA and mean 

diffusivity (MD) cannot be attributed to specific changes in brain tissue (Pierpaoli et al., 

1996; Zhang et al., 2012; Jones et al., 2013; Jelescu et al., 2016; Kodiweera et al., 2016). 

Thus, it is difficult to say which of these biological mechanisms may underlie training-

induced structural plasticity in the brain. 

 
Neurite orientation dispersion and density imaging (NODDI) provides measures of 

neurite density (NDI) and dispersion (ODI), thereby disentangling two key contributing 
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factors to FA and enabling the analysis of each factor individually (Zhang et al., 2012). 

These more specific indices can be used to assess axonal and dendritic organisation 

(Jespersen et al., 2007; Zhang et al., 2012; Nazeri et al., 2015) following cognitive training.  

 
Studies to date have not used NODDI to assess training-induced brain plasticity. 

However, NODDI has previously been used to show age-associated changes to white 

matter (Kodiweera et al., 2016) and cortical grey matter (Nazeri et al., 2015). For 

example, Nazeri et al. (2015) investigated changes in microstructure across the adult 

lifespan (age range: 21– 84) and found a significant age-related deficit in grey matter ODI 

(most prominently in frontoparietal regions), whereas increased ODI was observed in 

hippocampus and cerebellum with advancing age. Notably, they demonstrated a 

significant association between frontal pole ODI and working memory/processing speed, 

independent of age. In addition, hippocampal ODI was shown to be significantly related 

to working memory/processing speed, independent of age.  

 
A further study by Nazeri and colleagues (2017) demonstrated that better 

performance on a spatial working memory task (spatial span) was significantly associated 

with higher grey matter NDI in dPFC; orbitofrontal, medial prefrontal, superior temporal, 

and cingulate cortices; and temporal pole, insula, hippocampus, and striatum. In a study 

of Alzheimer’s disease, cortical NDI and ODI indices were found to be reduced compared 

to healthy controls, and importantly this was correlated with performance on the mini 

mental state examination (Parker et al., 2018). Therefore, NODDI may provide more 

specific information about the underlying brain changes that can occur following 

cognitive training, and these microstructural alterations may be shown to be related to 

improved cognitive function.  

 
Furthermore, neural mechanisms such as these may play important roles as 

mediators of transfer effects (Schmiedek et al., 2010). For example, experience-

dependent plasticity resulting from training may occur in dendrites and axons, and this 

may have pronounced effects on the synchronous operations of brain regions that higher 

order cognition is highly dependent on (Fields, 2008; Scholz et al., 2009; Schmiedek et al., 

2010). Cognitive training may therefore lead to durable changes in neural infrastructure 

supporting transfer of training, including to everyday functioning (Strenziok et al., 2014).  
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5.1.4 Experiment aims and design 
 

The aim of this study was to investigate how the brain responds to cognitive 

training in healthy middle-aged adults (40-50 years old).  We sought to characterise 

functional and structural plasticity as a result of training with task-based fMRI, and 

diffusion MRI including DTI and NODDI. 

 
Training-induced functional changes were assessed with near transfer tasks. Near 

transfer following cognitive training has been widely reported for both young and older 

adults (e.g., Klingberg et al., 2005; Willis et al., 2006; Jaeggi et al., 2008; Mozolic et al., 

2009; Schmiedek et al., 2010; Karbach & Verhaeghen, 2014; Emch et al., 2019). On the 

other hand, the consensus is that there is very little evidence of far transfer (e.g., 

Shipstead et al., 2012; Sonuga-Barke et al., 2013; Redick et al., 2015; Melby-Lervag et al., 

2016; Simons et al., 2016; Soveri et al., 2017; Gathercole et al., 2019; Pappa et al., 2020). 

Indeed, far transfer to untrained tasks that share few cognitive processes with the 

training tasks is much less likely than near transfer, whereby training and transfer tasks 

both place demands on the same underlying processes and brain regions (Dahlin et al., 

2009; Shipstead et al., 2012; von Bastian et al., 2013; Strenziok et al., 2014; Soveri et al., 

2017; Gathercole et al., 2019; Pappa et al., 2020). Therefore, we did not expect far 

transfer as a result of training, and as such, we assessed neural outcomes solely on the 

near transfer tasks (N-back, PAR). 

 
 The N-back task was selected to test for training-related improvements in working 

memory. Age-related decline in working memory is well documented (e.g., Baddeley, 

1986; Just & Carpenter, 1992; Verhaeghen & Salthouse, 1997; Park & Reuter-Lorenz, 

2009; Au et al., 2015; Soveri et al., 2017; Emch et al., 2019; Pliatsikas et al., 2019). This 

decline is paralleled by neural changes in the frontoparietal regions of the aging brain 

(Bopp & Verhaeghen, 2005; Rajah & D’Esposito, 2005; Pergher et al., 2018). Therefore, a 

goal of our training programme was to induce plasticity in brain regions that would 

improve working memory and result in transfer to the N-back task. This task was 

specifically developed for measuring working memory (Kirchner, 1958; Mackworth, 

1959), and has been shown to consistently activate lateral and medial premotor cortex, 

dorsal cingulate, dorsolateral and ventrolateral PFC, frontal pole, and the lateral and 
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medial posterior parietal cortex (Gevins et al., 1990; Owen et al., 2005; Pergher et al., 

2018). These locations are largely consistent with regions known to be involved in 

working memory (i.e., fronto-parieto-cerebellar circuitry and subcortical regions such as 

parts of the basal ganglia) (Wager & Smith, 2003; Owen et al., 2005; Rottschy et al., 2012; 

Nee et al., 2013; Salmi et al., 2018; Emch et al., 2019). In particular, key regions forming 

the neural basis of working memory comprise the ventrolateral PFC (vPFC) including the 

inferior frontal gyrus (IFG) pars triangularis, and IFG pars opercularis; dorsolateral PFC 

(dPFC); precentral gyrus; posterior parietal cortex including the superior and inferior 

parietal lobules; inferior temporal cortex including the inferior temporal gyrus, fusiform 

gyrus, and parahippocampus; subcortical regions such as the basal ganglia involving the 

striatum (caudate and putamen); and cerebellum (Curtis & D'Esposito, 2003; Wager & 

Smith, 2003; Ranganath et al., 2004; Ranganath, 2006; Nee et al., 2013; Salmi et al., 2018; 

Emch et al., 2019; Pappa et al., 2020). Thus, the working memory training in our 

programme (CODING and DATEUP tasks) was expected to engage these areas, thereby 

inducing functional plasticity that would translate to an improvement on an untrained 

working memory task (N-back).  

 
The PAR task was selected to test for training-related improvements in associative 

memory. Older adults are particularly impaired in this cognitive domain with known age-

related decline in visual association networks (Iidaka et al., 2001; Sperling et al., 2003; 

Cowan et al., 2006; Cohn et al., 2008; Shing et al., 2008; Naveh-Benjamin et al., 2009; 

Edmonds et al., 2012). Therefore, a goal of the present experiment was to engender 

improvements in this particular function via training-induced plasticity in associative 

memory regions. In addition to a working memory component, the PAR task involves 

retrieval and recognition memory processes. The working memory component is thought 

to engage the regions discussed above (i.e., fronto-parieto-cerebellar circuitry and 

subcortical regions such as the striatum) (Wager & Smith, 2003; Owen et al., 2005; 

Rottschy et al., 2012; Nee et al., 2013; Salmi et al., 2018; Emch et al., 2019). Visual 

associative retrieval involves the dPFC, vPFC, frontal pole, hippocampus, entorhinal and 

perirhinal cortices, thalamus, caudate, cerebellum, inferior parietal regions, and visual 

cortex (Ranganath et al., 2000; Naya et al., 2001; Cabeza et al., 2002; Ranganath et al., 

2004; Byun & Lee, 2010; Jo & Lee, 2010; Pfeifer et al., 2016). Associative recognition 
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memory during the PAR task involves hippocampus, middle frontal gyrus, vPFC, anterior 

cingulate cortex, putamen, postcentral gyrus, and superior, middle, and inferior temporal 

cortex (Ranganath et al., 2000; Cabeza et al., 2002; Ranganath et al., 2004; Pfeifer et al., 

2016). Therefore, there is substantial overlap between regions involved in the working 

memory, retrieval, and recognition components of the PAR task (i.e., dPFC, vPFC, frontal 

pole, caudate, putamen, cerebellum, inferior parietal regions, and inferior temporal 

cortex). As such, our training programme should induce functional plasticity in working 

memory regions that may contribute to improved performance on an untrained 

associative memory task (PAR).  

 
To further investigate the neural mechanisms involved in transfer of training gains, 

we used the NODDI technique in addition to traditional DTI. Thus, we examined the 

underlying microstructural alterations that may occur following cognitive training, 

thought to indicate experience-dependent plasticity that may support transfer of training 

(Schmiedek et al., 2010; Strenziok et al., 2014). 

 
5.1.5 Experiment hypotheses 
 
  We tested two hypotheses for this experiment. First, if cognitive training induces 

functional plasticity in middle-aged adults, then we should see post-training changes in 

brain activity during the transfer tasks. Adaptive cognitive training is thought to promote 

the lasting neural changes required for transfer through sustained cognitive challenges 

(e.g., Holmes et al., 2009; Smith et al., 2009; Lovden et al., 2010; Brehmer et al., 2012; 

Rudebeck et al., 2012; Anguera et al., 2013; Heinzel et al., 2016; Flegal et al., 2019). 

Furthermore, studies that examined training-related brain changes for transfer tasks 

reported activation increases (Dahlin et al., 2008; Backman et al., 2011; Schweizer et al., 

2013; Salminen et al., 2016; Clark et al., 2017; Pappa et al., 2020). At post-training, the 

transfer task is still relatively novel and challenging, thus, performance is still effortful and 

at the early stage of learning – as such, the activation change from pre-training is 

observed as an increase (Pappa et al., 2020). We therefore predicted that adaptive 

training in middle-aged adults would lead to increased activity in working memory regions 

common to both the training and transfer tasks. Specifically, we expected training-related 

increases in activity in dPFC, vPFC, frontal pole, superior parietal cortex, inferior parietal 
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cortex, striatum, inferior temporal cortex, and cerebellum during performance of the N-

back and PAR tasks. 

 
Second, if cognitive training induces structural plasticity in middle-aged adults, 

then we should see changes in microstructural indices following training. Specifically, we 

expected that DTI and NODDI indices indicating microstructural changes in dendrites and 

axons would be demonstrated for the adaptive training group. DTI studies have shown 

that cognitive training can modify grey and white matter microstructure (Takeuchi et al., 

2010; Zatorre et al., 2012; Lovden et al., 2013; Wolf et al., 2014). Decreased MD and 

increased FA are thought to reflect greater structural integrity, which may underlie the 

strengthened neural connections observed in brain networks following cognitive training 

(Lovden et al., 2010; Engvig et al., 2012; Metzler-Baddeley et al., 2017). We therefore 

predicted that the adaptive group would show changes in grey and white matter 

microstructure as a result of training, specifically, decreased MD and increased FA. 

 
Although NODDI has not been used to assess training-induced structural plasticity, 

it has been used to show significant associations between NDI and cognitive 

performance; and between ODI and cognitive performance (Nazeri et al., 2015, 2017; 

Parker et al., 2018). Higher levels of NDI indicate a greater density of axons in white 

matter and dendrites in grey matter (Zhang et al., 2012). Therefore, we expected 

increased NDI in both grey and white matter as a result of training. Lower ODI in white 

matter tracts indicates less axonal dispersion and high axonal coherence (Zhang et al., 

2012). Whereas higher ODI in grey matter indicates areas that are rich in multi-directional 

dendritic structure (Dowell et al., 2019). As such, we predicted decreased ODI in white 

matter and increased ODI in grey matter as a result of training. Such results would 

provide evidence for training-induced microstructural plasticity in addition to the 

predicted functional changes – both neural mechanisms may support improved cognitive 

function and successful transfer. 
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5.2 Summary of methods 
 

5.2.1 Participants  
 

The same participants as in Chapter 4 were tested for the MRI part of the 

experiment. Details can be found in section 2.2.1. In sum, a total of 40 middle-aged adults 

completed the study. Of these, 20 were part of the adaptive (experimental) training 

group, and 20 were part of the non-adaptive (control) training group. One person (non-

adaptive group) was excluded from the PAR fMRI analyses due to major artefacts found 

on the scan, leaving 39 data sets for analysis (adaptive: n = 20; non-adaptive: n = 19). One 

person (adaptive group) was excluded from the N-back fMRI analyses due to data 

corruption during transfer from the scanner, leaving 39 data sets for analysis (adaptive: n 

= 19; non-adaptive: n = 20). A single non-adaptive participant’s diffusion data were 

corrupted during transfer from the scanner and therefore excluded, leaving 39 data sets 

for analysis (adaptive: n = 20; non-adaptive: n = 19). 

 
5.2.2 Procedure 
 

The procedure was the same as in Chapter 4. Details are described in section 2.2.2 

and will be summarised here. The study involved two scanning sessions for each 

participant: a pre-training session and a post-training session. In the pre-training MRI 

session, participants first learned a set of 8 paired associates (PAL) outside of the scanner 

and were then tested on them during a memory task in the scanner (PAR). Following 

which they completed the N-back task, also in the scanner. Participants then completed 

12 sessions of either the adaptive or non-adaptive training over 4-6 weeks (2-3 sessions 

per week). For the post-training scan, participants again completed the PAR and N-back 

tasks to measure possible changes in brain function and cognitive ability.  

 
Each session included PAR task fMRI (13min), followed by a structural T1 scan 

(6min), then N-back task fMRI (11min), then quantitative magnetisation transfer (qMT) 

and associated DESPOT1 and b1 maps for 20min (data not reported in this thesis), and 

finally a NODDI/DTI scan (9min). Total scanning time per session was about 1 hour. 
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5.2.3 fMRI analyses 

 

PAR task 
 

We examined activation differences following training in regions of interest (ROI). 

The subject-specific contrast images were entered into separate 2 group (adaptive, non-

adaptive) × 2 session (pre-training, post-training) x 3 period (cue, delay, target) mixed 

ANOVAs for each ROI. All main and interaction effects derived from the ANOVAs are 

reported using a statistical significance of p < .05 after False Discovery Rate (FDR) 

correction for multiple comparisons at the cluster level, clusters formed using p < .001 

(Genovese et al., 2002; Chumbley & Friston, 2009).  

 
ROI analyses were carried out based on areas that were thought to overlap 

between our cognitive training programme and the PAR task. In particular, we expected 

brain regions involved in working memory to be recruited during our training programme 

and during the PAR task. We specified 8 anatomical ROIs bilaterally that included 

dorsolateral PFC, ventrolateral PFC, frontal pole, superior parietal cortex, inferior parietal 

cortex, inferior temporal cortex (including inferior temporal gyrus, fusiform gyrus, and 

parahippocampal gyrus), striatum (including caudate and putamen), and cerebellum. 

 
N-back task  
 

We investigated activation differences following training in regions of interest 

(ROI). The subject-specific contrasts were entered into separate 2 group (adaptive, non-

adaptive) × 2 session (pre-training, post-training) x 4 condition (0-, 1-, 3-, and 4-back) 

mixed ANOVAs for each ROI. All second level analyses were thresholded at cluster-wise 

FDR-correction p < .05 (cluster-forming threshold p < .001).  

 
The N-back task was specifically developed as a test of working memory (Kirchner, 

1958; Mackworth, 1959). Therefore, ROI analyses were carried out using the same 

working memory regions as used for the PAR task. We specified 8 anatomical ROIs 

bilaterally: dorsolateral PFC, ventrolateral PFC, frontal pole, superior parietal cortex, 

inferior parietal cortex, inferior temporal cortex (including inferior temporal gyrus, 
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fusiform gyrus, and parahippocampal gyrus), striatum (including caudate and putamen), 

and cerebellum.  

 
5.2.4 Diffusion MRI analyses 
 

Whole-brain parameter maps from session one were subtracted from whole-brain 

parameter maps from session two in order to obtain ODI, NDI, FA, and MD change from 

baseline for each participant. These difference maps (session two – session one) were 

entered into whole-brain voxel-wise one- and two-sample t-tests to identify effects of 

overall training, as well as adaptive versus non-adaptive training, on regional differences 

in NDI, ODI, FA, and MD parameters. A statistical significance threshold of p < .05 FWE-

corrected at the cluster level was used, after clusters were formed with an uncorrected p 

< .001. 

 

5.3 Results 
 

5.3.1 PAR task fMRI  

 

ROI analyses 

 

Separate 2 × 2 x 3 mixed ANOVAs were computed for each ROI with group 

(adaptive, non-adaptive) as the between-subject factor, and session (pre-training, post-

training) and period (cue, delay, target) as within-subject factors. We found a significant 

interaction between session and task period with the inferior temporal cortex mask, 

which included a cluster in right fusiform gyrus and right parahippocampal gyrus (Table 

5.1). We examined the interaction further using the contrasts pre-training_cue > post-

training_cue, post-training_cue > pre-training_cue, pre-training_delay > post-

training_delay, post-training_delay > pre-training_delay, pre-training_target > post-

training_target, and post-training_target > pre-training_target. We found a significant 

effect for post-training_target > pre-training_target in right fusiform gyrus and right 

parahippocampal gyrus (Table 5.1). We did not observe a significant interaction between 

session and task period in any other ROIs. In addition, we did not find a main effect of 

group, nor a main effect of session, and no main effect of task period in any of the ROIs. 
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Interactions between group and session, group and period, and group x session x period, 

were also not significant in any of the ROIs. 

 

 

Table 5.1. ROI analysis for the PAR task: brain regions with a significant interaction between 

session and task period shown for the inferior temporal cortex mask. Specifically, there was 

increased activity during the post-training target period. 

 

 
 
Brain region 
 

   
 

     
 

                         
 

              F-value 
 

Cluster size       P-value  
(voxels)             FDR-corrected 

 

Interaction: session x task 
period   

  
                        

 
  

 
      

 Right fusiform gyrus  22 -44 -12   16.39    120                     .039 
Right parahippocampal gyrus  20 -34 -12   9.22 

 

      Post-training_target > pre- 
training_target   

 
     

 

    
 t-value 

 Right fusiform gyrus   22 -44  -12   6.11    264                     .005 

Right parahippocampal gyrus  20 -34  -12   5.19    

            A statistical significance threshold of p < .05 FDR-correction at the cluster level was used, after clusters were 

formed with an uncorrected p < .001. P values are reported at the cluster level. The MNI coordinates refer 

to the peak F- and t-values. Local maxima that are more than 8 mm apart are shown for each cluster.  

 

 

5.3.2 N-back task fMRI  

 

ROI analyses 

 

Separate 2 × 2 x 4 mixed ANOVAs were computed for each ROI with group 

(adaptive, non-adaptive) as the between-subject factor, and session (pre-training, post-

training) and condition (0-, 1-, 3-, and 4-back) as within-subject factors. We found a 

significant main effect of session in right cerebellum (Table 5.2). We found a significant 

main effect of N-back condition bilaterally in dPFC, vPFC, oPFC, precentral gyrus, insula, 

right superior medial gyrus, right mid cingulate cortex, right anterior cingulate cortex, 

bilaterally in superior parietal cortex, inferior parietal cortex, angular gyrus, precuneus, 

 MNI coordinates   

  x   y  z 
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postcentral gyrus, right supramarginal gyrus, left inferior occipital gyrus, bilaterally in 

inferior temporal gyrus, fusiform gyrus, left lingual gyrus, and bilaterally in putamen, 

caudate, and cerebellum (Table 5.2). There was also a significant interaction between 

session and N-back condition in left superior parietal cortex, left precuneus, right 

caudate, right putamen, and bilaterally in cerebellum (Table 5.2). We examined the 

differences in session and N-back working memory load more closely using the contrasts 

pre-training_1-back > post-training_1-back, post-training_1-back > pre-training_1-back, 

pre-training_3-back > post-training_3-back, post-training_3-back > pre-training_3-back, 

pre-training_4-back > post-training_4-back, and post-training_4-back > pre-training_4-

back (N.B., 0-back baseline activity was subtracted from the 1-, 3-, and 4-back conditions). 

We found a significant effect for the contrast post-training_4-back > pre-training_4-back 

in right cerebellum (Table 5.2). 

 

 

Table 5.2. ROI analysis for the N-back task: brain regions organised by significant main effect and 

mask used for the analysis. Includes contrast showing increased activity during the post-training 

4-back condition in cerebellum.  

 

 
 
Brain region 
 

   
 

     
 

                         
 

               F-value 
 

Cluster size       P-value  
(voxels)             FDR-corrected 

      Main effect of session 
     

      Cerebellum  ROI mask 
     

      Right cerebellum (IV-V) 12  -50 -22   25.85       117                 .031 

      
      Main effect of N-back 
condition 

     
      
      dPFC  ROI mask 

     
      Left IFG (p. Triangularis) -50   24  26   19.04       247              < .001 

Left precentral gyrus -44   12  30   18.07 
 Left IFG (p. Opercularis) -56   18  32   13.90                       

Left middle frontal gyrus -40   14  34   10.37 
 

      Right superior medial gyrus   4   38  38   17.79       111                 .011 

 MNI coordinates   

  x   y  z 
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Right mid cingulate cortex   6   38  34   17.46                           

Right anterior cingulate cortex   4   44  22    8.50                             

      Right IFG (p. Opercularis)  48   16  28   21.24        85                  .049 

Right precentral gyrus  52   12  36   11.28 
 

      Right IFG (p. Opercularis)  44   16  34   21.18        77                  .049 

Right middle frontal gyrus  44   24  34    8.71 
 

      Right IFG (p. Triangularis)  52   28  20   13.35        63                  .049   

      Left IFG (p. Triangularis) -46   28  24   15.05        61                  .049 

Left middle frontal gyrus  -38   36  16    6.49 
 

      vPFC ROI mask   
   

                     

      Right insula lobe  30   22  -10    30.98        361             < .001 

Right IFG (p. Triangularis)   42   22    4    19.47 
 Right IFG (p. Orbitalis)  42   22  -12    13.31 
 Right IFG (p. Opercularis)  50   16   10    10.07 
 

      Left insula lobe -32   20   -6   34.07        191                .001 

Left IFG (p. Orbitalis) -46   18   -6    9.65 
 Left IFG (p. Triangularis) -48   24     8    9.47                         

      Left IFG (p. Triangularis)  -54   26   24   18.84        150                .011 

Left IFG (p. Opercularis)  -60    6   16   12.24 
 

  
                                 

Right IFG (p. Orbitalis)   36   30   -6   12.94         64                 .049 

      Inferior parietal ROI mask 
     

      Left inferior parietal cortex  -30   -58   46   23.58       1341            < .001 

Left angular gyrus  -34   -66   42   19.50 
 Left postcentral gyrus  -50   -30   50   15.23 
 

      Right supramarginal gyrus   58   -46   24   23.52        691             < .001 

Right angular gyrus   44   -50   22   10.89 
 

      Right angular gyrus   38   -68   48   21.90        579             < .001 

      Right postcentral gyrus   38   -32   44   17.24        194                .001 

Right inferior parietal cortex   44   -34   48   10.86 
 

      Superior parietal  ROI mask 
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Left inferior parietal cortex  -28   -68   44   32.12        820             < .001 

Left superior parietal cortex  -30   -70   50   30.61 
 Left precuneus   -6   -72   56   12.21 
 

      Right angular gyrus   34   -70   44   25.10        605             < .001 

Right superior parietal cortex   18   -58   60   14.37 
 Right postcentral gyrus   22   -44   64    8.23 
 Right precuneus    8   -72   56    7.03 
 

      Inferior temporal ROI mask 
     

      Left inferior temporal gyrus   -50   -56 -16   26.10        181                .001 

Left inferior occipital gyrus  -50   -62 -16   24.65 
 

      Left fusiform gyrus -28   -60  -8   14.21        174                .001 

Left lingual gyrus -18   -46  -6    7.41 
 

      Right inferior temporal gyrus   50   -56 -16   21.05        173                .001 

      Right fusiform gyrus   32   -48 -10   20.73        164                .011 

      Left inferior temporal gyrus  -46   -60  -6   19.90         89                 .015 

Left inferior occipital gyrus  -42   -68  -4   16.87 
 

      Striatum ROI mask 
     

      Right putamen   20    12 -10   33.34        425             < .001 

Right caudate nucleus   16    12 -12   30.66 
 

      Left putamen  -22    12  -6   28.41        372             < .001 

Left caudate nucleus  -10    14  -6   18.66 
 

      Cerebellum ROI mask 
     

      Left cerebellum (Crus 1)  -28   -80  -22    38.70        8043           < .001 

Cerebellar vermis (6)    6   -80  -16    33.64 
 Left cerebellum (VI)   -4   -80  -16    30.54 
 Left cerebellum (Crus 2)  -12   -80  -36    27.20 
 Right cerebellum (Crus 2)    8   -78  -40    26.89 
 Right cerebellum (VI)   30   -46  -26    26.15 
 

      Interaction: session x N-
back condition 

     

      Superior parietal ROI mask 
     

      



196 
 

Left superior parietal cortex  -22   -64   54    9.83         99                 .017 

Left precuneus  -8   -68   54    7.23 
 

      Striatum ROI mask 
     

      Right caudate nucleus   16     14    8     12.01        136                .003 

Right putamen   22     18    0      8.60 
 

      Cerebellum ROI mask 
     

      Right cerebellum (VIII)   30   -66 -46     10.39        633             < .001 

Right cerebellum (Crus 2)   58   -54 -42     10.29 
 Right cerebellum (Crus 1)   38   -60 -38     10.02 
 Right cerebellum (VI)   24   -60 -34      7.36 
 Right cerebellum (VII)   44   -62 -54      7.29 
 

      Left cerebellum (Crus 1)  -40   -48 -32      8.14        212             < .001 

      Post-training_4-back > pre-
training_4-back 

     

      Cerebellum ROI mask 
     

    
  t-value 

 Right cerebellum (VII)    8   -78 -42      4.49        175                .006 

Right cerebellum (VI)   30   -54 -36      4.25 
 Right cerebellum (Crus 1)   34   -60 -32      3.98 
 Right cerebellum (VIII)   14   -72 -40      3.67 
 

      A statistical significance threshold of p < .05 FDR-correction at the cluster level was used, after clusters were 

formed with an uncorrected p < .001. P values are reported at the cluster level. The MNI coordinates refer 

to the peak F- and t-values. Local maxima that are more than 8 mm apart are shown for each cluster. IFG = 

inferior frontal gyrus. 

 

 

 

5.3.3 Diffusion MRI 

 

Whole-brain analyses 

 

To investigate whether there were any significant microstructural changes as a 

result of cognitive training, whole-brain one-sample t-tests were performed with the 

diffusion difference maps (combining the adaptive and non-adaptive groups, N = 39) for 

each of the NODDI and DTI indices (ODI, NDI, FA, and MD). We found a significant 

increase in ODI in grey and white matter of the left frontal pole post-training (Figure 5.1). 
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To investigate whether the type of training programme had an effect on microstructural 

change, whole-brain two-sample t-tests were performed comparing adaptive and non-

adaptive difference maps for each of the four diffusion indices. No significant differences 

were found in ODI, NDI, FA, and MD difference maps between adaptive and non-adaptive 

groups. 

 

 

 

 

Figure 5.1. Whole-brain diffusion MRI analysis: significant increase in ODI in left frontal pole post-

training. Results are shown using a statistical significance of p < .05 after FWE-correction at the 

cluster level, clusters formed using an uncorrected p < .001, N = 39. 

 

 

5.4 Discussion 

 

5.4.1 Summary of main findings 

 

We assessed the neural effects of cognitive training in healthy middle-aged adults 

by scanning transfer tasks (PAR, N-back) at pre- and post-training sessions. In addition to 

task-based fMRI, we used DTI and NODDI to investigate structural plasticity as a result of 

training. Participants completed 12 sessions of the training programme which targeted 

working memory, attention, and other executive functions such as inhibition. We 

compared an adaptive training group to a non-adaptive, active control group. 

 

   

y = 60 x = -28 

z = -6 
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We did not find any significant differences between adaptive and non-adaptive 

training on functional and structural imaging outcomes. We did, however, find significant 

differences between the pre- and post-training sessions for the combined groups (N = 39 

for fMRI, N = 39 for DTI and NODDI). For the PAR task, we found a significant interaction 

between session and task period in right fusiform gyrus and right parahippocampal gyrus. 

Specifically, we found increased activity in these regions post-training for the target 

period, indicating training-induced plasticity in these regions for associative recognition 

memory. For the N-back task, we found a significant main effect of session in right 

cerebellum. We found a significant main effect of condition (0-, 1-, 3-, and 4-back) 

bilaterally in dPFC, vPFC, oPFC, precentral gyrus, insula, right superior medial gyrus, right 

mid cingulate cortex, right anterior cingulate cortex, bilaterally in superior parietal cortex, 

inferior parietal cortex, angular gyrus, precuneus, postcentral gyrus, right supramarginal 

gyrus, left inferior occipital gyrus, bilaterally in inferior temporal gyrus, fusiform gyrus, left 

lingual gyrus, and bilaterally in putamen, caudate, and cerebellum. There was also a 

significant interaction between session and condition in left superior parietal cortex, left 

precuneus, right caudate, right putamen, and bilaterally in cerebellum. Notably, we found 

increased activity post-training for the 4-back condition in right cerebellum, 

demonstrating training-induced plasticity in this region for a working memory task. We 

did not find any differences between pre- and post-training sessions for the DTI indices of 

FA and MD, nor for the NODDI index of NDI. We found a significant increase in ODI in grey 

and white matter of the left frontal pole post-training, providing evidence for training-

induced microstructural change. 

 
5.4.2 Adaptive vs. non-adaptive training 

 

We found no significant differences between adaptive and non-adaptive training 

on any of the neuroimaging outcomes. This is contrary to studies that have shown that 

adaptive training provides sustained cognitive challenges resulting in neural changes that 

underlie transfer (e.g., Lovden et al., 2010; Brehmer et al., 2012; Rudebeck et al., 2012; 

Anguera et al., 2013; Heinzel et al., 2016; Flegal et al., 2019). As discussed previously, we 

found that participants in the non-adaptive group benefitted significantly from training as 

demonstrated by substantial improvement in performance for the training tasks. Our 
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non-adaptive training programme, although less challenging, is still repeatedly recruiting 

(to a lesser extent) the brain networks involved in working memory, attention, and 

executive function. Therefore, even the non-adaptive training programme has the 

potential to initiate neural plasticity in these networks and brain areas (Baltes & 

Lindenberger, 1988). As such, there were significant increases in training task 

performance for both adaptive and non-adaptive training groups, and no significant 

differences between them on functional and structural outcomes. Future studies might 

benefit from active control training that is done with a different set of tasks that do not 

engage the same brain areas as the experimental group. Comparing these groups at post-

training should yield differences between them if the training programmes have induced 

neural plasticity in their respective brain regions. 

 

5.4.3 PAR fMRI findings 

 

For the PAR task, we found a significant interaction between session and task 

period in right fusiform gyrus and right parahippocampal gyrus. Specifically, we found 

increased activity in these regions post-training during associative recognition. This is in 

line with studies demonstrating increased activity on transfer tasks following cognitive 

training (Dahlin et al., 2008; Backman et al., 2011; Schweizer et al., 2013; Salminen et al., 

2016; Clark et al., 2017). This is also consistent with working memory training meta-

analyses by Salmi et al. (2018) and Pappa et al. (2020) reporting mostly activity increases 

in transfer tasks. The increased activity observed on the PAR task is in accord with the 

fast-early and slow-late stage model first applied to motor skill training (Doyon & 

Ungerleider, 2002), i.e., the post-training transfer task represents the fast-early learning 

stage of the model. For example, at post-training the PAR transfer task is still relatively 

novel and challenging, thus, similar to a training task at the early stage of learning, the 

activation change from pre-training is observed as an increase (Pappa et al., 2020). 

Activation increases following training have been explained as added recruitment of brain 

regions or as response strengthening within a cortical region, leading to increased 

capacity in the processes performed by these areas (Kelly & Garavan, 2005; Lustig et al., 

2009; Lovden et al., 2010; Flegal et al., 2019; Pappa et al., 2020). Therefore, in the present 
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experiment, it is possible that the increased activity post-training reflects an increased 

capacity in the processes performed by the fusiform and parahippocampal gyrus.  

 

 Studies in nonhuman primates demonstrate that visual associative memory 

requires sustained activity within inferior temporal areas (Miyashita, 1988; Miyashita & 

Chang, 1988; Sakai & Miyashita, 1991; Yakovlev et al., 1998; Naya et al., 2003). In 

humans, fMRI studies have reliably identified inferior temporal subregions that selectively 

respond to categories of objects (Aguirre et al., 1998; Haxby et al., 2001; Malach et al., 

2002; Spiridon & Kanwisher, 2002; Ranganath et al., 2004). Activity in the fusiform and 

parahippocampal gyrus in particular is thought to indicate the activation of object 

representations during both the working memory and recognition phase of the PAR task 

(Ranganath et al., 2004; Pfeifer et al., 2016; 2019). Therefore, in the current experiment, 

activity in these regions reflects the object that is currently active in memory, in this case, 

the abstract fractal images encoded during the learning phase (PAL task – outside of 

scanner). In other words, the PAR task requires retrieval of the relationship between the 

cue object and its paired associate; the neural representation of the paired associate is 

activated in fusiform and parahippocampal gyrus in anticipation of the upcoming memory 

decision during the target period (associative recognition memory) (Rainer et al., 1999; 

Ranganath et al., 2004; Pfeifer et al., 2016; 2019). The increased activity in these regions 

in the post-training compared to the pre-training session may be the result of these areas 

being repeatedly recruited during our training programme, especially during working 

memory to reactivate object representations necessary for the current task goal. For 

example, representations of cars would need to be reactivated in working memory for 

successful completion of the CODING training task, while representations of butterflies 

would need to be reactivated in working memory for the DATEUP training task. Thus, 

repeated recruitment of the fusiform and parahippocampal gyrus during training may 

have resulted in increased capacity for object representations – an important function for 

the PAR task. 

 

It should be noted that these training-related functional changes in fusiform and 

parahippocampal gyrus did not translate to improved performance on the PAR task. We 

predicted that training would lead to increased activity in working memory regions 



201 
 

common to both the training and transfer tasks, resulting in improvements on the 

untrained PAR task. However, successful associative retrieval draws on multiple cognitive 

mechanisms that include the binding of stimuli, bottom-up perception and top-down 

imagery, as well as attention, in addition to working memory (Curtis & D'Esposito, 2003; 

Ranganath, 2006; Ciaramelli et al., 2008; Albright, 2012; Pfeifer et al., 2016; 2019). As 

such, the PAR and training tasks may have differed on several processes and associated 

brain regions. Consequently, it may not have been sufficient for changes in fusiform and 

parahippocampal gyrus to result in significant improvements on the PAR task. 

 

5.4.4 N-back fMRI findings 

 

For the N-back task, we found a significant main effect of condition in several 

regions including the PFC, parietal cortex, inferior temporal cortex, striatum, and 

cerebellum, indicating that different areas were recruited dependent on task difficulty 

(i.e., working memory load). There was also a significant interaction between session and 

condition in parietal cortex, striatum, and cerebellum. Importantly, significant differences 

between the pre- and post-training sessions were found for the cerebellum, indicating a 

training effect in this region. Specifically, we found increased activity post-training for the 

4-back task in right cerebellum. This is consistent with studies and meta-analyses 

demonstrating mostly increased activity on transfer tasks following cognitive training 

(Dahlin et al., 2008; Backman et al., 2011; Schweizer et al., 2013; Salminen et al., 2016; 

Clark et al., 2017; Salmi et al., 2018; Pappa et al., 2020).   

 

The cerebellum is one of the key regions forming the neural basis of working 

memory (Wager & Smith, 2003; Owen et al., 2005; Rottschy et al., 2012; Nee et al., 2013; 

Salmi et al., 2018; Emch et al., 2019). During verbal working memory in particular, it has 

been suggested that cerebellar activity supports inner speech mechanisms to facilitate 

rehearsal of the to be maintained information (Desmond et al., 1997; Chein & Fiez, 2001; 

Chen & Desmond, 2005; Chang et al., 2007; Durisko & Fiez, 2010; Marvel & Desmond, 

2012; Koziol et al., 2014). Neuroimaging studies have shown that during the encoding 

phase, when verbalisable content, such as letters, is visually presented to participants, 

cerebellar activity increases (Chein & Fiez, 2001; Chen & Desmond, 2005; Koziol et al., 
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2014). Thus, the cerebellum may be involved in creating an internal code for motor 

sequences related to the vocalisation of information (Ravizza et al., 2006; Ackermann et 

al., 2007; Marvel & Desmond, 2010; Marvel & Desmond, 2012; Koziol et al., 2014). 

Furthermore, cerebellar activity can be modulated by increasing working memory 

demands. For example, following encoding, if information needs to be manipulated in 

some way (e.g., as required during the N-back task when continually updating the 

sequence of letters, and during the DATEUP training task when continually updating the 

location of the butterflies), cerebellar activity remains elevated relative to activity during 

straightforward (non-manipulated) rehearsal of information (Marvel & Desmond, 2012; 

Koziol et al., 2014). This pattern indicates that as long as the cerebellum is encoding new 

information, new motor traces continue to be created, and activity levels remain high 

(Marvel & Desmond, 2012; Koziol et al., 2014). Therefore, it seems that the more effortful 

a verbal working memory task is, the more one engages an inner speech neural 

mechanism (Marvel & Desmond, 2012; Koziol et al., 2014). In sum, the specific 

contribution of the cerebellum may be to temporally sequence inner speech information 

by creating internal motor traces that help maintain that information (Desmond et al., 

1997; Chein & Fiez, 2001; Chen & Desmond, 2005; Chang et al., 2007; Durisko & Fiez, 

2010; Marvel & Desmond, 2012; Koziol et al., 2014).  

 

In the current study, it is likely that this process (i.e., rehearsing information 

verbally – inner speech neural mechanism) was practiced and used repeatedly during 

training as a strategy for keeping information in working memory, and thus, repeatedly 

engaged the cerebellum. Although this is speculative for our experiment, future studies 

could test this idea by scanning the training tasks to see if they did indeed engage the 

cerebellum, and also by administering a questionnaire to ascertain which strategies were 

used to help complete the tasks. Nonetheless, the possibly increased engagement of the 

cerebellum during training may have led to an increase in capacity for this process, as 

demonstrated by increased activity in this region post-training on the 4-back task, and 

notably, significantly improved performance for this untrained transfer task. In addition, 

increased working memory demand, as in the 4-back task (relative to the 1- and 3-back), 

would have benefitted most from increased cerebellar activity and capacity, and this was 



203 
 

certainly the case, which was demonstrated by the result only being found for the 4-back 

and not at any other level. 

 

5.4.5 Diffusion MRI findings 
 

We did not find any significant differences between pre- and post-training 

sessions for the diffusion MRI indices of FA, MD, and NDI. We did, however, find 

significantly increased ODI in the grey and white matter of the left frontal pole following 

training, indicating training-induced microstructural change in this region. According to 

Zhang et al. (2012), in white matter areas, an increase in ODI indicates a reduction in fibre 

coherence. In areas of crossing fibres or grey matter, however, an increase in ODI could 

indicate a change in axonal and dendritic morphology (Zhang et al., 2012). Critically, both 

a reduction in fibre coherence and a change in dendritic morphology may be the result of 

new neurite growth (Zhang et al., 2012). For example, both branching dendrites and 

axons may increase the orientation distribution of intracellular diffusion (Zhang et al., 

2012). Therefore, in the present experiment, the increase in grey and white matter ODI 

may indicate new neurite growth in the left frontal pole as a result of the cognitive 

training programme. 

 
The frontal pole, or Brodmann’s area 10, is a hyperconnected anterior region of 

the prefrontal cortex that plays a critical role in higher order cognition such as executive 

control and decision-making (Pandya & Yeterian, 1996; Burgess et al., 2007; Orr et al., 

2015). Anatomically, the frontal pole is connected to regions of cognitive processing, 

social emotion, and default mode networks (Liu et al., 2013; Orr et al., 2015). Specifically, 

the dorsal regions are connected to other prefrontal regions that process goals and action 

plans, medial regions are connected to other areas that monitor action outcomes and 

motivate behaviours, and ventral regions connect to brain regions that process 

information about stimuli, values, and emotion (Orr et al., 2015). Because of this broad 

array of structural connections, the frontal pole is well equipped to guide attention and 

behaviour in relation to current goals, motivations, and values, while storing and updating 

current task information (Orr et al., 2015). This function of selecting and guiding actions in 

line with goals and motivations, and more explicitly storing alternative task information 
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ready for retrieval and execution upon completion of the current task, is known as 

cognitive branching (Koechlin et al., 2000; Koechlin & Hyafil, 2007; Koechlin, 2011). 

Cognitive branching contains a large working memory component and is hypothesised to 

be the core function of the frontal pole region (Koechlin et al., 2000; Koechlin & Hyafil, 

2007; Koechlin, 2011). Indeed, recent functional characterisations of the frontal pole 

emphasize its role in using higher-order task representations to direct the selection and 

maintenance of relevant information in working memory (Braver et al., 2003; Bunge et 

al., 2003; Sakai & Passingham, 2003; Ramnani & Owen, 2004; Ranganath et al., 2004; 

Koechlin & Hyafil, 2007; Koechlin, 2011). Importantly, this means that the frontal pole is 

heavily involved in working memory processes, which were trained in our study’s 

programme. It is possible that repetitively exercising working memory processes resulted 

in repeated and sustained stimulation of the frontal pole, and therefore neural plasticity 

in this region.  

 
Furthermore, Nazeri et al. (2015) demonstrated a significant association between 

frontal pole ODI and performance on tests of working memory/processing speed. 

Specifically, higher levels of frontal pole ODI were related to better performance on tests 

of cognitive function (Stroop Test, Trail-Making Test B, Letter-Number Sequencing Test). 

As such, frontal pole neurite growth as a result of training may have benefitted working 

memory abilities, and would therefore be reflected by higher scores in the PAR and N-

back tasks post-training. This was certainly the case for the 4-back task in which 

performance significantly improved post-training. However, we did not see a behavioural 

effect for the PAR task. The functional and structural changes might simply not have been 

sufficient to result in a measurable behavioural change for this task.  

 
All results reported in this chapter were corrected for multiple comparisons. It is 

possible that using an exploratory uncorrected threshold would have yielded more 

positive findings. However, while it was deemed appropriate to use an exploratory 

uncorrected threshold for the results from the sensorimotor training, reported in Chapter 

3 (Perceptual-cognitive-motor training in middle-aged adults, pg. 89), this was not 

deemed appropriate for this cognitive training study. This was because training was for a 

relatively short period of 31 minutes in the first experiment, which may have resulted in 
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small-scale changes that would be difficult to detect with a strict correction for multiple 

comparisons (Jueptner et al., 1997; Doyon et al., 2002; Orban et al., 2010; Steele & 

Penhune, 2010). Training for the second experiment was of a longer duration of 10 hours 

over 4-6 weeks, and therefore, effects were expected to be large enough to be detected 

with a correction for multiple comparisons. However, it is possible that training may still 

have been too short of a duration to result in a greater number of effects reaching the 

threshold for significance, thus explaining the small number of statistically significant 

outcomes. 

 
Indeed, the duration of our training programme may not have been sufficient to 

induce changes in the diffusion indices of FA, MD, and NDI. Structural alterations in 

response to training such as white and grey matter plasticity take time to develop (Scholz 

et al., 2009; Metzler-Baddeley et al., 2017). For example, Scholz et al. (2009) found that 

grey matter density (as measured by voxel-based morphometry) in medial occipital and 

parietal regions continued to increase 4 weeks after a 6-week training programme on a 

novel visuo-motor skill had ended. Notably, this grey matter change correlated with 

cumulative improvement on the visuo-motor task (juggling), meaning both neural and 

behavioural effects of training were still developing ten weeks after the programme 

began and during the four week period without juggling. Thus, while our programme 

consisted of 12 sessions spread over 4-6 weeks, this may still have been too short a 

timescale for significant microstructural changes to occur. This may explain the absence 

of microstructural changes observed post-training as measured by FA, MD, and NDI 

parameters, as well as the confinement of ODI changes to the left frontal pole only. This 

may also explain the lack of functional changes in frontal (dPFC, vPFC, frontal pole) and 

striatal (caudate, putamen) regions that we expected to show plasticity as a result of 

training. For example, a recent meta-analysis of fMRI studies looking at working memory 

training by Salmi et al. (2018) has shown that modulation of frontostriatal activity may 

not emerge until some time after training. Indeed, longer programmes (> 10 hours) allow 

more time for training-induced changes to the frontostriatal system that, critically, are 

thought to mediate near transfer to untrained tasks (Salmi et al., 2018). Therefore, future 

studies should aim to utilise training programmes with more than 12 sessions and with a 

duration of longer than ten weeks. 
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Furthermore, our sample size can be considered relatively small (Nazeri et al., 

2017). As such, it is possible that this study was underpowered and did not allow for the 

reliable detection of small-scale brain changes. Although a limited number of significant 

training-induced changes in brain microstructure and function were demonstrated in 

middle-aged adults, additional studies with larger sample sizes may detect effects in other 

brain regions, as well as any subtle effects which may have resulted from an insufficient 

duration of training. 

 
 As discussed previously, we must also consider that the greater number of 

negative findings may be due to our training programme not engaging the same cognitive 

processes and brain regions as our transfer tasks. Including a session to scan the training 

tasks might have confirmed that the training and transfer tasks did indeed engage 

overlapping brain regions, thought to be required for successful transfer (Dahlin et al., 

2008; Lustig et al., 2009; Shipstead et al., 2012; von Bastian et al., 2013; Strenziok et al., 

2014; Soveri et al., 2017; Pappa et al., 2020). However, regions involved in working 

memory are well established in the literature, and therefore, previous research still 

provided us with strong a-priori knowledge about which areas would overlap between 

our training and transfer tasks. Thus, our training programme was expected to engage 

areas involved in working memory, thereby inducing functional plasticity that would 

translate to changes in activity on the N-back and PAR transfer tasks. We did, indeed, find 

a significant post-training increase in activity in the cerebellum for the 4-back task, as well 

as in the fusiform and parahippocampus for the PAR task; all are regions that have been 

shown to be involved in working memory (e.g., Ranganath et al., 2004; Owen et al., 2005; 

Ranganath, 2006; Rottschy et al., 2012; Emch et al., 2019). This provides evidence for 

function and brain region overlap between our training and transfer tasks, and it is more 

likely that the negative findings in this experiment stem from low power to detect 

statistically significant changes, or from an insufficient duration of training. 

 
 

 

 

 

 



207 
 

5.4.6 MRI findings in the middle-aged compared to young and older adults 

 

5.4.6.1 fMRI comparisons between age groups 

 

Overall, the few studies that have investigated functional outcomes on near 

transfer tasks reported activation increases for young adults, and decreases or no change 

for older adults (Dahlin et al., 2008; Backman et al., 2011; Heinzel et al., 2016; Salminen et 

al., 2016). For example, Dahlin et al. (2008) found post-training increases in striatal, 

frontal, parietal, and temporal regions when assessing a near transfer task in young adults 

(age range: 20-31), while no significant changes were reported for the older adults (age 

range: 65-71). Backman and colleagues (2011) demonstrated near transfer following 

working memory training and increased activity in striatum in young adults (age range: 

19-33). Salminen et al. (2016) found increased activity in the striatum, cuneus and 

calcarine gyrus for a near transfer task in young adults (age range: 20-32). And finally, 

Heinzel et al. (2016) reported activity decreases in middle and superior frontal regions for 

a near transfer task in older adults (age range: 60-75). Findings in the middle-aged 

participants in our study corroborate what is found in the young adults with increases in 

activity shown for the PAR task in fusiform and parahippocampal gyrus, and increases in 

activity for the 4-back task in cerebellum. This is in contrast to the decreases in activity 

found for older adults in the study by Heinzel et al. (2016), and no change in the study by 

Dahlin et al. (2008). 

 

Older adults often exhibit greater activation compared to young adults and one 

explanation for this is a compensatory use of neural circuits (Grady et al., 1994; Cabeza, 

2002; Reuter-Lorenz et al., 2000; Reuter-Lorenz & Cappell, 2008; Pappa et al., 2020). It is 

suggested that older adults reach a peak in functional activity at lower difficulty levels 

than young adults, and therefore may reach maximum capacity in the pre-training session 

(Reuter-Lorenz & Cappell, 2008; Pappa et al., 2020). As a result of overactivation at the 

pre-training session, improvement from training leads to a decrease in activation for the 

post-training session (i.e., fewer resources needed to perform the task after training). For 

young adults that have not reached maximum capacity at the pre-training session, 

training leads to an increase in activity in the post-training session (i.e., an increase in 

capacity). In other words, for the young adults, there is a post-training shift in the peak 
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activation via training-induced plasticity, i.e., neural resources reach maximum capacity at 

higher difficulty levels than before the intervention, which would in fact produce relative 

increases in activity (Iordan et al., 2020; Pappa et al., 2020). Therefore, the middle-aged 

adults in the present experiment may have shown increases in activity and an increase in 

capacity similar to the post-training shift in peak activation reported for transfer tasks in 

young adults. However, this interpretation needs to be treated with caution as there are 

very few studies examining functional outcomes on transfer tasks, and further research is 

needed to compare patterns of activity between young, middle-aged, and older adults. 

 

5.4.6.2 DTI comparisons between age groups 

 

In general, studies assessing training-induced microstructural plasticity have been 

investigated in young adults (Scholz et al., 2009; Takeuchi et al., 2010; Sagi et al., 2012; 

Hofstetter et al., 2013; Caeyenberghs et al., 2016; Roman et al., 2017). For example, Sagi 

et al. (2012) used DTI to examine grey matter microstructure in young adults (age range: 

20-36) before and after training on a spatial learning and memory task. Analysis revealed 

significant decreases in MD in the left hippocampus and right parahippocampus following 

training. Using the same spatial navigation task, Hofstetter et al. (2013) used DTI to 

investigate white matter microstructure in young adults (age range: 20-38) and found 

reductions in FA and MD in the fornix after training. In contrast, increased FA in the 

intraparietal sulcus and anterior corpus callosum has been demonstrated in young adults 

(mean age: 21.7 years) in response to working memory training (Takeuchi et al., 2010). 

The study by Roman et al. (2017) revealed enhanced connectivity in a younger cohort of 

women (age range: 17-22) following a working memory intervention. Likewise, 

Caeyenberghs et al. (2016) reported structural connectivity increases in a fronto-parietal 

network following training in a group of younger adults (age range: 19-40).  

 

Studies of training-induced microstructural plasticity in older adults are scarce, 

although there are a few investigations that have examined associations between DTI 

indices and training outcome (Bennett et al., 2011; Wolf et al., 2014). For example, Wolf 

and colleagues (2014) investigated the transfer of logical reasoning training to a measure 

of fluid intelligence in a group of older adults (age range: 60-85). Long‐term transfer 
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(3‐months after a 4‐week training intervention) was associated with increased structural 

integrity (i.e., higher FA values) in the corpus and genu of the corpus callosum. Contrary 

to the DTI studies of young adults, we did not find any changes in FA or MD in the middle-

aged adults in our study, and consequently, we did not test for any relationships between 

the indices and training outcome as was done in the older adult studies. It is possible that 

the lack of change in FA, MD, and NDI indicates less neuroplasticity in middle-aged adults 

compared to young adults. However, as stated previously, comparisons are difficult to 

make across studies, and in order to assess possible similarities and differences in 

plasticity, young, middle-aged, and older adults would need to be included within the 

same study. Indeed, this is the first study to examine training-related functional and 

structural neuroplasticity in a group of middle-aged adults, and research in this area is not 

only lacking for the middle-aged, but also for older and young adults. 

 

5.4.6.3 NODDI comparisons between age groups 

 

Studies to date have not used NODDI to assess training-induced brain plasticity in 

any age group. However, NODDI has previously been used to show age-related changes 

to white matter (Kodiweera et al., 2016) and cortical grey matter (Nazeri et al., 2015). For 

example, Nazeri et al. (2015) found a significant age-related deficit in grey matter ODI, 

most prominently in frontoparietal regions. Furthermore, associations have been 

demonstrated between grey and white matter microstructure and cognitive function 

(Nazeri et al., 2015; 2017; Parker et al., 2018). As stated above, in the study by Nazeri et 

al. (2015), higher levels of frontal pole ODI were related to better performance on tests of 

working memory/processing speed. These findings are of particular interest as we 

demonstrated a significant increase in ODI in the frontal pole following training in middle-

aged adults. Therefore, training-induced plasticity is possible for this age group, and may 

be especially important in the frontal pole given that age-related deficits in grey matter 

ODI have been found in this region, and given that higher levels of frontal pole ODI are 

associated with better cognitive performance.  
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5.4.7 Limitations 

 

There were no significant differences in function and structure between the 

adaptive and non-adaptive training groups. Thus, MRI results are reported for both 

groups combined, and in effect, we have one training group for which we examined pre- 

and post-training sessions with no corresponding control group (i.e., a within-subjects 

study design). This makes it difficult to interpret the brain changes found during the post-

training session as being due solely to the cognitive training programme, and not due 

simply to performing the transfer tasks for a second time (i.e., the increased activity in 

the PAR and 4-back tasks could reflect practice on the transfer tasks themselves). 

However, it seems unlikely that these increases in activity would occur after such a short 

amount of practice, just 13 minutes for the PAR task and 11 minutes for the N-back task. 

Indeed, as discussed in Chapter 3 (Perceptual-cognitive-motor training in middle-aged 

adults, pg. 112), relatively short-term training (e.g., 31 minutes with the PCM task) might 

only result in small functional brain changes that would be difficult to detect with a 

stringent correction for multiple comparisons. Moreover, in motor skill learning studies, 

training is relatively longer and ranges from 60 – 120 minutes for the early learning stage, 

and even with this duration, researchers did not correct for multiple comparisons in order 

to reveal the possibly small effects (e.g., Jueptner et al., 1997; Doyon et al., 2002; Orban 

et al., 2010; Steele & Penhune, 2010). Thus, as the results for the PAR and 4-back tasks 

did pass a more stringent threshold for significance, this likely indicates larger or stronger 

effects as a result of longer-term practice on the training programme, rather than effects 

from 11-13 minutes of practice on the transfer tasks. 

 

With regards to the change in microstructure, i.e., increase in frontal pole ODI, it is 

even less likely to be the result of practice on the PAR and N-back tasks instead of the 

training programme. Certainly, one would not expect training-induced changes in 

diffusion metrics with 11-13 minutes of practice. Currently, there are very few studies 

that have demonstrated training-related changes in diffusion metrics with short-term 

training (Sagi et al., 2012; Hofstetter et al., 2013; Marins et al., 2019). In comparison to 

the 11-13 minutes of practice on our transfer tasks, participants in these studies trained 

for 1-2 hours. For example, Marins and colleagues (2019) trained healthy individuals with 
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a motor imagery task, and after 1 h of training, participants showed increased FA in the 

sensorimotor segment of corpus callosum. In the studies by Sagi et al. (2012) and 

Hofstetter et al. (2013), participants trained for 2 hours on a spatial working memory task 

and demonstrated changes in FA and MD in grey and white mater. In fact, in the study by 

Hofstetter et al. (2013), results were not corrected for multiple comparisons as the 

changes in white matter were expected to be small after just 2 hours of training. 

Therefore, in our experiment, it is highly likely that the change in frontal pole ODI was due 

to the longer-term cognitive training programme and not due to 11-13 minutes of 

practice on the transfer tasks. Therefore, although we cannot say for certain that it is the 

training that resulted in the observed brain changes because we did not see differences 

between the groups, we can nevertheless, with relative confidence, interpret the findings 

as true training-induced effects, as it is very unlikely that such a short duration of practice 

on the transfer tasks would lead to the significant functional and microstructural plasticity 

observed in our study. 

 

Our experiment investigated the neural effects of training exclusively on scanned 

transfer tasks. Notably, we provided evidence for training-induced increases in activity, 

interpreted as increases in capacity (Kelly & Garavan, 2005; Lustig et al., 2009; Lovden et 

al., 2010; Flegal et al., 2019; Pappa et al., 2020), which may be a mechanism by which 

transfer occurs. However, it was not possible to assess the hypothesis that increased 

neural efficiency (i.e., decreases in activity) may also be a mechanism underlying transfer 

of training gains (Lustig et al., 2009; Lovden et al., 2010; Schmiedek et al., 2010; Strenziok 

et al., 2014; Flegal et al., 2019; Pappa et al., 2020). Increased neural efficiency has been 

demonstrated for trained tasks (Lustig et al., 2009; Klingberg, 2010; Morrison & Chein, 

2011; Hsu et al., 2014; Salmi et al., 2018; Flegal et al., 2019; Pappa et al., 2020), however, 

as in our experiment, studies examining scanned transfer tasks typically reveal increases 

in activity (Dahlin et al., 2008; Backman et al., 2011; Schweizer et al., 2013; Salminen et 

al., 2016; Clark et al., 2017). This may be because the transfer tasks are at the fast-early 

stage of learning (Doyon & Ungerleider, 2002; Lustig et al., 2009; Pappa et al., 2020), and 

thus, only training-induced increases in capacity are likely to be detected. In order to see 

possible decreases in activity, a training task would need to have been scanned as well. 
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Indeed, both mechanisms may be involved in successful transfer, however, we were only 

able to provide evidence for one (i.e., training-related increases in capacity). 

 

Furthermore, if increased neural efficiency is proposed as a mechanism for 

transfer, then one needs to question why increases in activity were observed in our 

transfer tasks as well as in other studies (Dahlin et al., 2008; Backman et al., 2011; 

Schweizer et al., 2013; Salminen et al., 2016; Clark et al., 2017). In other words, if 

decreases are consistently demonstrated on scanned training tasks indicating increased 

neural efficiency (Lustig et al., 2009; Klingberg, 2010; Morrison & Chein, 2011; Hsu et al., 

2014; Salmi et al., 2018; Flegal et al., 2019; Pappa et al., 2020), why are these decreases 

not demonstrated in the regions thought to overlap in the transfer tasks? Thus, it might 

be reasonable to expect decreases in the post-training session for the transfer tasks as 

well. As there are few cognitive training studies examining scanned transfer tasks, further 

research is needed including both scanned training and transfer tasks to address this 

question. 

 

A further limitation of our study is that we did not assess the cognitive function of 

our sample with standardised tests prior to training, such as the Mini Mental State Exam 

(MMSE; Folstein et al., 1975). However, we investigated a group of healthy middle-aged 

adults, which should have minimised the influence of relevant age-related changes, such 

as atrophy or amyloid plaques, while maximising the usefulness of the training with 

regard to training gains (Emch et al., 2019). Furthermore, individuals had no self-reported 

history of neurological and psychiatric disorders, or brain injuries. Nonetheless, we 

cannot be certain that participants with cognitive impairments were excluded from the 

study. 

 

Our study compared images taken from different scanning sessions. In 

experimental studies, there are concerns about whether scans taken at different 

timepoints in the study (e.g., pre- and post-training) have been properly co-registered, 

and other sources of variability in image acquisition that can distort results (see Littmann 

et al., 2006; Lustig et al., 2009; and Lovden et al., 2013 for discussion). Issues include 

time-related changes in the positioning of subjects, and scanner stability over time (i.e., 
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scanner drifts), such that differences between the sessions could stem from these time-

related effects (Lovden et al., 2013). To mitigate these issues, we used state of the art 

preprocessing techniques including alignment across scans and sessions of all EPI data 

using an affine transformation with the FLIRT tool in FSL (version 5.0.7, Oxford, UK). In 

addition, high pass temporal filtering (128s) was applied to remove low frequency signals 

relating to scanner drift. Furthermore, several studies have reported an intersession 

variability in the BOLD response (e.g., Poellinger et al., 2001; Fischer et al., 2003; Coynel 

et al., 2010), and in the activation detected in brain regions involved in a task (e.g., 

Loubinoux et al., 2001; Marshall et al., 2004; Kübler et al., 2006; Coynel et al., 2010). This 

can be explained by a habituation of the participant to the fMRI context, as well as to the 

execution of a task, and stresses the importance of having both experimental and control 

groups when designing a training protocol over a longer period of time (Coynel et al., 

2010). However, it’s important to note that we did not find any decreases in activity, 

which would have been expected if habituation resulted in the brain changes observed in 

our study. 

 

We demonstrated increased activity in areas thought to overlap between our 

training and transfer tasks. This suggests that training-related increased capacity of these 

regions may be one mechanism underlying the observed transfer to untrained abilities. 

However, we did not correlate scores from the task that showed transfer effects (i.e., 4-

back) with the changes in functional and structural measures. Therefore, we have not 

demonstrated a direct link between training-related brain changes and training-related 

performance improvements in transfer tasks. Showing this link is important because it 

provides further evidence for the importance of neuroplasticity in transfer of training to 

untrained tasks (Strenziok et al., 2014). That the increased activity and microstructural 

change was revealed in regions known to be important for working memory, i.e., 

cerebellum and frontal pole (Wager & Smith, 2003; Ranganath et al., 2004; Owen et al., 

2005; Koechlin & Hyafil, 2007; Rottschy et al., 2012; Nee et al., 2013; Emch et al., 2019), 

provides support for the notion that plasticity in these areas due to the working memory 

component of our training programme resulted in transfer to the 4-back task. 

Nonetheless, to strengthen this interpretation, a next step would be to test for 

associations between these brain changes and post-training 4-back performance. 
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It should also be noted that diffusion indices provide only an indirect marker of 

microstructural properties, and are difficult to relate unambiguously to underlying biology 

(Sagi et al., 2012; Zatorre et al., 2012; Hofstetter et al., 2013; Sampaio-Baptista et al., 

2013; Caeyenberghs et al., 2016). Indeed, they are complex measures that are sensitive to 

manifold properties of tissue (Beaulieu, 2002; Johansen-Berg et al., 2007; Beaulieu, 2009; 

Jeurissen et al., 2013; Jones et al., 2013; Caeyenberghs et al., 2016). Grey matter changes 

that influence MRI signals may include neurogenesis, synaptogenesis, and changes in 

neuronal morphology (Zatorre et al., 2012). In white matter, changes in the number of 

axons, axon diameter, the packing density of fibres, axon branching, axon trajectories, 

and myelination can influence these metrics (Zatorre et al., 2012). Extra-neuronal changes 

can also affect these indices such as increases in glial cell size and number (Zatorre et al., 

2012). Importantly, the NODDI index of ODI provides more specific information than 

metrics produced by other diffusion models. Therefore, we can with confidence say that 

the observed change in frontal pole ODI following training indicates a change in the 

dispersion of axons and dendrites. It is likely that this increase in dispersion is the result of 

neurite growth in this area, however, we cannot be certain that this is the cause of this 

change. Ultimately, histological studies are required to make direct links between 

changes in imaging measures such as ODI and underlying biological mechanisms (Sagi et 

al., 2012; Zatorre et al., 2012; Hofstetter et al., 2013; Sampaio-Baptista et al., 2013).  

 

5.4.8 Conclusions 

 

Our study provides novel evidence for training-induced functional and structural 

plasticity in healthy middle-aged adults. This was demonstrated by the significant 

increases in activity in fusiform and parahippocampus on the PAR transfer task following 

training; by the significant increases in activity in the cerebellum on the 4-back transfer 

task following training; and finally, by increased ODI in the frontal pole following training. 

Therefore, we conclude that cognitive training can successfully promote neuroplasticity in 

middle-aged adults as exhibited by changes in the function and structure of the brain 

post-training.  

 

https://www-nature-com.ezproxy.sussex.ac.uk/articles/nn.3045#auth-Robert_J-Zatorre
https://www-nature-com.ezproxy.sussex.ac.uk/articles/nn.3045#auth-Robert_J-Zatorre
https://www-nature-com.ezproxy.sussex.ac.uk/articles/nn.3045#auth-Robert_J-Zatorre
https://www-nature-com.ezproxy.sussex.ac.uk/articles/nn.3045#auth-Robert_J-Zatorre
https://www-nature-com.ezproxy.sussex.ac.uk/articles/nn.3045#auth-Robert_J-Zatorre
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The increases in activity in the cerebellum following training, and the improved 

performance on the 4-back task, suggests that increases in capacity may be one 

mechanism by which transfer of training occurs to untrained tasks. We did not find 

evidence for the notion that increased neural efficiency underlies transfer as we did not 

find decreases in activity on the transfer tasks. In addition, the frontal pole is thought to 

have a critical role in working memory (Braver et al., 2003; Bunge et al., 2003; Sakai & 

Passingham, 2003; Ramnani & Owen, 2004; Ranganath et al., 2004; Koechlin & Hyafil, 

2007; Koechlin, 2011), thus, the structural change observed in this area may also have 

contributed to transfer in the 4-back task. Therefore, the observed brain changes 

following training may underlie the improved performance on the untrained 4-back task. 

In conclusion, training-induced neuroplasticity may have benefits that transfer to 

untrained tasks. This may have important implications with regards to preventing 

cognitive decline in later life, i.e., training may result in brain changes that improve 

general cognitive function. Thus, investigating the neural mechanisms of transfer effects 

is an important avenue for further research. 
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  Chapter 6: General discussion 
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6.1 Key findings and contributions of the present work 
 

This thesis investigated the behavioural effects and neural correlates of cognitive 

training in healthy middle-aged adults (40-50 years old). In Chapters 3 - 5, we tested the 

effectiveness of training in inducing neuroplasticity and improving cognitive function, 

including general functioning. We assessed a range of different cognitive domains and 

processes including working memory, attention, inhibition, fluid intelligence, associative 

encoding, retrieval, and recognition. Brain changes following training were assessed using 

functional and structural MRI techniques. 

 
In chapter 3, we examined the neural correlates of short-term training on a novel 

and complex perceptual-cognitive-motor (PCM) task in middle-aged adults. We sought to 

characterise functional plasticity at the early stage of training, and as such, we used 

functional magnetic resonance imaging (fMRI) to investigate changes in activation over 1 

session. In addition, we sought to link functional plasticity as a result of training, with 

underlying structure. Thus, we used both diffusion tensor imaging (DTI) and neurite 

orientation dispersion and density imaging (NODDI) to analyse microstructural variation 

in relation to training outcome. We found that the number of successful trials significantly 

increased from pre- to post-training for the PCM task, and the effect size was large and 

positive. This indicates that within a relatively short space of time (31 minutes of 

training), middle-aged adults were able to greatly improve their performance. 

Furthermore, we observed post-training changes in activity in both cortical and 

subcortical regions including the prefrontal cortex, parietal cortex, M1, premotor cortex, 

SMA, preSMA, anterior cingulate cortex, striatum, hippocampus, parahippocampus, and 

cerebellum. These findings demonstrate training-induced functional plasticity in this age 

group. We found that post-training increased activity in the putamen and anterior 

cingulate was significantly and positively correlated with learning outcome, 

demonstrating a direct link between changes in brain function and improved 

performance following training. And finally, we found significant associations between 

microstructural indices and PCM training outcome. Specifically, training outcome was 

correlated with MD in the cerebellum and hMT+/V5; and with FA and ODI in the SMA. 

These results provide strong evidence for a relationship between brain structure and 

learning outcome, suggesting that structural variation has functional consequences. We 
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did not find a significant association between NDI and training outcome. Therefore, 

neurite density may not have played a significant role in learning ability in the present 

experiment.  

 
In chapter 4, we investigated the behavioural effects of longer-term cognitive 

training (4-6 weeks) in middle-aged adults. Participants in the experimental condition 

completed an adaptive cognitive training programme, while the active control group 

completed a non-adaptive version of the training. The training programme targeted 

working memory, attention, and other executive functions such as inhibition. To test for 

training-related improvements in cognitive function we examined performance on the 

training tasks. To test for a general improvement in cognitive ability we assessed 

untrained transfer tasks (RAPM, PAL, PAR, and N-back). Adaptive participants showed 

substantial improvements over the course of training, as indicated by significant increases 

in performance for all training tasks. The non-adaptive group also showed significant 

increases in performance for the training tasks. Indeed, effect sizes were very large for 

both groups. This demonstrates considerable cognitive plasticity in this age group. We did 

not find any significant differences between adaptive and non-adaptive training, 

indicating that type of training programme did not have an effect on transfer. However, 

when combining both training groups, we found a significant improvement on the 4-back 

transfer task and the effect size was moderate. This demonstrates that the cognitive 

training was successful and resulted in transfer to an untrained task. There were no 

significant differences comparing pre- and post-training scores for the RAPM, PAL, and 

PAR tasks, indicating no transfer to these untrained domains.  

 
In Chapter 5, we assessed the neural effects of cognitive training in middle-aged 

adults. We sought to characterise functional plasticity as a result of training with task-

based fMRI. In particular, training-induced functional changes were assessed on the near 

transfer tasks (PAR, N-back). To further investigate the neural mechanisms involved in 

transfer of training gains, we used DTI and NODDI. Thus, we examined the microstructural 

alterations that occurred in the brain following cognitive training. We did not find any 

significant differences between adaptive and non-adaptive training on the neuroimaging 

outcomes. Therefore, we combined the groups to test for training-induced 
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neuroplasticity. For the PAR task, we found significantly increased activity in the fusiform 

and parahippocampal gyrus following training. For the 4-back task, we found significantly 

increased activity in the cerebellum post-training. These findings demonstrate training 

effects in these regions in middle-aged adults, and indicate the transfer of training-

induced plasticity to untrained tasks. Furthermore, we found a significant increase in ODI 

in the left frontal pole post-training, providing evidence for training-induced 

microstructural change in this region. We did not find any significant differences between 

pre- and post-training sessions for the diffusion MRI indices of FA, MD, and NDI. It is 

possible that the duration of our training programme was not sufficient to induce changes 

in these indices.  

 
Taken together, these results demonstrate that cognitive training in middle-aged 

adults was effective at improving cognitive function, and induced functional and 

structural changes in the brain. Moreover, this neuroplasticity and improved cognitive 

function generalised to untrained abilities, indicating the potential for gains to transfer 

beyond the practiced tasks to everyday functioning. In the following sections, conclusions 

from all the experiments are discussed in a broader context. 

 
6.2 Implications 
 

The work contained within this thesis has potential impact both at theoretical and 

practical levels. First, it seems important to discuss adaptive cognitive training and the 

Lovden et al. (2010) theoretical framework for plasticity and transfer. 

 
6.2.1 Adaptive vs. non-adaptive training 
 

We found no significant differences between adaptive and non-adaptive training. 

According to a recent theoretical model (Lovden et al., 2010; Flegal et al., 2019), transient 

cognitive challenges are only sufficient to promote task-specific gains, sustained 

challenges are required to elicit the lasting neural changes thought to underlie transfer 

and improvement of general cognitive function. It is suggested that raising the level of 

maximum function requires a prolonged mismatch in which environmental demand 

exceeds functional supply. Based on this framework, it is proposed that adapting the 

difficulty of training tasks to an individual’s current level of ability would provide the 
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necessary prolonged mismatch, thereby driving cognitive and neural plasticity leading to 

broader transfer. It is possible that our adaptive training protocol, in which the level of 

difficulty was capped, may have been insufficient to induce plasticity that is associated 

with transfer. 

 
However, we have demonstrated that both adaptive and non-adaptive groups 

significantly improved their performance on the trained tasks. Thus, it is likely that the 

non-adaptive participants in our study benefitted from the training programme. This 

finding is important because, while previous studies conclude that adaptive training may 

be key to transfer and that optimal designs should use this form of training (Holmes et al., 

2009; Smith et al., 2009; Jaeggi et al., 2010; Brehmer et al., 2012; Rudebeck et al., 2012; 

Anguera et al., 2013; Heinzel et al., 2016; Flegal et al., 2019), we suggest that even non-

adaptive training can have substantial positive effects on cognitive function. Therefore, in 

contrast to the Lovden et al. (2010) model, our findings suggest that adaptively increasing 

training task difficulty is neither necessary nor sufficient to promote transfer. Indeed, we 

propose that our non-adaptive training programme, although less challenging, is still 

repetitively engaging brain networks involved in working memory, attention, and 

executive function, and thus, may have induced neural plasticity in these networks. In 

terms of training interventions, this means that even less challenging forms of training 

may have the potential to initiate neural plasticity leading to cognitive enhancements.  

 
6.2.2 Process-based training 

 
We found a significant transfer effect to the untrained 4-back task. This task is 

considered to be in the cognitive domain of working memory, which was trained by two 

tasks in our programme. This provides support for the notion that transfer occurs when 

trained and untrained tasks share the same underlying cognitive processes (Jonides, 

2004; Dahlin et al., 2008; 2009; Schmiedek et al., 2010; Shipstead et al., 2012; Flegal et al., 

2019). Indeed, the 4-back task involves working memory, inhibitory control, and attention 

– all were processes trained in our programme. On the other hand, there were no 

significant differences comparing pre- and post-training scores for the RAPM, PAL, and 

PAR transfer tasks. These transfer tasks were in the cognitive domains of fluid 

intelligence, associative learning, and associative memory, respectively. Therefore, they 
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differed from the cognitive domains that were the focus of our training programme (i.e., 

working memory, attention, and inhibition). Hence, they differed on several component 

processes and perceptual features, and as such, transfer of training gains did not occur to 

these tasks. 

 
Process-based theories suggest that rather than expanding the fundamental 

capacity of a particular cognitive domain in an undifferentiated manner, training 

enhances the specific processes within the domain that are engaged by the training tasks 

(Dahlin et al., 2008; Holmes et al., 2009; Shipstead et al., 2012; Sprenger et al., 2013; 

Dunning & Holmes, 2014; von Bastian & Oberauer, 2014; Minear et al., 2016; Soveri et al., 

2017; Gathercole et al., 2019). This accounts for the absence of transfer even across 

paradigms in the same domain, by assuming that training results in increases in the 

efficiency of individual processes that are engaged by some, but not all tasks in a 

particular domain (Dahlin et al., 2008; Minear et al., 2016; Gathercole et al., 2019). 

Therefore, the more similar the tasks are, the more component processes they share, and 

thus, transfer is more likely to occur. 

 

While we provide evidence for process-based models of transfer, this does mean 

that designing effective intervention programmes is quite a formidable task. Indeed, 

training various processes with a variety of tasks should lead to more transfer. This was 

evident in our N-back result where processes involved in this task were trained by two 

working memory tasks (CODING, DATEUP), and also by the attention (DIVID) and 

inhibition (HIBITR) tasks; whereas our training programme may not have been extensive 

enough to result in transfer to the RAPM, PAL, and PAR tasks. This suggests that in order 

for training to have an impact on everyday functioning and to prevent cognitive decline, a 

varied programme targeting multiple processes would be beneficial, although we 

acknowledge that designing such a programme is a challenging task. Taking this into 

account, it may be that multidomain approaches (e.g., videogames) would be more 

efficient at targeting more processes within one task. Thus, training a whole host of 

perceptual, cognitive, and motor functions for 1 hour during a session becomes possible. 

Whereas training particular functions for 10 minutes each during a 1-hour session is not 

as efficient. Multidomain approaches have been used with success in both younger and 
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older adults (e.g., Green & Bavelier, 2003; Basak et al., 2008, 2011; van Muijden et al., 

2012; Strenziok et al., 2014). Certainly, we found positive effects of multidomain training 

with the PCM task in our first experiment. However, it remains to be seen whether PCM 

training would transfer more extensively to untrained tasks, although the results from our 

first study were promising. 

 
6.2.3 Cognitive plasticity in middle-aged adults 

 
Our findings suggest that even with short-term practice on a PCM task, middle-

aged adults show significant plasticity in cognitive and motor abilities as indicated by the 

training gains made on the task. The effect size was large and shows that PCM training 

had a substantial positive outcome. Furthermore, in the second study, both adaptive and 

non-adaptive participants showed significantly improved performance on the training 

tasks, and effect sizes were very large, indicating considerable levels of plasticity in this 

age group. 

 
We also found a significant improvement on the 4-back transfer task. This 

demonstrates that training-related gains transferred to an untrained task. Moreover, 

there was a significant positive relationship between working memory training outcome 

and post-training 4-back scores, providing evidence that improvements in working 

memory in particular transferred to an untrained task requiring the same ability. Working 

memory is a cognitive resource of significant importance for countless demands in 

everyday life (Baltes et al., 1999; Schmiedek et al., 2010; Gathercole et al., 2019). Our 

demonstration that this ability can be improved through training is an important step 

towards designing large-scale interventions that can have a positive impact on cognitive 

development (Schmiedek et al., 2010). Indeed, these findings are important because they 

establish that training-induced improvements in cognitive function (as evidenced by gains 

on the training tasks) transferred to untrained tasks (as evidenced by improvement on 

the 4-back task) in middle-aged adults. Therefore, cognitive training gains may have the 

potential to transfer to general cognitive functioning, and thus, prevent age-related 

decline. 
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While both younger and older adults show considerable gains on trained tasks, 

younger adults consistently show the greatest improvements on transfer tasks, 

suggesting that cognitive intervention is more effective in earlier than in later adulthood, 

and that cognitive plasticity declines in older age (e.g., Brehmer et al. 2007; Dahlin et al., 

2008; Shing et al., 2008; Schmiedek et al., 2010; Brehmer et al., 2012; Borella et al., 2014; 

von Bastian & Oberauer, 2014; Zinke et al., 2014). Some studies dispute this finding, 

showing greater effects for older adults (Owen et al., 2010; Corbett et al., 2015). This is 

possibly because there is more room for improvement in older adults, and less scope for 

significant effects in younger adults who are already performing at peak levels.  

 
Furthermore, motivational factors may also play a role in cases where training 

effects are greater for older compared to younger adults. For example, in the study by 

Corbett et al. (2015), the older cohort chose to complete more sessions than a younger 

group undertaking the same programme (Owen et al., 2010), such that the older adults 

completed more than double the number of cognitive training sessions than their 

younger counterparts, suggesting that the older group may have been more motivated to 

improve their cognitive fitness. This issue is of particular importance because recent work 

has identified motivation as a key condition for transfer to occur (Green & Bavelier, 2008; 

Jaeggi et al., 2014). We have demonstrated that cognitive training in middle-aged adults 

also produces transfer effects as shown by the 4-back result. Thus, the findings from our 

study suggest that middle-aged adults respond to cognitive training with improved 

performance on both trained and untrained tasks. This strengthens our arguments for the 

implementation of intervention programmes before older age. Indeed, middle-age 

presents an ideal time to implement cognitive training programmes – this age group are 

not performing at their peak and may be more motivated to undertake training as a way 

to prevent cognitive decline than younger adults, as well as potentially having more 

plasticity than older adults. Although it should be noted that a study design comparing all 

three age groups on training and transfer would be needed to confirm these conclusions. 

 
6.2.4 Neuroplasticity in middle-aged adults   
 

In our first experiment, we observed changes in activity in both cognitive and 

motor networks following PCM training, indicating training-induced functional 
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neuroplasticity in middle-aged adults. The prefrontal cortex and frontostriatal network 

demonstrate the highest age-related decline (see Cabeza, 2001 for an overview), with 

decreased volume in the frontal cortex as well as the caudate and putamen (Raz et al., 

2003, 2005; Allen et al., 2005; King et al., 2013), and degradations in the white matter 

tracts connecting the striatum to the frontal cortex (Bennett et al., 2011; King et al., 

2013). Thus, these areas would be ideal targets for a cognitive training programme aimed 

at preventing decline. Notably, we demonstrated functional plasticity in several regions 

including the prefrontal cortex, anterior cingulate, caudate, and putamen with training on 

the PCM task. Therefore, we have shown that the PCM task has promise for use in 

training programmes aimed at preventing cognitive and motor decline, as regions known 

to display age-related deficits showed plasticity with training on this task. Furthermore, 

we found that post-training increased activity in the putamen and anterior cingulate was 

associated with better training outcome, indicating a direct link between changes in brain 

function and improved performance following training. Therefore, we provide evidence of 

a relationship between training-induced brain changes and cognitive function, 

demonstrating the potential usefulness of interventions aimed at inducing 

neuroplasticity. 

 
We found significant associations between microstructural indices and PCM 

training outcome, thus, inter-individual variation in brain structure was related to learning 

ability. Specifically, training outcome was correlated with MD in the cerebellum and 

hMT+/V5; and with FA and ODI in the SMA. Quantifying neurite morphology in terms of 

its density and orientation distribution provides a window into the structural basis of 

brain function (Zhang et al., 2012). Indeed, the structure and training outcome 

relationships that we found were colocalised to regions within which functional 

alterations occurred following training on the PCM task. For example, we observed 

increased activity post-training on the PCM task in cerebellum and SMA. Moreover, 

functional MRI studies have shown that these regions (i.e., cerebellum, SMA, and 

hMT+/V5) become consistently activated during visuomotor tasks (e.g., Jenkins et al., 

1994; Sakai et al., 1999; Doyon et al., 2003; Oreja‐Guevara et al., 2004; Floyer-Lea & 

Matthews, 2005; Steele & Penhune, 2010; van Kemenade et al., 2014). Thus, the 

structure-behaviour correlations were found within the same cortical regions that 

https://onlinelibrary-wiley-com.ezproxy.sussex.ac.uk/action/doSearch?ContribAuthorStored=Oreja-Guevara%2C+C
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functional plasticity occurred in, and in regions with functional significance for the PCM 

task. This provides evidence that morphological variation contributes to cognitive 

function. This means that cognitive training could potentially alter brain structure which 

may lead to improved cognitive performance.  

 
Notably, in the following experiment, we were able to demonstrate structural 

change in the brain as a result of training. Specifically, we found a significant increase in 

ODI in the frontal pole post-training. The increase in grey and white matter ODI may 

indicate new neurite growth (Zhang et al., 2012) in this region as a result of the cognitive 

training programme. This is an important finding because, as discussed previously, Nazeri 

et al. (2015) found a significant age-related deficit in grey matter ODI in frontoparietal 

regions. Furthermore, they demonstrated that higher levels of frontal pole ODI were 

related to better performance on tests of working memory/processing speed. Moreover, 

past research suggests that the frontal pole plays an important role in mediating neuronal 

compensation (Marioni et al., 2012; Valenzuela et al., 2012). Therefore, demonstrating 

training-induced plasticity in this area may be especially significant given that age-related 

deficits in ODI have been found in this region, given that higher levels of frontal pole ODI 

are associated with better cognitive performance, and given this area’s role in neuronal 

compensation. Thus, targeting the frontal pole with appropriate training interventions in 

middle-aged adults could be particularly beneficial in improving cognitive function and 

preventing decline in later life. 

 
In addition to training-induced structural change in the brain, our second study 

also demonstrated functional plasticity in middle-aged adults. We found significant 

increases in activity in fusiform and parahippocampus on the PAR transfer task following 

training; and significant increases in activity in the cerebellum on the 4-back transfer task 

following training. Activation increases have been explained as added recruitment of 

brain regions or as response strengthening within a cortical region (Kelly & Garavan, 

2005; Lustig et al., 2009; Lovden et al., 2010; Flegal et al., 2019; Pappa et al., 2020). These 

mechanisms are thought to result in increased capacity in the processes performed by 

these areas (Kelly & Garavan, 2005; Lustig et al., 2009; Lovden et al., 2010; Flegal et al., 

2019; Pappa et al., 2020). Decreases in activity are thought to indicate increased neural 
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efficiency (Kelly & Garavan, 2005; Lustig et al., 2009; Lovden et al., 2010; Schmiedek et al., 

2010; Strenziok et al., 2014; Flegal et al., 2019; Pappa et al., 2020).  

 
Our findings of increased activity during the transfer tasks provides support for 

the notion that increases in capacity can transfer to untrained tasks requiring the same 

processes as the trained tasks. That is, the tasks in our training programme were thought 

to engage overlapping working memory regions with the PAR and N-back tasks. Thus, 

engaging these areas during the training may have led to increased capacity for processes 

subserved by these regions. This increased capacity may have transferred to the PAR and 

N-back tasks as demonstrated by increased activity in these regions, and by improved 

performance on the 4-back task. Therefore, we provide evidence for the hypothesis that 

transfer occurs when overlapping brain regions are engaged by the training and transfer 

tasks. We did not find evidence for the hypothesis that increased neural efficiency 

underlies transfer as we did not find decreases in activity on the transfer tasks. Thus, 

these findings suggest that training results in increased capacity of cognitive processes 

and this can transfer to untrained tasks that also require these processes. That increased 

capacity transferred to an untrained task (4-back) as demonstrated by significantly 

improved performance on this task, indicates that cognitive training can potentially have 

a big impact on everyday functioning if increased capacity in several processes transfers. 

 
Furthermore, it’s important to note that while this thesis is concerned with 

cognitive training as an intervention to prevent age-related decline, our findings also have 

implications for clinical use. For example, we have demonstrated that training-induced 

neuroplasticity can transfer to untrained tasks as demonstrated by increased activity 

during the transfer tasks, as well as significantly improved performance on the 4-back 

task. Moreover, neuroplasticity and significant training gains were demonstrated for the 

PCM task. Therefore, cognitive training programmes, as well as PCM training, may be 

useful for neurorehabilitative interventions for individuals with movement disorders or 

neurological injuries (e.g., Celnik & Cohen, 2004; Ertelt et al., 2007; Celnik et al., 2008, 

2009; King et al., 2013). Further research with patient populations is needed to test this 

possibility.  
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6.3 Limitations and future directions 

 
The findings in this thesis should be considered in light of several constraints. The 

primary methodological issues we identified for the overall study include issues common 

to within-subjects study designs, such as no control group. For our first experiment, we 

compared pre- and post-training performance of the training group against no control. In 

addition, for our second experiment, we combined the adaptive and non-adaptive groups 

to compare pre- and post-training sessions. Thus, we also had a within-subjects study 

design without a control group for the second experiment. Designs employing no control 

conditions make it more difficult to discern whether the effects stem from true training 

gains, or perhaps are mediated by other factors (Shipstead et al., 2012; Strenziok et al., 

2014; Dougherty et al., 2016; Melby-Lervag et al., 2016; Pappa et al., 2020). Therefore, 

our lack of control groups somewhat limited interpretation of the findings, such that 

improvements on the tasks were susceptible to non-specific factors such as test-retest 

effects, expectancy effects, increased motivation, and the Hawthorne effect 

(Landsberger, 1958; Collie et al., 2003; McCarney et al., 2007; Green & Bavelier, 2012; 

Gathercole et al., 2019; Pappa et al., 2020). That is, performance may have improved not 

solely because of the training, but due to these other factors as well. Furthermore, this 

design makes it more difficult to interpret the post-training brain changes as being due 

solely to the training programme, and not due to additional factors such as habituation of 

the participant to the fMRI context, as well as to the execution of the tasks. This stresses 

the importance of having both experimental and control groups when designing a training 

protocol over a longer period of time (Coynel et al., 2010).  

 
Indeed, an optimal study design for future research should be between-subjects, 

such that a training condition is compared to an active control treatment to ensure that 

any differences observed from pre- to post-training cannot be attributed to non-

experimental variables. However, employing an active control group bears the risk of 

missing or underestimating the effects of training (von Bastian & Oberauer, 2014; Pappa 

et al., 2020). Certainly, in our study, we found no significant differences between adaptive 

and non-adaptive (i.e., active control) training on any of the transfer tasks, nor on the 

neuroimaging outcomes. However, it is likely that our active control was too stringent and 
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non-adaptive participants benefitted substantially from training. This is supported by the 

finding that significant improvements in performance and very large effect sizes for the 

training tasks were found not only for the adaptive group, but also for the non-adaptive 

group. As discussed by Morrison and Chein (2011), small effect sizes with regards to 

training may represent either little adaptive training-induced benefit, or unexpected 

cognitive enhancements related to the non-adaptive control training. To make sure that 

training conditions were the same for both our groups, participants in the experimental 

condition completed an adaptive cognitive training programme, while the active control 

group completed a non-adaptive version of the same training. Therefore, our non-

adaptive training programme, although less challenging, is still repeatedly recruiting the 

brain networks involved in working memory, attention, and executive function. Thus, 

even the non-adaptive training programme has the potential to initiate neural plasticity in 

these networks and brain areas (Baltes & Lindenberger, 1988). As such, there were 

significant improvements in training task performance for both adaptive and non-

adaptive training groups, and no significant differences were detected between them on 

transfer tasks, and on functional and structural outcomes.  

 
With this in mind, future studies would benefit from active control training that is 

done with a different set of demanding tasks that do not engage the same processes and 

brain areas as the experimental group. Comparing these groups at post-training should 

yield differences between them if the training programmes have induced neural plasticity 

in their respective brain regions, thus resulting in a double-dissociation design. For 

example, if training programme A is designed to train processes tested by transfer task A, 

and training programme B is designed to train processes tested by transfer task B, then 

training programme A should result in improved performance on transfer task A but not 

on transfer task B, and training programme B should result in improvements on transfer 

task B but not on transfer task A. Furthermore, the inclusion of a passive control group 

could be employed to assess non-specific factors such as test-retest effects. In addition, 

future studies could include a self-report measure of expectancy, effort, and motivation, 

as well as a measure of implicit beliefs about the malleability of intelligence, in order to 

explicitly model these factors as covariates when assessing task performance.  
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A further limitation of our study is that the sample sizes in our experiments can be 

considered relatively small. Our second study in particular was underpowered, such that 

post-hoc power calculations demonstrated that achieved power for the analyses was very 

low. Although significant training-induced changes in brain microstructure and function 

were demonstrated in middle-aged adults, additional studies with larger sample sizes 

may detect effects in other brain regions, as well as possible smaller effects. Indeed, our 

first study may have benefitted from a larger sample as well, as relatively small effects 

may have resulted from just 31 minutes of training. As such, future research in this area 

should focus on investigating the effects of training on large-scale samples. Information 

from such large-scale samples will prove vital in determining the effectiveness of utilising 

cognitive training in middle-age to improve cognitive function, and prevent age-related 

decline. 

 
An important issue that has been overlooked in the first experiment is whether 

benefits of training with the PCM task can transfer to untrained tasks. It would be 

important to test if training with the PCM task leads to a general improvement in the 

level of cognitive functioning and motor control. Interventions targeting age-associated 

cognitive decline should be trying to maximise the transfer of skills as much as possible. 

Identifying tasks that can lead to improvement in untrained tasks is crucial and 

recommends investigation of transfer effects. Moreover, we only examined short-term 

training with the PCM task. Although a detailed characterisation of the initial acquisition 

of a motor skill is critical to our understanding of motor learning, it is equally important to 

understand how the retention of newly acquired abilities occurs over longer periods of 

time (King et al., 2013). A study of longer-term training would be needed to see if further 

gains could be observed and indeed, to establish whether the PCM task would be useful 

in cognitive training regimes. 

 
Our results provide support for the notion that cognitive training can be used 

beneficially in middle-aged adults with the potential to prevent cognitive decline in later 

life. However, in the context of implementing interventions designed to prevent or 

ameliorate age-related declines in cognitive performance, improvements in cognitive 

functioning must be maintained beyond the conclusion of the training sessions (King et 
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al., 2013). Therefore, a limitation of the present study is that we did not assess the 

durability of the training and transfer effects. In order to investigate whether our 

cognitive training programme can maintain these changes into late-life, a long-term 

follow-up study with the same participants looking at cognitive performance and brain 

function and structure would be necessary. Additionally, it would be interesting to see 

whether these brain changes persist with or without the aid of further, less rigorous, 

cognitive training (i.e., booster sessions), and for how long. Indeed, there are studies that 

have noted performance improvements that persist months or years after training (e.g., 

Schaie & Willis, 1986; Ball et al., 1988; Emery et al., 1992; Willis et al., 2006; Lustig et al., 

2009). A possible explanation is that participants continue to use, and thus maintain, the 

trained processes in their everyday lives (Lustig et al., 2009). On a practical level, intensive 

training for short periods followed by periodic reassessments and booster sessions may 

be a useful method for preserving training benefits with minimal burden to the 

participant (Lustig et al., 2009). 

 
 A further limitation of our study is that we did not assess measures of everyday 

function, and therefore we cannot be certain of the training impact on daily living. 

Certainly it would be important to show that the training programme has the ability to 

improve everyday functioning. We have demonstrated transfer from the trained tasks to 

an untrained task and this is a promising indicator for taking the next step, i.e., transfer to 

everyday activities (Lustig et al., 2009). However, it remains to be seen whether these 

tasks can be used in practice to enhance everyday cognitive functioning (Strenziok et al., 

2014; Pergher et al., 2018). It is important to note that this might be a challenging 

endeavour as many current standardised measures were originally designed for clinical 

populations, and often do not produce a sufficient range of performance in healthy adults 

to allow an adequate assessment of training effects (Lustig et al., 2009). 

 
The findings from our study indicate that middle-aged adults respond to cognitive 

training with improved performance on both trained and untrained tasks, and with 

structural and functional plasticity. We have suggested that this strengthens our 

arguments for the implementation of intervention programmes before older age. Middle-

aged adults may be more motivated to undertake training as a way to prevent cognitive 
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decline than younger adults, as well as potentially having more plasticity than older 

adults. However, the extent to which plasticity varies with age could not be considered 

with the present study and could only be assessed if younger and older adults were 

included within the same experiment. Although numerous studies suggest that younger 

adults benefit more from training than older participants and the capacity for plasticity 

declines with age (e.g., Nyberg et al., 2003; Dahlin et al., 2008; Li et al., 2008; Lustig et al., 

2009; Brehmer et al., 2012; Emch et al., 2019), we do not know if this means that 

initiating training programmes in midlife would be more beneficial than starting in older 

age. Future research would require a study design comparing all three age groups on 

training and transfer effects, as well as brain structure and function in order to confirm 

these conclusions. 

 
6.4 Conclusion 
 

This thesis contributes new findings to the cognitive training literature. We found 

that short-term training on a perceptual-cognitive-motor task induced functional 

neuroplasticity in healthy middle-aged adults. Furthermore, this training resulted in 

significant improvement on the task, and extent of improvement was related to 

underlying brain structure and function. Furthermore, we found that longer-term training 

with working memory, attention, and inhibition tasks resulted in functional and structural 

plasticity in this age group. Substantial improvements were found for the training tasks, 

and training gains transferred to an untrained task. Taken together, these findings 

demonstrate considerable cognitive, motor, and neural plasticity in middle-aged adults. 

Moreover, neuroplasticity in this age group was demonstrated in areas that that have 

relevance for age-associated cognitive decline such as the prefrontal cortex, anterior 

cingulate, caudate, putamen, and frontal pole. Therefore, we conclude that cognitive 

training can successfully promote plasticity in middle-aged adults, and this may have a 

significant potential impact with regards to improving cognitive function and preventing 

age-related decline in later life.  
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Appendices 

I.  PCM task instructions for participants 

Task instruction 

 During this task, you will see a white ball, a red target ball, and green balls. You will 

control the white ball with the MRI mouse, and try to move it to the red target.    

 The green balls will move around on the screen. Your white ball must avoid the green 

balls. If your white ball touches a green ball, that trial will end. And the next trial will start.  

 You will have 2 starting positions for your white ball, bottom left and right of screen. The 

starting positions will change randomly. Before the beginning of every attempt, you will 

see which corner you will start in and you can get ready by moving the mouse to that 

position.  

 When the green balls start to move, that’s the start of the trial and you will be able to 

move the white ball freely.  

** Mouse will fail sometimes: go off the screen or can’t move – don’t worry about it. Tips: 

smooth movements, will sometimes need to lift mouse off of pad, keep left hand off of pad – 

maybe keep at side of box. 

 There will be 4 phases of the task:  

First: habituation to scanner and MRI mouse = 8 trials, ~1min, no scanning. 

Second: learning phase = 80 trials, ~15min, fMRI scanning. 

Third: practice phase divided into two sections (break in b/w) = 24 trials, ~5min, structural 

scan and 48 trials, ~10min, diffusion scan. 

Fourth: test phase = 80 trials, ~15min, fMRI scanning. 
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II.  N-back task instructions and visual example for participants 

N-back task (in the scanner): 

You will see a series of letters presented on a screen one at a time. Your task is to respond with a 

button press when the current letter on the screen matches one that was presented a certain 

number back in the sequence. This number will vary throughout the task.  

For example, you may be asked to look for a match 1-back in the sequence: you will need to press 

the button when the letter on the screen is the same as the previous letter. Both upper and 

lowercase of the same letter would be correct.  

Or you may be asked to look for a match 3-back in the sequence: you will need to press the 

button when the letter on the screen is the same as the letter that was presented 3 places before. 

Both upper and lowercase of the same letter would be correct. 

Or you may be asked to look for a match 4-back in the sequence: you will need to press the 

button when the letter on the screen is the same as the letter that was shown 4 places before. 

Both upper and lowercase of the same letter would be correct. 

There will also be a task, in which you will be given a target letter to respond to each time it is on 

the screen. Every time that particular letter is on the screen, whether it is uppercase or lowercase, 

you will need to press the button.  

The instruction for whether a particular series of letters is a target letter, 1-back, 3-back, or 4-back 

task, will be presented on the screen before the series starts. 

 

** Some of the N-back tasks will be difficult, but try to respond as quickly and accurately as 

possible. 
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Target letter  

 

Here you would just respond to every ‘d/D’ in the sequence because you are looking out for the 

letter ‘d’ as given by the instructions.  

In this version of the task you will always be told what letter you are looking for, for that 

particular set of letters. 

 

1-back 

 

Here you would respond to ‘w’, because it matches the ‘W’ before (one back in the sequence). 

You would also respond to ‘B’, because it matches the ‘b’ just before (one back in the sequence). 

 

3-back 

 

Here you would respond to ‘t’, because it matches the other ‘t’ three letters back in the sequence. 

You would also respond to the ‘d’, because it matches with another ‘d’ three letters back in the 

sequence. 

 

4-back 

 

You would respond to the ‘z’, because it matches the ‘z’ four letters back in the sequence. 

Here you would also respond to the ‘H’, because it matches the ‘h’ four letters back in the 

sequence. 

 

 Both upper and lowercase of the same letter would be correct 

 

Target: d/D c v d g y d l w t f 

1-back s f W w s b B g j s 

3-back t h s t q d v b d k 

4-back z s h f z y H k l t 
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III.  PAL and PAR task instructions and visual examples for participants 

Learning task (NOT in the scanner): 

You will be asked to learn eight pairs of abstract pictures that you will be given a memory test on 

in the scanner. Firstly, you will be presented with the eight pairs, one at a time on the screen for a 

few seconds, and we ask that you try and memorise the pairs. You will then have more time to 

learn the pairs in part 2 of the task. In part 2, you will be presented with one of the pictures above 

4 other pictures, and the task is to match the picture to one of the 4 possibilities. You will be 

asked to respond with the keys 1-4 (corresponding to the four pictures from left to right). You will 

receive feedback as to whether you have chosen the correct or incorrect pairing after each 

attempt. Use this feedback to help you learn the correct pairings. 

 

** Try to respond as quickly and accurately as possible, 3 seconds to respond  

** 8 trials/problems per run, score out of 8 at the end of each run, there are 16 runs 

** The task takes about 12min 

 

Memory task (in the scanner): 

You will be presented with a picture from one of the pairs that you learned earlier. When you see 

this first picture, we ask that you try to remember its partner picture and hold this image in your 

mind for a few seconds. Then a second picture will be presented. You will be asked whether the 

second picture is the correct pair match to the first picture or not. If it is a match you will press 

button 1, if it is not a match you will press button 2. 

 

** Try to respond as quickly and accurately as possible, 3 seconds to respond 

** There will be no feedback for this task 
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Learning task 

  

 

3 seconds to respond 
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Memory task  
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IV.  CogniPlus task instructions for participants 
 
 
CogniPlus training 
 
Over the course of 4-6 weeks you will engage in a series of brain training tasks for 1 hour 

per day, 2-3 times per week. The training will consist of 5 tasks, each of which will last for 

10 minutes. For the first 1 or 2 sessions you may practice the task before starting it. 

Sometimes the tasks will get harder as you go along, sometimes they will stay the same, 

and sometimes they may get easier. One of the tasks has a few different subtypes and 

you have a choice as to how you proceed with the training. You can adjust the volume at 

the beginning of the training session. 

 

** Try to respond quickly and accurately. 

** Pressing the ESC and F5 keys at the same time pauses the training. 

** For the first task, when someone’s name is called on the intercom you may press the 

button right away, you do not need to wait until they finish calling the person’s name. 
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V.  Chapter 3: figures for tests of assumptions  

 

 

 

 

Figure V.1. Boxplots showing no outliers for female and male normalised difference scores. The 

box represents the interquartile range which contains the middle 50% of scores. The whiskers are 

the highest and lowest values which are no greater than 1.5 times the interquartile range. A line 

across the box indicates the median. Outliers are defined as values between 1.5 and 3 times the 

interquartile range. Significant outliers are defined as values more than 3 times the interquartile 

range. 
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Figure V.2. Boxplot showing no outliers for age (years). The box represents the interquartile range 

which contains the middle 50% of ages. The whiskers are the highest and lowest values which are 

no greater than 1.5 times the interquartile range. A line across the box indicates the median. 

Outliers are defined as values between 1.5 and 3 times the interquartile range. Significant outliers 

are defined as values more than 3 times the interquartile range. 
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Figure V.3. Boxplot showing no outliers for normalised difference scores. The box represents the 

interquartile range which contains the middle 50% of scores. The whiskers are the highest and 

lowest values which are no greater than 1.5 times the interquartile range. A line across the box 

indicates the median. Outliers are defined as values between 1.5 and 3 times the interquartile 

range. Significant outliers are defined as values more than 3 times the interquartile range. 

 

 

 

 

 

 
 

Figure V.4. Scatterplot of age (years) x normalised difference scores. The linear regression line is y 

= -0.15+8.36E-3*x, R2 = 0.034. 
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Figure V.5. Boxplot showing no outliers for education (years). The box represents the interquartile 

range which contains the middle 50% of values. The whiskers are the highest and lowest values 

which are no greater than 1.5 times the interquartile range. A line across the box indicates the 

median. Outliers are defined as values between 1.5 and 3 times the interquartile range. 

Significant outliers are defined as values more than 3 times the interquartile range. 
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Figure V.6. Scatterplot of education (years) x normalised difference scores. The linear regression 

line is y = 0.23-3.91E-4*x, R2 = 5.255E-5. 

 

 

 

 

 

 

 
 

Figure V.7. Scatterplot of education (years) x normalised difference scores. Quadratic regression 

line is y = 2.9-0.31*x+8.88E-3*x2, R2 = 0.162.  
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Figure V.8. Boxplot showing no outliers in the differences between pre- and post-training scores. 

The box represents the interquartile range which contains the middle 50% of difference values. 

The whiskers are the highest and lowest values which are no greater than 1.5 times the 

interquartile range. A line across the box indicates the median. Outliers are defined as values 

between 1.5 and 3 times the interquartile range. Significant outliers are defined as values more 

than 3 times the interquartile range. 

 

 

 

 

 

 

 

 

 

 

 

 

 



291 
 

VI.  Chapter 4: figures for tests of assumptions  

 

 

 

 

 

Figure VI.1. Boxplots showing no significant outliers for female and male post-training RAPM 

scores. The box represents the interquartile range which contains the middle 50% of scores. The 

whiskers are the highest and lowest values which are no greater than 1.5 times the interquartile 

range. A line across the box indicates the median. Outliers are defined as values between 1.5 and 

3 times the interquartile range. Significant outliers are defined as values more than 3 times the 

interquartile range. 
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Figure VI.2. Boxplots showing no outliers for female and male post-training PAL scores. The box 

represents the interquartile range which contains the middle 50% of scores. The whiskers are the 

highest and lowest values which are no greater than 1.5 times the interquartile range. A line 

across the box indicates the median. Outliers are defined as values between 1.5 and 3 times the 

interquartile range. Significant outliers are defined as values more than 3 times the interquartile 

range. 
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Figure VI.3. Boxplots showing no significant outliers for female and male post-training PAR scores. 

The box represents the interquartile range which contains the middle 50% of scores. The whiskers 

are the highest and lowest values which are no greater than 1.5 times the interquartile range. A 

line across the box indicates the median. Outliers are defined as values between 1.5 and 3 times 

the interquartile range. Significant outliers are defined as values more than 3 times the 

interquartile range. 

 

 

 

 

 

 

Figure VI.4. Boxplots showing no outliers for female and male post-training 3-back scores. The 

box represents the interquartile range which contains the middle 50% of scores. The whiskers are 

the highest and lowest values which are no greater than 1.5 times the interquartile range. A line 

across the box indicates the median. Outliers are defined as values between 1.5 and 3 times the 

interquartile range. Significant outliers are defined as values more than 3 times the interquartile 

range. 
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Figure VI.5. Boxplots showing no significant outliers for female and male post-training 4-back 

scores. The box represents the interquartile range which contains the middle 50% of scores. The 

whiskers are the highest and lowest values which are no greater than 1.5 times the interquartile 

range. A line across the box indicates the median. Outliers are defined as values between 1.5 and 

3 times the interquartile range. Significant outliers are defined as values more than 3 times the 

interquartile range. 
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Figure VI.6. Boxplot showing no outliers for age (years). The box represents the interquartile 

range which contains the middle 50% of ages. The whiskers are the highest and lowest values 

which are no greater than 1.5 times the interquartile range. A line across the box indicates the 

median. Outliers are defined as values between 1.5 and 3 times the interquartile range. 

Significant outliers are defined as values more than 3 times the interquartile range. 

 

 

 

 

 

 

 

 

Figure VI.7. Boxplot showing no significant outliers for post-training RAPM scores. The box 

represents the interquartile range which contains the middle 50% of scores. The whiskers are the 

highest and lowest values which are no greater than 1.5 times the interquartile range. A line 

across the box indicates the median. Outliers are defined as values between 1.5 and 3 times the 

interquartile range. Significant outliers are defined as values more than 3 times the interquartile 

range. 
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Figure VI.8. Histogram showing the distribution of age (years).  

 

 

 

 

 
 

Figure VI.9. Scatterplot of age (years) x post-training RAPM scores. The linear regression line is y = 

14.37-0.13*x, R2 = 0.017. 
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Figure VI.10. Boxplot showing no outliers for post-training PAL scores. The box represents 

the interquartile range which contains the middle 50% of values. The whiskers are the 

highest and lowest values which are no greater than 1.5 times the interquartile range. A 

line across the box indicates the median. Outliers are defined as values between 1.5 and 3 

times the interquartile range. Significant outliers are defined as values more than 3 times 

the interquartile range. 
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Figure VI.11. Scatterplot of age (years) x post-training PAL scores. The linear regression line is y = 

55.76+0.41*x, R2 = 0.004. 
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Figure VI.12. Boxplot showing no outliers for post-training PAR scores. The box represents 

the interquartile range which contains the middle 50% of values. The whiskers are the 

highest and lowest values which are no greater than 1.5 times the interquartile range. A 

line across the box indicates the median. Outliers are defined as values between 1.5 and 3 

times the interquartile range. Significant outliers are defined as values more than 3 times 

the interquartile range. 

 

 

 

 

 

 

 

Figure VI.13. Scatterplot of age (years) x post-training PAR scores. The linear regression line is y = 

13.71+0.45*x, R2 = 0.055. 
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Figure VI.14. Boxplot showing no outliers for post-training 3-back scores. The box 

represents the interquartile range which contains the middle 50% of values. The whiskers 

are the highest and lowest values which are no greater than 1.5 times the interquartile 

range. A line across the box indicates the median. Outliers are defined as values between 

1.5 and 3 times the interquartile range. Significant outliers are defined as values more 

than 3 times the interquartile range. 
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Figure VI.15. Scatterplot of age (years) x post-training 3-back scores. The linear regression line is y 

= 57.01+0.19*x, R2 = 0.015. 
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Figure VI.16. Boxplot showing no significant outliers for post-training 4-back scores. The 

box represents the interquartile range which contains the middle 50% of values. The 

whiskers are the highest and lowest values which are no greater than 1.5 times the 

interquartile range. A line across the box indicates the median. Outliers are defined as 

values between 1.5 and 3 times the interquartile range. Significant outliers are defined as 

values more than 3 times the interquartile range. 

 

 

 

 

 

 

 

Figure VI.17. Scatterplot of age (years) x post-training 4-back scores. The linear regression line is y 

= 60.45+0.09*x, R2 = 0.005. 
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Figure VI.18. Boxplot showing no outliers for education (years). The box represents the 

interquartile range which contains the middle 50% of values. The whiskers are the highest 

and lowest values which are no greater than 1.5 times the interquartile range. A line 

across the box indicates the median. Outliers are defined as values between 1.5 and 3 

times the interquartile range. Significant outliers are defined as values more than 3 times 

the interquartile range. 
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Figure VI.19. Scatterplot of education (years) x post-training RAPM scores. The linear regression 

line is y = 7.38+0.07*x, R2 = 0.006. 

 

 

 

 

 

 

Figure VI.20. Scatterplot of education (years) x post-training PAL scores. The linear regression line 

is y = 75.42-0.06*x, R2 = 1.274E-4. 
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Figure VI.21. Scatterplot of education (years) x post-training PAR scores. The linear regression line 

is y = 34.24-0.02*x, R2 = 1.129E-4.  

 

 

 

 

Figure VI.22. Scatterplot of education (years) x post-training 3-back scores. The linear regression 

line is y = 63.72+0.11*x, R2 = 0.007. 
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Figure VI.23. Scatterplot of education (years) x post-training 4-back scores. The linear regression 

line is y = 65.44-0.06*x, R2 = 0.003. 

 

 

 

 

Figure VI.24. Boxplots showing no outliers for non-adaptive and adaptive post-training RAPM 

scores. The box represents the interquartile range which contains the middle 50% of scores. The 

whiskers are the highest and lowest values which are no greater than 1.5 times the interquartile 

range. A line across the box indicates the median. Outliers are defined as values between 1.5 and 
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3 times the interquartile range. Significant outliers are defined as values more than 3 times the 

interquartile range. 

 

 

 

 

 

 

 

 

Figure VI.25. Scatterplot of pre-training RAPM scores x post-training RAPM scores for the non-

adaptive group. The linear regression line is y = 1.73+0.80*x, R2 = 0.623. 
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Figure VI.26. Scatterplot of pre-training RAPM scores x post-training RAPM scores for the adaptive 

group. The linear regression line is y = 2.71+0.74*x, R2 = 0.579. 

 

 

 

Adaptive group 
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Figure VI.27. Boxplots showing no outliers for non-adaptive and adaptive post-training PAL 

scores. The box represents the interquartile range which contains the middle 50% of scores. The 

whiskers are the highest and lowest values which are no greater than 1.5 times the interquartile 

range. A line across the box indicates the median. Outliers are defined as values between 1.5 and 

3 times the interquartile range. Significant outliers are defined as values more than 3 times the 

interquartile range. 

 

 

 

 

 

 

 

 

Figure VI.28. Scatterplot of pre-training PAL scores x post-training PAL scores for the non-adaptive 

group. The linear regression line is y = 14.27+0.80*x, R2 = 0.419. 
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Figure VI.29. Scatterplot of pre-training PAL scores x post-training PAL scores for the adaptive 

group. The linear regression line is y = 33.85+0.55*x, R2 = 0.394.  
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Figure VI.30. Boxplots showing no outliers for non-adaptive and adaptive post-training PAR 

scores. The box represents the interquartile range which contains the middle 50% of scores. The 

whiskers are the highest and lowest values which are no greater than 1.5 times the interquartile 

range. A line across the box indicates the median. Outliers are defined as values between 1.5 and 

3 times the interquartile range. Significant outliers are defined as values more than 3 times the 

interquartile range. 

 

 

 

 

 

 

 

 
 

Figure VI.31. Scatterplot of pre-training PAR scores x post-training PAR scores for the non-

adaptive group. The linear regression line is y = 15.65+0.56*x, R2 = 0.302. 
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Figure VI.32. Scatterplot of post-training PAL scores x post-training PAR scores for the non-

adaptive group. The linear regression line is y = 17.10+0.22*x, R2 = 0.617. 
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Figure VI.33. Scatterplot of age (years) x post-training PAR scores for the non-adaptive group. The 

linear regression line is y = 25.90+0.17*x, R2 = 0.006. 

 

 

 

 

 

 

 

 
 

Figure VI.34. Scatterplot of pre-training PAR scores x post-training PAR scores for the adaptive 

group. The linear regression line is y = 20.31+0.42*x, R2 = 0.359. 
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Figure VI.35. Scatterplot of post-training PAL scores x post-training PAR scores for the adaptive 

group. The linear regression line is y = 17.86+0.22*x, R2 = 0.446. 
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Figure VI.36. Scatterplot of age (years) x post-training PAR scores for the adaptive group. The 

linear regression line is y = -2.31+0.82*x, R2 = 0.219. 
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Figure VI.37. Boxplots showing no outliers for non-adaptive and adaptive post-training 3-back 

scores. The box represents the interquartile range which contains the middle 50% of scores. The 

whiskers are the highest and lowest values which are no greater than 1.5 times the interquartile 

range. A line across the box indicates the median. Outliers are defined as values between 1.5 and 

3 times the interquartile range. Significant outliers are defined as values more than 3 times the 

interquartile range. 

 

 

 

 

 

 

 

 

 

Figure VI.38. Scatterplot of pre-training 3-back scores x post-training 3-back scores for the non-

adaptive group. The linear regression line is y = 44.01+0.33*x, R2 = 0.109. 
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Figure VI.39. Scatterplot of pre-training 3-back scores x post-training 3-back scores for the 

adaptive group. The linear regression line is y = 42.81+0.33*x, R2 = 0.061.  
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Figure VI.40. Boxplots showing no significant outliers for non-adaptive and adaptive post-training 

4-back scores. The box represents the interquartile range which contains the middle 50% of 

scores. The whiskers are the highest and lowest values which are no greater than 1.5 times the 

interquartile range. A line across the box indicates the median. Outliers are defined as values 

between 1.5 and 3 times the interquartile range. Significant outliers are defined as values more 

than 3 times the interquartile range. 

 

 

 

 

 

 

 

 

Figure VI.41. Scatterplot of pre-training 4-back scores x post-training 4-back scores for the non-

adaptive group. The linear regression line is y = 26.83+0.61*x, R2 = 0.385. 
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Figure VI.42. Scatterplot of pre-training 4-back scores x post-training 4-back scores for the 

adaptive group. The linear regression line is y = 29.12+0.56*x, R2 = 0.249. 
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Figure VI.43. Boxplot showing no outliers in the RAPM differences between pre- and post-training 

scores. The box represents the interquartile range which contains the middle 50% of difference 

values. The whiskers are the highest and lowest values which are no greater than 1.5 times the 

interquartile range. A line across the box indicates the median. Outliers are defined as values 

between 1.5 and 3 times the interquartile range. Significant outliers are defined as values more 

than 3 times the interquartile range.  

 

 

 

 

 

 

 

Figure VI.44. Boxplot showing no significant outliers in the PAL differences between pre- and 

post-training scores. The box represents the interquartile range which contains the middle 50% of 

difference values. The whiskers are the highest and lowest values which are no greater than 1.5 

times the interquartile range. A line across the box indicates the median. Outliers are defined as 

values between 1.5 and 3 times the interquartile range. Significant outliers are defined as values 

more than 3 times the interquartile range.  
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Figure VI.45. Boxplot showing no significant outliers in the PAR differences between pre- and 

post-training scores. The box represents the interquartile range which contains the middle 50% of 

difference values. The whiskers are the highest and lowest values which are no greater than 1.5 

times the interquartile range. A line across the box indicates the median. Outliers are defined as 

values between 1.5 and 3 times the interquartile range. Significant outliers are defined as values 

more than 3 times the interquartile range. 
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Figure VI.46. Boxplot showing no significant outliers in the 3-back differences between pre- and 

post-training scores. The box represents the interquartile range which contains the middle 50% of 

difference values. The whiskers are the highest and lowest values which are no greater than 1.5 

times the interquartile range. A line across the box indicates the median. Outliers are defined as 

values between 1.5 and 3 times the interquartile range. Significant outliers are defined as values 

more than 3 times the interquartile range. 
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Figure VI.47. Boxplot showing no significant outliers in the 4-back differences between pre- and 

post-training scores. The box represents the interquartile range which contains the middle 50% of 

difference values. The whiskers are the highest and lowest values which are no greater than 1.5 

times the interquartile range. A line across the box indicates the median. Outliers are defined as 

values between 1.5 and 3 times the interquartile range. Significant outliers are defined as values 

more than 3 times the interquartile range. 

 

 

 

 

 

 

 

 

 

 

 4-back difference values 



324 
 

VII.  Gender analyses 

 

Independent samples t-tests were conducted to check for any differences in 

performance between females and males on pre- and post-training transfer tasks. Tests 

of assumptions for the independent t-tests examining pre-training RAPM, PAL, PAR, 3-

back, and 4-back scores indicated no significant outliers for females and none for males 

(Figures VII.1, VII.2, VII.3, VII.4, and VII.5). Shapiro-Wilks tests for females showed that 

pre-training RAPM, PAL, 3-back, and 4-back scores are normally distributed, W(28) = .929, 

p = .059; W(28) = .956, p = .274; W(28) = .954, p = .246; W(28) = .969, p = .554, 

respectively. As did Shapiro-Wilks tests for males for pre-training RAPM, PAL, PAR, 3-back, 

and 4-back scores, W(12) = .944, p = .553; W(12) = .939, p = .482; W(12) = .898, p = .148; 

W(12) = .950, p = .643; W(12) = .977, p = .967, respectively. Levene’s tests found that the 

assumption of homogeneity of variance for female and male pre-training RAPM, PAL, 

PAR, 3-back, and 4-back scores was met, F(1,38) = .864, p = .359; F(1,38) = .039, p = .845; 

F(1,38) = .247, p = .622; F(1,38) = .101, p = .752; F(1,38) = .520, p = .475, respectively. One 

of the tests of assumptions was violated in that female pre-training PAR scores were not 

normally distributed, W(28) = .890, p = .007. As such, a Mann-Whitney U test was 

employed to investigate any possible differences in gender with respect to pre-training 

PAR scores, as this non-parametric test does not require this assumption to be met. 
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Figure VII.1. Boxplots showing no significant outliers for female and male pre-training RAPM 

scores. The box represents the interquartile range which contains the middle 50% of scores. The 

whiskers are the highest and lowest values which are no greater than 1.5 times the interquartile 

range. A line across the box indicates the median. Outliers are defined as values between 1.5 and 

3 times the interquartile range. Significant outliers are defined as values more than 3 times the 

interquartile range. 
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Figure VII.2. Boxplots showing no outliers for female and male pre-training PAL scores. The box 

represents the interquartile range which contains the middle 50% of scores. The whiskers are the 

highest and lowest values which are no greater than 1.5 times the interquartile range. A line 

across the box indicates the median. Outliers are defined as values between 1.5 and 3 times the 

interquartile range. Significant outliers are defined as values more than 3 times the interquartile 

range. 

 

 

 

 

 

 

 
 

Figure VII.3. Boxplots showing no outliers for female and male pre-training PAR scores. The box 

represents the interquartile range which contains the middle 50% of scores. The whiskers are the 

highest and lowest values which are no greater than 1.5 times the interquartile range. A line 

across the box indicates the median. Outliers are defined as values between 1.5 and 3 times the 

interquartile range. Significant outliers are defined as values more than 3 times the interquartile 

range. 
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Figure VII.4. Boxplots showing no outliers for female and male pre-training 3-back scores. The box 

represents the interquartile range which contains the middle 50% of scores. The whiskers are the 

highest and lowest values which are no greater than 1.5 times the interquartile range. A line 

across the box indicates the median. Outliers are defined as values between 1.5 and 3 times the 

interquartile range. Significant outliers are defined as values more than 3 times the interquartile 

range. 
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Figure VII.5. Boxplots showing no outliers for female and male pre-training 4-back scores. The box 

represents the interquartile range which contains the middle 50% of scores. The whiskers are the 

highest and lowest values which are no greater than 1.5 times the interquartile range. A line 

across the box indicates the median. Outliers are defined as values between 1.5 and 3 times the 

interquartile range. Significant outliers are defined as values more than 3 times the interquartile 

range. 

 

 

The independent t-test for pre-training RAPM scores demonstrated there were no 

significant differences in performance between females and males, t(38) = -.177, p = .861. 

The independent t-test for pre-training PAL scores demonstrated there were no 

significant differences in performance between females and males, t(38) = -.511, p = .612. 

The independent t-test for pre-training 3-back scores showed there were no significant 

differences in performance between females and males, t(38) = -.448, p = .656. The 

independent t-test for pre-training 4-back scores indicated there were no significant 

differences in performance between females and males, t(38) = -.753, p = .456. The 

Mann-Whitney U test for pre-training PAR scores demonstrated there were no significant 

differences in performance between females and males, U = 157.00, p = .745. 

 

Tests of assumptions for the independent t-tests examining post-training RAPM, 

PAL, PAR, 3-back, and 4-back scores were not violated and are reported in Chapter 4 (4.3 



329 
 

Results, pg. 143), with the exception that female post-training PAR scores were not 

normally distributed, W(28) = .882, p = .004. As such, a Mann-Whitney U test was 

employed to investigate any possible differences in gender with respect to post-training 

PAR scores. 

 

The independent t-test for post-training RAPM scores demonstrated there were 

no significant differences in performance between females and males, t(38) = .289, p = 

.774. The independent t-test for post-training PAL scores demonstrated there were no 

significant differences in performance between females and males, t(38) = -.180, p = .858. 

The independent t-test for post-training 3-back scores showed there were no significant 

differences in performance between females and males, t(38) = -.640, p = .526. The 

independent t-test for post-training 4-back scores indicated there were no significant 

differences in performance between females and males, t(38) = -.715, p = .479. The 

Mann-Whitney U test for post-training PAR scores demonstrated there were no 

significant differences in performance between females and males, U = 165.50, p = .941. 
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VIII.  Whole-brain fMRI analysis for the PCM task 

 

Results of the 2 × 2 repeated measures ANOVA (Testing Phase: Pre-training, Post-

training x Trial Performance: Successful, Unsuccessful) yielded a significant main effect of 

testing phase bilaterally in the cerebellum and pons, in the right thalamus, right 

subthalamic nucleus, and right lingual gyrus (Table VIII.1). We did not observe a 

significant main effect of performance or interaction between testing phase and 

performance. 

 

 

Table VIII.1. Whole-brain analysis: brain regions with a significant main effect of testing phase for 

the PCM task. 

 

 
 
Brain region 
 

   
 

     
 

                         
 

               F-value 
 

Cluster size       P-value  
(voxels)             FDR-corrected 

 
Cerebellar vermis (10)  3 -46 -34   43.09    251                    .003 

Left pons -3 -19 -22   26.69 
 Right thalamus  6 -22 -1   20.56    

Right pons  3 -28 -37   15.34 
 Right subthalamic nucleus  9 -13 -10   12.43 
 

      Left cerebellum (Crus 2)  -3 -85 -22   45.77    132                    .047 

Right cerebellum (Crus 1)  6 -85 -19   38.90 
 Right lingual gyrus   21 -94 -7   27.58    

Right cerebellum (Crus 2)  6 -85 -25   17.20    

            A statistical significance threshold of p < .05 FDR-correction at the cluster level was used, after clusters were 

formed with an uncorrected p < .001. P values are reported at the cluster level. The MNI coordinates refer 

to the peak F-value. Local maxima that are more than 8 mm apart are shown for each cluster.  

 

 

 

We examined the differences in testing phase more closely using the contrasts 

Pre-training > Post-training and Post-training > Pre-training. We found a significant effect 

for the two contrasts. Specifically, there was greater activity bilaterally in cerebellum and 

in right lingual gyrus in the pre-training phase compared to the post-training phase (Table 

VIII.2). In the post-training phase relative to the pre-training phase, there was increased 

 MNI coordinates   

  x   y  z 
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activation in cerebellum, bilaterally in pons, right thalamus, right subthalamic nucleus, 

right precuneus, right mid cingulate cortex, right SMA, and left paracentral lobule (Table 

VIII.2). 

 

 

Table VIII.2. Whole-brain analysis: brain regions with increased activity in the pre-training phase 

compared to the post-training phase (Pre-training > Post-training) of the PCM task. Followed by 

brain regions with increased activity in the post-training phase relative to the pre-training phase 

(Post-training > Pre-training). 

 

 
 
Brain region 
 

   
 

     
 

                         
 

               t-value 
 

Cluster size      P-value  
(voxels)             FDR-corrected 

 
Pre-training > Post-training 
 
Left cerebellum (Crus 2) -3 -85 -22   6.77    159                    .014 

Right cerebellum (Crus 1)  6 -85 -19   6.24 
 Right lingual gyrus  21 -94 -7   5.25    

Right cerebellum (Crus 2)  6 -85 -25   4.15 
  

 
Post-training > Pre-training 
 

     Cerebellar vermis (10)  3 -46 -34   6.56    317                    .002 

Left pons  -3 -19 -22   5.17 
 Right thalamus   6 -22 -1   4.53    

Right pons  3 -28 -37   3.92    

Right subthalamic nucleus  9 -13 -10   3.53 
 

      Right precuneus  12 -43 53   5.10    185                    .019 

Right mid cingulate cortex 9 -1 41   4.56 
 Right SMA 3 -22 65   4.05 
 Left paracentral lobule -3 -16 68   4.04 
 

            The results are shown using a statistical significance of p < .05 after FDR-correction at the cluster level, 

clusters formed using p < .001. P values are reported at the cluster level. The MNI coordinates refer to the 

peak t-value. Local maxima that are more than 8 mm apart are shown for each cluster.  
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IX.  Whole-brain fMRI analysis for the PAR task 

 

 

Results of the 2 (group: adaptive, non-adaptive) × 2 (session: pre-training, post-

training) x 3 (period: cue, delay, target) mixed ANOVA yielded a significant interaction 

between session and task period in right fusiform gyrus, right lingual gyrus, right 

parahippocampal gyrus, right inferior occipital gyrus, right calcarine sulcus, right cuneus, 

and right precuneus (Table IX.1). We did not observe a main effect of group, nor a main 

effect of session, and no main effect of task period. Interactions between group and 

session, group and period, and group x session x period, were also not significant. 

 

 
Table IX.1. Whole-brain analysis for the PAR task: brain regions with a significant interaction 

between session and task period. 

 

 
 
Brain region 
 

   
 

     
 

                         
 

               F-value 
 

Cluster size       P-value  
(voxels)             FDR-corrected 

 
Right fusiform gyrus  22 -44 -12   16.39    376                    < .001 

Right lingual gyrus  28 -62   0   10.39 
 Right parahippocampal gyrus  20 -34 -12   9.22    

Right inferior occipital gyrus  42 -78 -16   8.59 
 

      Right calcarine sulcus  24 -54  12   11.69    116                      .039 

      Right cuneus   18 -66  36   11.57    103                      .044 

Right precuneus  16 -60  28   9.16    

            A statistical significance threshold of p < .05 FDR-correction at the cluster level was used, after clusters were 

formed with an uncorrected p < .001. P values are reported at the cluster level. The MNI coordinates refer 

to the peak F-value. Local maxima that are more than 8 mm apart are shown for each cluster.  

 

 

 

We examined the interaction between session and task period more closely using 

the contrasts pre-training_cue > post-training_cue, post-training_cue > pre-training_cue, 

pre-training_delay > post-training_delay, post-training_delay > pre-training_delay, pre-

training_target > post-training_target, and post-training_target > pre-training_target. We 

found a significant effect for the contrasts post-training_cue > pre-training_cue and post-

 MNI coordinates   

  x   y  z 
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training_target > pre-training_target. Specifically, there was greater activity in right 

fusiform gyrus and right parahippocampal gyrus during the cue in the post-training 

session compared to the pre-training session (Figure IX.1). In the target post-training 

session relative to the pre-training session, there was increased activation bilaterally in 

fusiform gyrus, parahippocampal gyrus, cuneus, precuneus, and in left lingual gyrus, right 

calcarine sulcus, right angular gyrus, and right middle occipital gyrus (Figure IX.2). No 

other contrasts showed significant effects. 

 

 

 

 

 

Figure IX.1. Whole-brain analysis for the PAR task: increased activity during the post-training cue 

period in right fusiform gyrus and right parahippocampal gyrus. A statistical significance threshold 

of p < .05 FDR-correction at the cluster level was used, after clusters were formed with an 

uncorrected p < .001. 
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Figure IX.2. Whole-brain analysis for the PAR task: increased activation during the post-training 

target period bilaterally in fusiform gyrus, parahippocampal gyrus, cuneus, precuneus, and in left 

lingual gyrus, right calcarine sulcus, right angular gyrus (not shown), and right middle occipital 

gyrus. A statistical significance threshold of p < .05 FDR-correction at the cluster level was used, 

after clusters were formed with an uncorrected p < .001. 
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X.  Whole-brain fMRI analysis for the N-back task 

 

 

Results of the 2 × 2 x 4 mixed ANOVA (group: adaptive, non-adaptive x session: 

pre-training, post-training x condition: 0-, 1-, 3-, and 4-back) yielded a significant main 

effect of session in left precentral gyrus, left postcentral gyrus, and right cerebellum 

(Figure X.1a). There was a significant main effect of N-back condition in left dPFC, left 

posterior-medial frontal gyrus, left insula, left hippocampus, left fusiform gyrus, left 

calcarine sulcus, left middle occipital gyrus, left cerebellum, right superior temporal gyrus, 

right thalamus, bilaterally in precentral gyrus, postcentral gyrus, oPFC, gyrus rectus, and 

rolandic operculum (Figure X.1b). There was also a significant interaction between session 

and N-back condition in left vPFC, left oPFC, left posterior-medial frontal gyrus, left 

superior medial gyrus, left insula, left superior parietal cortex, left inferior parietal cortex, 

left precuneus, left middle occipital gyrus, right putamen, right thalamus, and bilaterally 

in dPFC, precentral gyrus, caudate, and cerebellum (Figure X.1c). We did not observe a 

main effect of group, nor an interaction between group and session, no interaction 

between group and condition, and no interaction of group x session x condition. 

 

 

 

 

Figure X.1. Whole-brain analysis for the N-back task: a) significant main effect of session in left 

precentral gyrus, left postcentral gyrus, and right cerebellum (not shown). b) Significant main 

effect of N-back condition in left dPFC, left posterior-medial frontal gyrus, left insula, left 

hippocampus (not shown), left fusiform gyrus (not shown), left calcarine sulcus (not shown), left 

middle occipital gyrus (not shown), left cerebellum (not shown), right superior temporal gyrus, 

right thalamus, bilaterally in precentral gyrus, postcentral gyrus, oPFC (not shown), gyrus rectus 
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(not shown), and rolandic operculum. c) Significant interaction between session and N-back 

condition in left vPFC (not shown), left oPFC, left posterior-medial frontal gyrus, left superior 

medial gyrus, left insula, left superior parietal cortex (not shown), left inferior parietal cortex (not 

shown), left precuneus, left middle occipital gyrus (not shown), right putamen (not shown), right 

thalamus (not shown), and bilaterally in dPFC, precentral gyrus, caudate (not shown), and 

cerebellum. A statistical significance threshold of p < .05 FDR-correction at the cluster level was 

used, clusters were formed with an uncorrected p < .001. 

 

 

 

We examined the differences in session and N-back working memory load more 

closely using the contrasts pre-training_1-back > post-training_1-back, post-training_1-

back > pre-training_1-back, pre-training_3-back > post-training_3-back, post-training_3-

back > pre-training_3-back, pre-training_4-back > post-training_4-back, and post-

training_4-back > pre-training_4-back (N.B., 0-back baseline activity was subtracted from 

the 1-, 3-, and 4-back conditions). We found a significant effect for two of the contrasts. 

Specifically, there was greater activity in left precentral gyrus and left postcentral gyrus 

for the pre-training 1-back condition compared to the post-training session (Figure X.2). 

For the 4-back working memory load, there was increased activation in the post-training 

session relative to the pre-training session in left vPFC, left posterior-medial frontal gyrus, 

left superior medial gyrus, left middle occipital gyrus, right superior parietal cortex, right 

angular gyrus, right cerebellum, and bilaterally in dPFC, precentral gyrus, and inferior 

parietal cortex (Figure X.3). 
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Figure X.2. Whole-brain analysis for the N-back task: significantly increased activity for the pre-

training 1-back working memory load in left precentral gyrus and left postcentral gyrus. A 

statistical significance threshold of p < .05 FDR-correction at the cluster level was used, clusters 

were formed with an uncorrected p < .001. 

 

 

 

 

 

 
Figure X.3. Whole-brain analysis for the N-back task: significantly increased activity for the post-

training 4-back working memory load in left vPFC (not shown), left posterior-medial frontal gyrus, 

left superior medial gyrus, left middle occipital gyrus (not shown), right superior parietal cortex, 

right angular gyrus (not shown), right cerebellum (not shown), and bilaterally in dPFC, precentral 

gyrus, and inferior parietal cortex (not shown). A statistical significance threshold of p < .05 FDR-

correction at the cluster level was used, clusters were formed with an uncorrected p < .001. 


