
Impacts of environmental pollution on mangrove phenology: Combining remotely sensed data 1 
and generalized additive models. 2 

Celis-Hernandez, Omarab; Villoslada-Peciña, Miguelcd; Ward, Raymond D.ce; Bergamo, T.F.c; 3 
Perez-Ceballos Roselaab; Girón-García María Patriciaf. 4 

aInstituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Estación el 5 
Carmen, Campeche, C.P. 24157, Ciudad del Carmen, México. 6 

bDirección de Cátedras CONACYT. Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, C.P. 03940, 7 
Ciudad de México. 8 

cInstitute of Agriculture and Environmental Sciences, Estonian University of Life Sciences, 9 
Kreutzwaldi 5, EE-51014 Tartu, Estonia 10 

dDepartment of Geographical and Historical Studies, University of Eastern Finland, P.O. Box 111, 11 
80101, Joensuu, Finland 12 

eCentre for Aquatic Environments, University of Brighton, Cockcroft Building, Moulsecoomb, 13 
Brighton, BN2 4GJ, United Kingdom. 14 

fLaboratorio de Fluorescencia de Rayos X. LANGEM. Instituto de Geología, Universidad Nacional 15 
Autónoma de México; Circuito Exterior, Ciudad Universitaria, Coyoacan, C.P. 04510, Ciudad de 16 
México, México.  17 

*Corresponding author 18 
Email address: celis0079@yahoo.es 19 

 20 

Highlights 21 

● Sentinel-2 data, HANTS and GAMs are used to detect phenology trends in mangroves  22 

● Models show phenology shifts as a response to environmental variables and trace 23 

elements 24 

● Pb and Cu lead to delays in the start of the season 25 

● Future research should address long-term effects of pollution on phenology 26 

Abstract 27 

Mangrove ecosystems worldwide have been affected by anthropogenic activities that modify 28 

natural conditions and supply trace elements that affect mangrove health and development. In 29 

order to gain a better understanding of these ecosystems, and assess the influence of 30 

physicochemical (granulometry, pH, salinity and ORP) and geochemical variables (concentrations of 31 

V, Cr, Co, Ni, Cu, Zn, Pb, Rb, Sr and Zr) on mangrove phenology, we combined field and satellite 32 

derived remotely sensed data. Phenology metrics in combination with Generalized Additive Models 33 

showed that start of the season was strongly influenced by Pb and Cu pollution as well as salinity 34 

and pH, with a large percentage of deviance explained (92.10%) by the model. Start of season 35 

exhibited non-linear delays as a response to pollution. Other phenology parameters such as the 36 

length of season, timing of the peak of season, and growth peak also indicated responses to both 37 

trace elements and physicochemical and geochemical variables, with percentages of deviance 38 

explained by the models ranging between 33.90% and 97.70%. While the peak of season showed 39 
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delays as a response to increased pH and decreased salinity, growth peak exhibited a non-linear 40 

decrease as a response to increased Sr concentrations. These results suggest that trace element 41 

pollution is likely to lead to altered phenological patterns in mangroves.  42 

 Keywords: Trace elements, remote sensing, mangrove phenology, Gulf of Mexico. 43 

 44 

1. Introduction 45 

Mangroves provide a wide range of ecosystem services that support some of the poorest 46 

communities worldwide such as East, West and South Africa, the Sundarbans between India and 47 

Bangladesh or regions of Central and South America (Ward et al., 2016). Ecosystem services include: 48 

protection from flooding, storm surges, and erosion, supporting commercially important fish and 49 

bivalve species, carbon sequestration and storage, and estuarine filtration and storage of 50 

contaminants (Huxham et al., 2017; Celis et al., 2020; Lacerda et al., 2021). In urban mangroves, 51 

where ecosystem service provision is often diminished as a result of direct or indirect anthropogenic 52 

pressures (Veettil et al., 2018), how they are responding to global pressures is often uncertain 53 

(Turschwell et al., 2020). The filtration, sequestration and storage of contaminants, such as trace 54 

elements, is an important ecosystem service provided by mangroves, and is particularly acute in 55 

urban mangroves, whether from wastewater treatment plants (WWTP), aqua/agricultural inputs, 56 

urban run-off, or industrial activity (Celis et al., 2020; Pinheiro et al., 2021; Lacerda et al., 2021). This 57 

is likely to have an influence on ecosystem function, through leaf loss, altered structure of the trees, 58 

reduced canopy, and in extreme cases tree mortality (Arrivabene et al., 2015; Capdeville et al., 2018; 59 

Connolly et al., 2020). Environmental stressors have been shown to impact mangrove phenology 60 

(Pastor-Guzman et al., 2018; Songsom et al., 2020). However, there has been little research 61 

conducted on the impacts of environmental pollution on mangrove phenology.  62 

Mangrove vegetation phenology studies have adopted a wide range of methods in recent decades, 63 

from field observations of phenology events such as flowering and fruiting (de Lima Nadia et al., 64 

2012) to digital repeat photography or phenocams (Songsom et al., 2021). Satellite-based 65 

vegetation phenology has also emerged as a tool to address larger geographical scales. These 66 

phenology studies rely on models to interpolate a time series of vegetation indices and reveal the 67 

timing of seasonal biological events associated with plant phenology (Younes et al., 2021). Many of 68 

these studies take advantage of the ability of satellite-derived vegetation indices to detect variations 69 

in the spectral characteristics of vegetation as a response to environmental change. In addition, the 70 

temporal resolution of satellite missions such as Sentinel-2 (5-10 days revisit time) or Landsat (8-16 71 

days revisit time) enables the detection of phenological trends throughout one year (Vrieling et al., 72 

2018) or multiple decades (Garonna et al., 2016). While most of these models can detect subtle 73 

phenological changes (Rodriguez-Galiano at el., 2015, Zeng et al., 2020), mangroves pose a 74 

challenge, as litterfall and replacement of old leaves occurs continuously throughout the season 75 

(Pastor-Guzman et al., 2018), leading to attenuated phenology spectral-temporal profiles.  76 

Several satellite-based mangrove phenology studies published in the past few years take advantage 77 

of the cloud computing capabilities of Google Earth Engine (Gorelick et al., 2017). For instance, Li et 78 

al. (2019) used Sentinel-2 imagery to model the phenological trajectories of different mangrove 79 

species in China. Similarly, Valderrama-Landeros et al. (2021) computed Sentinel-2 phenology series 80 



in Google Earth Engine in order to better discriminate mangrove species in semi-arid mangroves in 81 

Mexico. The availability of continuous, multi-decadal satellite imagery such as the Landsat program 82 

has also opened a realm of possibilities in mangrove research (Younes et al., 2017). Some studies 83 

have used Landsat time series to detect change and regeneration events in mangroves over several 84 

decades (Otero et al., 2019, Chamberlain et al., 2021), while others have used the long-term data 85 

series to unveil phenology shifts (Songsom et al., 2019).  86 

The rise in freely available medium to high resolution passive multi-spectral satellite derived data 87 

also provides an opportunity to undertake spatially explicit assessments of impacts of 88 

environmental stressors in mangrove ecosystems. Giri et al. (2011) documented the extent and 89 

status of mangroves in Louisiana, U.S., before and after an oil spill using Landsat satellite images. 90 

Likewise, Mandal and Hosaka (2020) quantified and mapped cyclone-induced changes in mangroves 91 

across Bangladesh and India over 3 decades. Beyond the number of satellite observations available 92 

at any given location, the high spatial resolution of currently active satellite missions (e.g., 10-20 m 93 

for Sentinel-2) could unveil the effects of point source pollution in relatively small regions. Satellite 94 

imagery has been previously used to detect the impact of various pollution sources, from oil spills 95 

in coastal vegetation (Balogun et al., 2020) to vegetation stress in urban environments (Cârlan et al., 96 

2020).  97 

Despite the wide use of remote sensing in mangrove phenology, no study to date has used satellite 98 

imagery to examine the effects of pollution on mangrove phenology. The present work aims to fill 99 

this knowledge gap and evaluate the influence of environmental variables, including trace element 100 

contamination, on mangrove phenology using satellite derived remotely sensed data. Specifically, 101 

two objectives are addressed in this study: 102 

- To model phenology profiles of mangroves at Isla del Carmen (Mexico) using a time series 103 

of Sentinel-2 multispectral data. 104 

- To assess the effects of environmental variables and trace element contamination on the 105 

timing and characteristics of mangrove phenology dynamics.  106 

 107 

2. Materials and methods 108 

2.1 Study site description 109 

Isla del Carmen is the eighth largest island in Mexico (142 km2 area) and is home to the second most 110 

populous city (248, 303 inhabitants) in Campeche State (INEGI, 2018). On the south coast of the 111 

island fluvial discharges supply nutrients, sediments, as well as pollutants generated by agriculture, 112 

cattle and other human activities (Carvalho et al., 2009), while on the north coast the marine 113 

environment dominates and houses the Cantarell oil field, which is the largest producer of gas (38%) 114 

and offshore oil (56.5%) in Mexico (Nava-Fuentes et al., 2018; PEMEX, 2018). The weather is 115 

generally warm with summer rainfall. The average annual temperature and rainfall are 26.7°C and 116 

1900 mm, ranging between 23.9°C and 28.8°C, and 1174 mm and 3139 mm respectively. Seasonally, 117 

three different regimes are recognizable, the dry season (Feb-May), rainy season (Jun-Sep), and 118 

stormy season (Oct-Jan).  119 

Mangrove ecosystems of Isla del Carmen are situated in the Wildlife Protection Area Laguna de 120 

Terminos, which includes the largest coastal lagoon environment in Mexico (about 7050 km2) (INEGI, 121 



2018) (Figure 1). Historically, mangroves from Isla del Carmen have experienced a reduction in 122 

extent due to the urban expansion of Ciudad del Carmen. Nowadays, the urban area covers 23% of 123 

the island, while the remaining 77% is still covered by mangroves that are distributed according to 124 

topography and tidal influence (Perez et al., 2020). The main mangrove species distributed around 125 

the Island are red mangrove (Rhizophora mangle L.), buttonwood mangrove (Conocarpus erectus), 126 

black mangrove (Avicennia germinans), and white mangrove (Laguncularia racemosa) (Canales et 127 

al., 2019). However, in the urban adjacent mangroves, Conocarpus erectus and Rhizophora mangle 128 

dominate. 129 

 130 

2.2 Sampling and clustering of study sites 131 

Field data were collected in August 2019 from thirty-six mangrove sites on Isla del Carmen (Figure 132 
1). Physicochemical parameters such as pH, salinity and ORP in seawater were measured in situ at 133 
all sites with a YSI Pro multiparameter sonde at the same time as sediment samples were collected. 134 
This equipment was calibrated with standard solutions before use to ensure physicochemical data 135 
quality.  136 

Following the gradient of anthropogenic influence across the island (Figure 1) a total of thirty-six 137 
sediment samples were collected. Sediments were collected using a Van Veen dredge sampler at a 138 
water depth of 0.5-2.5m between mid and high tide and were stored in plastic bags at 4°C until 139 
analysed. During sampling, sediment samples were taken from the middle of the dredge with a 140 
plastic spatula to avoid any trace element contamination by contact with metallic parts from the 141 
dredge, and with the purpose to take the most recently deposited sediment, the first centimetre of 142 
the surface sediment was collected. 143 

In the laboratory, samples were split in two halves, one half was used for granulometry analysis 144 

and the other for trace element analysis. The elements evaluated were vanadium (V), chromium 145 

(Cr), copper (Co), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb), rubidium (Rb), strontium (Sr) and 146 

zirconium (Zr). Their concentrations were determined using a RIGAKU ZSX Primus II X-ray 147 

fluorescence spectrometer system and analysed in pressed powder briquettes. Trace element 148 

accuracy was evaluated using the standard CH-1 marine sediment, whose values from each 149 

element was: V (111.8%), Cr (98.1%), Co (113.8%), Ni (102.6%), Cu (95.0%), Zn (98.7%), Pb (94.4%), 150 

Sr (98.9%) and Zr (97.2%). Texture analysis was determined using a RX-29 Ro-Tap sieve shaker and 151 

a standard ASTM sieve from -2, -1, 0, 1, 2, 3 and 4 φ. Sediment were classified as mud, sand and 152 

gravel based on the methodology proposed by Folk (1980). 153 

A k-means clustering technique was used to group the sampling sites and reveal potential spatial 154 
patterns of pollution at Isla del Carmen. K-means is a non-hierarchical, centroid-based partitioning 155 
method that maximizes the distances between cluster centroids within each cluster, the centroid 156 
represents the point at which the sum of distances of elements in the cluster is the least (Lletí et al., 157 
2004). The optimal number of output clusters was determined using 30 different clustering 158 
optimization indices contained within the NbClust (Charrad et al., 2014) package in R. Subsequently, 159 
the majority rule was used to select the final number of clusters.  Due to the large number of trace 160 
elements analysed in this study, a Principal Components Analysis (PCA) based on the correlation 161 
matrix with Varimax rotation (Jolliffe, 2002) was used to reduce the dimensionality of the dataset 162 
and extract uncorrelated components. Trace elements were used as input variables in the PCA and 163 
the resulting component scores were saved as new variables. The number of components to be 164 



retained for further analysis was selected based on the Kaiser criterion (eigenvalue >1). The k-means 165 
algorithm was conducted using the scores of the selected components as input variables. The 166 
analyses were run using the factoextra (Kassambara and Mundt, 2017) and NbClust (Charrad et al., 167 
2014) packages in R.      168 

In addition to the soil parameters and trace elements described above, total rainfall during the rainy 169 
season was included to better discern mangrove phenology at study sites. The timing of mangrove 170 
phenology events is influenced by environmental factors such as cumulative rainfall, 171 
maximum/minimum temperature (Mehling, 2006) maximum/minimum temperature (Mehling, 172 
2006), surface temperature, sea surface temperature and salinity (Songsom et al., 2019). The total 173 
rainfall during the rainy season (June to September) was extracted from the Daymet version 4 and 174 
computed for the study year (2019). Daymet provides daily gridded estimates of weather 175 
parameters for North America, with a 1 km x 1 km spatial resolution (Thornton et al., 2021). Daymet 176 
was chosen due its higher spatial resolution, adequate to capture precipitation gradients at Isla del 177 
Carmen.     178 

 179 

2.3 Remote sensing data collection and processing 180 

In order to model the phenology profiles of mangroves at Isla del Carmen, a multispectral time series 181 

was extracted from the Sentinel-2 mission´s products. The Sentinel-2 constellation consists of two 182 

satellites (Sentinel-2A and Sentinel-2B) and provides multispectral imagery with a combined revisit 183 

time of 5 days and a spatial resolution of 10, 20 and 60 m depending on the specific spectral band. 184 

Each Sentinel satellite provides 13 spectral bands. The Sentinel-2 data used in this study was 185 

extracted from the Level-2A collection in Google Earth Engine (Gorelick et al., 2017), which 186 

corresponds to surface reflectance at each pixel within each Sentinel-2 image. The Level-2A Sentinel 187 

data is provided by the European Space Agency (ESA), after applying the sen2cor algorithm for 188 

atmospheric correction (Main-Knorn et al., 2017). In total, 60 Sentinel-2 images were used in this 189 

study.    190 

 191 

Three vegetation indices (VIs) were chosen to characterize mangrove phenology (Table 1). The Red 192 

Edge Normalized Difference Vegetation Index (NDVIre) (Gitleson and Merzylak, 1994; Lin et al., 193 

2020) is computed as the normalized difference between the Near Infrared band (wavelength range 194 

785-899 nm and a ground sampling distance of 10 m) and one of the three available Red Edge bands 195 

(wavelength range 698-713 nm and a ground sampling distance of 20 m). NDVI versions based on 196 

red-edge bands are more sensitive to variations in chlorophyll content than NDVI (Fernández et al., 197 

2016) and have a superior performance in tracking seasonal changes in chlorophyll pigment pool 198 

(Lin et al., 2020). Red edge bands have also proven to be highly correlated with wetland vegetation 199 

biomass (Naidoo et al., 2019) and leaf chlorophyll content of mangrove forests (Zhen et al., 2021). 200 

Specifically, in the context of mangrove vegetation, several publications have demonstrated the 201 

higher accuracy of different versions of NDVIre for quantifying mangrove chlorophyll (Heenkenda 202 

et al., 2015), high performance in the classification of mangrove species (Behera et al., 2021) and 203 

high performance in the estimation of mangrove biomass (Wang et al., 2020). In addition, Pastor-204 

Guzman et al. (2015) suggested that the Sentinel-2 red edge bands should be incorporated in broad 205 

band indices in order to increase the accuracy of leaf chlorophyll content estimations in mangroves.  206 



The Green Normalized Difference Vegetation Index (GNDVI) is computed as the normalized 207 

difference between the Near Infrared band (wavelength range 785-899 nm and a ground sampling 208 

distance of 10 m) and the Green band (wavelength range 543-578 nm and a ground sampling 209 

distance of 10 m). Although GNDVI constitutes a broad band-based vegetation index, it has shown 210 

very strong correlations with mangrove chlorophyll content from both Landsat-derived (Pastor-211 

Guzman et al., 2015) and in-situ measured reflectance (Gholizadeh et al., 2015).  212 

The Two-band Enhanced Vegetation Index (EVI2) (Jiang et al., 2008) (Table 1) has been extensively 213 

used in mangrove vegetation studies (Rahman et al., 2013, Berlanga-Robles and Ruiz-Luna, 2020) 214 

due to its ability to overcome limitations associated with the enhanced vegetation index (EVI). 215 

Unlike EVI, EVI2 incorporates only the red and near-infrared reflectance, therefore avoiding the 216 

atmospheric scattering problems associated to the blue band in EVI (Rahman et al., 2013).   217 

Google Earth Engine was used to extract multispectral information and compute the three VIs 218 

between January 2019 and July 2020 in order to visualize the complete mangrove phenological 219 

cycle corresponding to the time when the trace element samples were obtained (August 2019). 220 

The concentrations of trace elements may show strong seasonal (Olivie-Lauquet et al., 2001) and 221 

interannual variability (Li et al., 2021) due to changes in the discharge concentrations and 222 

precipitation. Since the main purpose of this study was to relate potential phenology alterations 223 

with trace elements and physicochemical elements concentration within the mangrove phenology 224 

cycle of 2019-2020, multi-decadal satellite time series and temporal aggregation of satellite 225 

images were discarded from the analysis. Both long term time series and multi-temporal 226 

aggregation may bring changes in the spectral signature of mangroves due to disturbances and 227 

mangrove dynamics that could mask the effect of trace and physicochemical elements. For 228 

instance, Younes et al. (2021) point out that long-term mangrove phenology models may also 229 

reflect plant migration, colonization and dieback.  Sentinel level-2A images were used for the VIs 230 

computation for each day of available cloudless imagery. Images with a cloud cover over 20% of 231 

the study area were discarded. The QA60 band, containing cloud mask information, was used for 232 

this purpose. Band QA60 incorporates information about the location of cirrus and dense clouds at 233 

a spatial resolution of 60 m per pixel, which is subsequently resampled at resolutions of 10 and 20 234 

m per pixel.  235 

A 300 m buffer around each study site was generated in order to extract the corresponding 236 

mangrove pixels and assess phenology trends in relation to pollutant concentrations. Within each 237 

study site, a mangrove mask was created by manually digitizing mangrove areas based on aerial 238 

imagery interpretation. The resulting masks were used to extract only mangrove pixels. Manual 239 

masking of vegetation has been used in similar phenology studies (Granero-Belinchon et al., 2020). 240 

Only pixels with a 100% mangrove coverage were used within each study area subset. 241 

In order to enhance the robustness of the time-series analysis and ensure a coherent comparison 242 

between study sites, two filtering criteria were applied to the initial set of study sites. A site was 243 

discarded from further analysis if: 244 

1. The share of mangrove coverage was less than 5% of the total study area (300 m buffer 245 

around the sampling point).  246 

2. The number of non-contaminated images (absence of clouds, cloud shadows, smoke and 247 

faulty pixels) at each study site was greater than 40 for the study period. 248 



 249 

2.4 Time series reconstruction 250 

Satellite-derived time series usually contain noisy data due to aerosols, cloud cover or solar-sensor 251 

geometry. It is therefore necessary to eliminate noisy or cloudy images, and smooth these datasets 252 

using curve-fitting methods. A wide array of curve fitting and smoothing algorithms has been used 253 

to approximate satellite-based phenology in mangroves including: Double Logistic and Discrete 254 

Fourier Transform (Pastor-Guzman et al., 2018), Generalized Additive Models (Younes et al., 2021), 255 

and Harmonic Analysis of Time Series (Li et al., 2019, Valderrama-Landeros et al., 2021). In the 256 

absence of validation data, within this study, the VI-based time series at each site were 257 

reconstructed using a Harmonic Analysis of Time Series algorithm (HANTS). HANTS algorithm was 258 

chosen due to its ability to utilize a time series of irregularly spaced satellite images and the capacity 259 

to easily filter out noisy and cloudy observations (Roerink et al., 2000). Additionally, the choice of 260 

HANTS was based on the better performance of this technique over other smoothing algorithms. 261 

For instance, Julien and Sobrino (2019) demonstrated that within South-East Mexico, HANTS yielded 262 

more accurate results than the Iterative Interpolation for Data Reconstruction, Savitzky-Golay, the 263 

Asymmetric Gaussian, and the Double Logistic methods. In the context of mangrove phenology, 264 

HANTS was found to be less susceptible to the distribution of raw NDVI values than Savitzky-Golay 265 

(Wu et al., 2021). Harmonic analysis uses superimposed periodic functions to model signals or 266 

functions (Zhou et al., 2015). The HANTS algorithm iteratively fits a least squares curve on the basis 267 

of harmonic components, namely sines and cosines (Roerink et al., 2000). During the fitting process, 268 

values below the fitting curve are given less weight in the next iteration (Julien and Sobrino, 2019).  269 

HANTS was implemented using the package geoTS (Tecuapetla, 2020) in R (R Core Team, 2020) and 270 

the number of harmonics was chosen on the basis of mangrove phenology characteristics and 271 

previous research (Julien and Sobrino, 2019). Roerink et al. (2000) stated that there is no objective 272 

method to determine the number of harmonics used in a HANTS. In this study, three harmonics 273 

were chosen as the optimal number to characterize the phenology at Isla del Carmen. Mangroves 274 

in the area of Laguna de Terminos have been previously identified as having a smooth bimodal 275 

phenology cycle (Day et al., 1996), similar to other regions of Mexico (Pastor-Guzman et al. 2018). 276 

In order to adequately capture this bimodality within one year, three harmonics were chosen 277 

instead of two. In addition, Julien and Sobrino (2019) used three harmonics to achieve the most 278 

accurate HANTS reconstructions in evergreen vegetation regions characterized by low seasonal 279 

amplitude. Finally, it has been suggested that higher order harmonics can introduce noise in the 280 

phenology approximations, ultimately lowering the ability of HANTS to detect outliers (Zhou et al., 281 

2015).  282 

 283 

2.5 Comparison between vegetation indices 284 

Assessing and comparing the ability of different vegetation indices to extract phenology metrics 285 

requires validation data obtained from in-situ observations. However, within this study, in-situ 286 

validation data was not collected due to the lack of an adequate phenological observation network. 287 

In the absence of ground truth data, the fitting performance of NDVIre, GNDVI, and EVI2 was 288 

examined. The HANTS reconstructed time series were assessed against the raw values of each VI at 289 



each study site using the coefficient of determination (R2). The R2 between reconstructed time series 290 

and raw VI values represent a measure of VI suitability and sensitivity to noise. A one-way ANOVA 291 

with post-hoc Tukey HSD test was used to examine whether statistically significant differences (p < 292 

0.05) existed between the R2 values among the three VIs. The VI that showed the highest R2 between 293 

fitted and raw values was chosen for further phenology analysis.   294 

2.6 Phenology assessment 295 

Mangroves in Isla del Carmen show a distinct phenological pattern, reflected in the values of VIs 296 

throughout the season, with the lowest values between May and July, and the highest values 297 

between January and February (Figure 2). However, the exact timing of greenup, senescence and 298 

mangrove growth peak may vary considerably across sites. In order to characterize mangrove 299 

phenology changes in relation to pollution and physicochemical and geochemical characteristics, a 300 

number of metrics were extracted from the HANTS-derived phenology profiles at each study site. 301 

The phenology metrics are listed and described in Table 2 and illustrated in Figure 3. 302 

Several methods have been proposed to extract phenology metrics from satellite-based times series 303 

(Bórnez et al., 2020; Shang et al., 2017) such as percentile thresholds (Verger et al., 2016), first 304 

derivative (Tateishi and Ebata, 2014), or inflection-based methods (Zhang et al., 2003). In order to 305 

avoid the subjectivity associated with percentage threshold methods, an inflection approach based 306 

on the maximum change ratio was utilized.  The maximum change ratio (Jeong et al., 2011) detects 307 

the point within the VI trend when the increasing or decreasing trend reach a maximum or a 308 

minimum, and is formulated as follows: 309 

𝑉𝐼𝑟𝑎𝑡𝑖𝑜(𝑡) =
[𝑉𝐼(𝑡+1) − 𝑉𝐼(𝑡)]

𝑉𝐼(𝑡)
 (1) 310 

Where 311 

VIratio(t): Change ratio of the vegetation index at time t. 312 

VI(t): Value of the vegetation index at time t. 313 

VI(t+1): Value of the vegetation index at time t+1. 314 

Start of Season (SoS) was determined as the day when the increasing VI rate reaches the maximum, 315 

whereas the End of the Season (EoS) corresponds to the date when the decreasing VI trend reaches 316 

the minimum. Length of Season (LoS) was subsequently calculated as the difference in days between 317 

EoS and SoS. Peak of Season (PoS) was determined as the day of the year when VI reaches its 318 

maximum value and seasonal amplitude was defined as the difference between the maximum and 319 

minimum values of VI for that particular season. All the phenology metrics described above were 320 

derived from the HANTS phenology profiles calculated at each sampling point.  321 

 322 

2.7 Relationships between environmental variables, pollutant concentration and phenology 323 

metrics     324 

Responses of vegetation phenology to pollution are likely to be non-linear. In order to avoid an 325 

oversimplified characterization of the relationships between mangrove phenology and pollution in 326 



Isla del Carmen, Generalized Additive Models (GAMs) were utilized. GAMs are defined as semi-327 

parametric extensions of Generalized Linear Models (GLMs), with the ability to resolve non-linear 328 

relationships (Guisan et al., 2002). GAMs have gained popularity in ecology, among other fields, due 329 

to their capacity to estimate complex non-linear relationships by replacing the parametric terms of 330 

a GLM by smooth functions of the covariates (Simpson, 2018). A GAM can be represented as: 331 

𝑦 =  𝛽0 + ∑ 𝑠𝑗(𝑥𝑗)

𝑝

𝑗=1

 (2) 332 

 333 

Where 334 

y: Response variable 335 

Β0: Intercept 336 

Sj(xj): Vector of smoothing functions of the predictor variables  337 

The analysis was set as a two-step process: Variable selection and modelling and visualization. 338 

 339 

2.7.1. Variable selection for GAMs  340 

Variable selection is a necessary step in GAMs with multiple covariates, in order to unveil the 341 

covariates that have the strongest effect on the response variable, as well as improving model 342 

prediction accuracy (Marra and Wood, 2011). Several variable selection procedures have been 343 

proposed, including the double penalty approach, in which the first penalty component controls 344 

the wiggliness of the fitted trend in the smooth terms (Simpson, 2018), whereas the extra penalty 345 

component penalizes functions in the null space (Marra and Wood, 2011). Other authors have 346 

used backward stepwise selection methods (Marra and Wood, 2011), fitting all covariates 347 

simultaneously and subsequently excluding covariates and re-assessing model robustness. 348 

However, within this study, the large set of covariates and the relatively small set of samples limits 349 

the number of covariates that can be simultaneously fitted in a GAM, therefore hindering the use 350 

of these selection techniques (Marra and Wood, 2011). 351 

In order to overcome these limitations, a two-step method was used: 352 

Step 1 – Single variable GAMs. A GAM model was constructed for each phenology response 353 

variable (SoS, PoS, LoS, seasonal amplitude and growth peak) and each covariate (geochemical 354 

variables, trace elements and climatic variables). GAMs were fitted in R using the mgcv package 355 

(Wood, 2017). The restricted maximum likelihood (REML) was chosen as the smoothing parameter 356 

estimation method. In addition, a thin plate spline was fit as the smoothing term of each covariate. 357 

Simpson (2018) recommends REML as the best method to fit GAMs when dealing with models 358 

with one single covariate. The alternative generalized cross-validation (GCV) method tends to 359 

undersmooth, producing overly wiggly splines (Simpson, 2018). 360 

Step 2 – Covariate pre-selection. The pre-selection of variables was undertaken on the basis of the 361 

explained deviance and the approximate significance of the effect of the smooth terms on the 362 



response variable. The percentage of deviance explained is similar to the coefficient of 363 

determination in regression models and represents the likelihood of significant effects of covariate 364 

in the response variable. Covariates with a percentage of deviance explained over 10% and a p < 365 

0.01 were selected for further analysis. 366 

 367 

2.7.2. Model optimization and visualization  368 

For each of the phenology response variables, a GAM was re-fitted incorporating only the covariates 369 

selected in the first step, following a forward stepwise selection procedure. At each step, an 370 

explanatory variable was added to the model following a ranked order of deviance explained. After 371 

each individual covariate was added to the model, the percentage of deviance explained by the 372 

overall model was re-calculated, as well as the Aikake's Information Criterion (AIC). The covariate 373 

was then retained if it would decrease the model’s AIC and maintain or increase the model’s 374 

explained deviance. This model optimization process was undertaken using the mgcv package in R 375 

(Wood and Wood, 2015). In order to characterise phenology responses, each pair of phenology 376 

response variables and covariates was visualized individually within each model. Plots were 377 

constructed using ggplot2 package in R (Wickham, 2011).  378 

 379 

3. Results 380 

3.1. Spatial clustering of study sites 381 

Following the Kaiser criterion, three components were retained in the PCA, accounting for 89.9 % 382 

of total variance explained. Table 3 presents the results of the PCA, including the percentage of 383 

variance, cumulative percentage of variance and the component loadings. The first component 384 

explained 41 % of the variance and was strongly correlated with V, Co, Ni and Rb. The second and 385 

third components explained 30.4 % and 18.4 % of the variance and were strongly correlated with 386 

Cu, Zn, Pb and Cr, Ba and Zr respectively.  387 

Following the PCA, a K-means clustering analysis was undertaken. The assessment for optimal 388 

number of clusters based on multiple indices revealed that, according to the majority rule, the 389 

best number of clusters was 4, including 13, 12, 10 and 1 study sites in each cluster respectively. 390 

The spatial configuration of the clustered study sites is shown in figure 4, indicating a relatively 391 

mixed pattern of study site clusters. Cluster 1 is mainly located in the central section of Isla del 392 

Carmen, which is mostly dominated by mangroves. However, clusters 2 and 3 are both associated 393 

to the urban area as well as the North East section of the island. Cluster 4 includes only study site 394 

nr 6 due to the exceptionally high level of trace elements recorded at the site.  395 

In order to better understand the results of the K-means clustering, boxplots for the mean 396 

concentrations of each trace element within each cluster were calculated (see Appendix A, figure 397 

S1). Cluster 4 was excluded from this analysis in order to allow for better comparisons among 398 

clusters. Cluster 1 shows lower median values for the concentrations of most trace elements. 399 

However, higher values of Sr can be observed in Cluster 1 compared with Cluster 3. Cluster 3 is 400 



characterized by higher concentrations of most trace elements under analysis. In Cluster2, 401 

elevated concentrations of Cr, Sr, Ba and Zr can be observed.   402 

     403 

3.2. Suitability of vegetation indices and phenology assessment 404 

Phenology profiles were calculated for 29 study sites using three different VIs (NDVIre, GNDVI and 405 

EVI2). The HANTS phenology curves showed clear differences in the fitting performance among the 406 

three VIs (Table 4). ANOVA and Tukey tests showed that the fitting accuracy of NDVIre was 407 

significantly higher than that of GNDVI and EVI2 (p < 0.0001), with average R2 values across study 408 

sites of 0.503, 0.356 and 0.357 respectively. This reveals a more pronounced scattering of the GNDVI 409 

and EVI2 values around the smoothed phenology curves. Due to its higher fitting performance, 410 

NDVIre was selected for further analysis. 411 

Figure 5 shows the NDVIre-based phenology profiles at three study sites along Isla del Carmen, 412 

modelled using a HANTS algorithm. These sites have been chosen to illustrate a gradually increasing 413 

degree of pollution throughout the 3 main clusters. The temporal evolution of NDVIre through the 414 

season shows distinct patterns at the three sites. Site 8 corresponds to the mangroves in Laguna 415 

Caracol, located within the Southern coast of Ciudad del Carmen (Figure 1) and it is subjected to 416 

frequent wastewater discharge. This site shows a lower peak of greenness compared to sites 16 and 417 

32, as well as a delayed timing of the growth peak and start of the season. NDVIre at Site 8 also 418 

shows a slightly smaller seasonal amplitude compared with Sites 16 and 32. Although sites 32 and 419 

16 are characterized by a similar degree of vegetation vigour, the greenup period shows 420 

considerable differences between both locations. Site 16, located within cluster 2, is subject to a 421 

delayed start of the season, alongside a delayed timing of the growth peak. Site 16 is located 422 

towards the eastern edge of Ciudad del Carmen, while site 32 is situated in the easternmost coast 423 

of Isla del Carmen, within cluster 1 and distant from urban pollution sources.   424 

 425 

3.3. Relationships between environmental variables, pollutant concentration and phenology 426 

metrics  427 

3.3.1 Variable selection 428 

The two-step variable selection procedure highlighted the physicochemical, textural parameters 429 

and pollutants that have the strongest effect on the phenology response variables using single-430 

variable GAMs (Table 5). Start of season (SoS) and length of the season (LoS) showed a significant 431 

response to the largest set of covariates, including concentrations of Pb, Cu and Zn, as well as 432 

salinity, and pH. Peak of season (PoS) was also affected by a wide set of covariates including salinity, 433 

pH, % of silt, and concentrations of Cu. It is worth noting that Cu and Pb strongly affect both the SoS 434 

and the LoS. More precisely, Cu explained 56.9% and 56% of the deviance in SoS and LoS 435 

respectively, whereas Pb explained 49.3% and 44.3% of the deviance in SoS and LoS. Similarly, 436 

salinity alone conveys an explanatory rate of 43.9% on the SoS and 40.2% on the peak of season 437 

(PoS), indicating the strong dependence of these phenology metrics on salinity. Growth peak, which 438 

is likely to be related to overall mangrove health and productivity, showed a strong significant 439 



response to Sr, with a 33.9% of deviance explained. Seasonal amplitude showed no significant 440 

response to any of the covariates. 441 

3.3.2 Model optimization 442 

GAMs were optimized following a forward stepwise selection procedure. Table 6 includes the 443 

covariates used in each of the four GAMs, alongside with the percentage of deviance explained by 444 

each model and the adjusted R-squared.  445 

The highest explanatory rate was achieved by Model 1 (92.1%, R2 = 0.88), showing that the SoS in 446 

mangroves in Isla del Carmen is strongly influenced by concentrations of Cu and Pb, and 447 

physicochemical parameters (salinity and pH). Model 2 showed a very similar trend on the LoS 448 

whereas model 4 showed the influence of Sr on the growth peak. Specifically, Sr explained a large 449 

amount of deviance in growth peak, suggesting a strong influence of this trace element on the vigour 450 

of mangroves. After the model optimization process, Model 3 retained only physicochemical 451 

variables (Salinity, pH and % silt) to assess the response of PoS, with 43.6 % of deviance explained.    452 

Further analysis was undertaken to explore the nature and shape of altered phenology patterns in 453 

relation to trace elements and physicochemical parameters variables. GAMs plots show that these 454 

relationships are in many cases non-linear. For instance, figure 6 shows different responses of SoS 455 

concentrations of Pb and Cu led to a delayed start of the greenup period (represented as 456 

accumulated Day of the Year [DOY]) following a nonlinear trend, where the increasing trend was 457 

sharpest at lower concentrations of Pb and gradually decreased as the concentration of trace 458 

elements increased. Increased pH led to an almost linear increase in the Start of the Season, 459 

indicating an increasingly delayed start of the greenup period as pH increases. Conversely, increased 460 

salinity led to an earlier SoS.  461 

Figure 7 shows the curves fitted to the LoS and concentrations of Cu and Zn, as well pH and salinity, 462 

corresponding to the single-variable GAMs (Model 2). LoS is shortened as a response to both Cu and 463 

Zn increased concentrations, following non-linear trend. increased pH also leads to a shortening of 464 

the season, whereas increased salinity expands the growing season length.    465 

Figure 8 shows changes in PoS date (represented by the DOY during the season under assessment 466 

within this study, corresponding to Model 3), as well as changes in the growth peak (model 4). As 467 

shown in Table 5, PoS is strongly influenced by salinity. As salinity decreases, the peak of greenness 468 

occurs later in the season, following an almost linear relationship. On the other hand, increased pH 469 

led to a delay in the PoS, steadily more pronounced as pH increases. The percentage of silt in the 470 

sediment also influences the PoS date, although this relationship is more subtle. PoS slightly 471 

decreases as the percentage of silts increases, but this trend shifts slowly as the % silt in the 472 

sediment continues to increase. Growth peak shows a slight increase as Sr concentrations increase, 473 

although this relationship shifts gradually towards a sharp decrease with increased concentrations 474 

of Sr.  475 

 476 

4. Discussion 477 



The results from this study clearly show an impact of trace elements and environmental variables 478 

on the phenology of mangroves in Isla del Carmen. Altered phenology in mangroves has been 479 

shown to be linked to changes in biomass and forest structure (Agraz Hernandez et al. 2011; 480 

Robertson et al. 2020), which in turn has been shown to influence ecosystem service provision 481 

particularly carbon and environmental contaminant sequestration and storage (Kathiresan et al. 482 

2013; Numbere & Camilo 2018; Sasmito et al. 2019; Simpson et al. 2019). 483 

4.1 Clustering of study sites and potential sources of pollution. 484 

The cluster analysis (Figures 4 and S1) highlighted that the north coast forms a characteristic area 485 

where mangroves are subject to higher levels of Cr, Sr, Ba, and Zr (Cluster 2). In addition, most study 486 

sites grouped in cluster 3 are located within Ciudad del Carmen, indicating that Pb pollution sources 487 

are predominantly from urban runoff. Cluster 4 is a single-site cluster located at a sewage and 488 

wastewater discharge point, and characterized by exceptionally high levels of pollution. Sites within 489 

cluster 1 are characterized by relatively lower concentrations of trace elements, and are 490 

predominantly located in pristine areas of the island. These results were similar to those reported 491 

by Celis et al. (2020). The authors noted that although mineralogy and sediment texture were 492 

natural drivers that control trace element distribution in mangroves from Isla del Carmen, at least 493 

Pb, Zn, and Cu were derived from point sources such as city sewage and boat yards, elements such 494 

as V, Ni, and Cr were linked to the presence of mafic rocks, while Ba and Zr were likely to be related 495 

and oil industry origin, although there was not enough evidence to conclusively support this.  496 

 497 

4.2 Phenological changes using remote sensing tools. 498 

Phenology in mangroves is influenced by a range of seasonably varying factors including 499 

precipitation, temperature, humidity, day-length (Kamruzzaman et al., 2012; Lima et al., 2012; 500 

Torres et al. 2018; Peel et al., 2019), or large-scale impacts such as storm surges, alterations to 501 

hydrology, or erosion (Zhang et al., 2016; Small and Sousa, 2019). As such there can be substantial 502 

regional variations in mangrove phenology as noted by Songsom et al. (2019) for Thailand. 503 

Mangrove phenology can also be impacted by environmental stressors such as trace elements and 504 

organic pollutants, which can vary over much smaller scales, particularly where point source 505 

pollution is the cause (Rani et al., 2016).  506 

The accumulation of trace elements in mangroves can affect the functioning of these ecosystems.  507 

A range of studies have shown that where trace element contamination occurs in mangrove 508 

sediments, this is taken up in the roots of mangroves and transported to other tissues in the plant 509 

(Mandura, 1997; Agoramoorthy et al., 2008; Lewis et al., 2011; Bayen, 2012; Maiti and Chowdhury, 510 

2013; Arrivabene et al., 2015). The highest concentrations are typically found in the roots with lower 511 

concentrations in the leaves (Arrivabene et al. 2015), although differing trace elements have 512 

different levels of mobility in the plant tissues (Maiti and Chowdhury, 2013). Agoramoorthy et al. 513 

(2008) have shown that trace elements in mangrove trees and associate understory halophytes, can 514 

reduce plant productivity. Disturbances have also been shown to delay the onset of greater 515 

productivity during the phenological cycle (Zhang et al., 2016). 516 

Remote sensing has been noted as an appropriate tool to estimate mangrove apparent phenology, 517 

showing a high degree of agreement with in-situ plant phenology observations (Pastor-Guzman et 518 



al., 2018). In particular, recent developments in cloud computing software such as Google Earth 519 

Engine have substantially improved the assessment of the state of vegetation status and phenology, 520 

including mangrove vegetation (Li et al., 2019). Satellite-derived vegetation indices are a key 521 

element in most studies related to remotely sensed phenology. However, sensitivity to 522 

environmental conditions and local biophysical characteristics across different vegetation indices is 523 

highly variable. Consequently, the choice of spectral index has an impact on the extraction of 524 

phenology dates and the detection of phenological changes. In this study, NDVIre showed the 525 

highest degree of agreement between original and predicted values along the phenology profiles, 526 

indicating a much lower amount of scattering and noise than EVI2 and GNDVI. This is likely because 527 

EVI2 and EVI were specifically designed for MODIS (Huete et al., 2002) and may bear inaccuracies 528 

when derived from Sentinel-2 or Landsat sensors. On the other hand, GNDVI is a broadband spectral 529 

index, which although sensitive to chlorophyll concentrations, may still show a limited ability to 530 

detect subtle structural changes in canopies. Valderrama-Landeros et al. (2021) suggested that the 531 

Sentinel red-edge band may improve phenology assessments in mangroves. The present study 532 

confirms the benefits of using red edge bands in phenology assessments. The narrower spectral 533 

range of the red edge band (698-713 nm) leads to lower scattering of values of NDVIre along the 534 

reconstructed phenology profile and consequently a better fitting performance. 535 

In the present study, a Harmonic Analysis of Time Series (HANTS) was utilized to estimate phenology 536 

trends and detect potential phenology shifts over the mangroves in Isla del Carmen, Mexico. HANTS 537 

has been previously shown to provide a robust approximation of phenology from remotely sensed 538 

data sources (Julien and Sobrino, 2019). The results of this study indicate that the presence of trace 539 

elements may trigger shifts in the phenology of mangroves in the study area. A delay in start of 540 

season (SoS) and a shortening of the season linked to Pb, Cu, and Zn was observed for mangroves 541 

that are adjacent to the city of Carmen. The gradually decreasing trend between SoS and Pb and Cu 542 

suggests that under certain heavy metal concertation levels, mangroves no longer show delays in 543 

the timing of the SoS. Trace element pollution from urban sources, alongside pH and salinity, explain 544 

a large share of the deviance in the SoS and the length of the season (LoS). Celis et al., (2020) used 545 

pollution indices applied in sediments to suggest that high concentrations of Pb, Zn, and Cu reported 546 

in the urban mangroves of Isla del Carmen would likely impact mangrove vegetation as well as 547 

associate organisms. The pollution indices used by Celis et al. (2020) highlighted that sites impacted 548 

by point source pollution exhibited severe enrichment and very severe enrichment, and were 549 

classified as heavily polluted and extremely polluted mangrove environments by these trace 550 

elements. The mangrove phenology analysis undertaken in this study showed the pollution impacts 551 

on mangrove vegetation caused by trace elements.  552 

The growth peak showed responses to Sr. Notably, Sr explained 33.9% of the deviance of growth 553 

peak within the single-variable Generalized Additive Model. The visualization of this specific model 554 

indicated an overall decrease of the growth peak associated to increased concentrations of Sr. This 555 

relationship suggests an overall decrease in mangrove vigour Sr increases. Sr is a common 556 

environmental trace element, that is readily absorbed by plants due to its similarity to Ca an 557 

essential element for plant growth (Burger and Lichtscheidl, 2019). Stable isotopes of Sr can have a 558 

detrimental impact on plant growth replacement of Ca during uptake, resulting in Ca deficiency 559 

(Burger and Lichtscheidl, 2019). Sr uptake in trees is influenced by root morphology, soil type, pH, 560 

and climate (Mcculley et al., 2004, Poszwa et al., 2004 and Reynolds et al., 2012), although there 561 



have been few studies investigating the ecotoxicological impact on mangrove plants (Kulkarni et al. 562 

2018). In coastal and estuarine environments, rock weathering, rain, and marine aerosols have been 563 

identify as natural sources of Sr, while fertilizers used in agriculture and barite used in oil drilling 564 

have been identified as anthropogenic sources (Torres et al 2002, Zielinsky et al. 2018, Fang et al 565 

2018, Elkatatny, 2019). In the mangroves of Isla del Carmen, Celis et al. (2020) have shown that 566 

while the bulk of the Sr appears to be derived from natural sources, there is some moderate 567 

anthropogenic enrichment. 568 

The Generalized Additive Models utilized in this study also show phenology responses to pH and 569 

salinity, in accordance to the results obtained in the Yucatán peninsula by Pastor-Guzmán et al. 570 

(2018) and more recently Chamberlain et al. (2021) for Australia. The negative correlations between 571 

the peak of season (PoS) and salinity suggest an earlier timing for the growth peak as salinity 572 

increases. On the other hand, increased pH led to a delayed PoS and SoS. These results suggest that 573 

the phenological alterations are caused by physicochemical parameters in mangroves from Isla del 574 

Carmen. Although mangroves are organisms adapted to high salt concentrations, Xu et al., (2014) 575 

reported that mangrove biomass was inversely related to salinity meaning that salt decreased the 576 

photosynthetic rate of mangroves. Very high salinity also inhibits growth and nutrient assimilation 577 

in these plants (Bannerjee et al., 2017; Shiaou et al., 2017) and can change the community ecology. 578 

Alterations in salinity can also alter the bioavailability of some trace element contaminants (Lacerda 579 

et al., 2021). pH has an indirect relationship to mangroves phenology, because usually pH can 580 

influence nutrient adsorption, which can lead to phenological changes in mangroves. For example, 581 

Neina et al. (2019) reported that nutrients were less available for mangrove plants with lower soil 582 

acid conditions due to low adsorption and high desorption rates. 583 

This study demonstrates that the impacts of point source pollution in mangroves may result in 584 

subtle changes in phenology. Although these altered phenological patterns could strongly affect the 585 

capacity of mangroves to deliver key ecosystem services, the nature and spatial characteristics of 586 

these changes hinder their detection and quantification. In this regard, time-series derived from 587 

satellite data constitute an effective tool to unveil phenology shifts and alterations.  588 

4.3 Limitations and sources of uncertainty 589 

Despite the vast potential of Sentinel imagery for mangrove phenology assessments, some 590 

constraints should be considered within this study. As pointed out by Younes et al. (2020), 591 

phenology assessments based on remotely sensed data are an approximation of the real phenology 592 

of vegetation and as such, a certain degree of uncertainty is involved. The choice of vegetation 593 

indices as well as smoothing algorithms has an impact on the extraction of phenology metrics from 594 

remotely sensed data and consequently, results may be highly variable. In this regard, there is no 595 

“one size fits all” index or algorithm and each case should be evaluated separately. The role of 596 

ground truth data to discern the most accurate satellite-based phenology reconstruction techniques 597 

is crucial (Nagai et al., 2020). Within this study, the absence of validation data constituted an 598 

important source of uncertainty, as it impeded comparisons between vegetation indices and 599 

smoothing algorithms. In order to compensate for this, the choice of NDVIre was based on a R-600 

squared goodness-of-fit assessment. The choice of HANTS was based on recently published data 601 

that indicates the good performance of the algorithm both in the context of mangrove ecosystems 602 

and the location of the area under study. Future phenology studies in Isla del Carmen should aim at 603 



collecting a comprehensive set of in situ validation data and coupling it with satellite-based data. A 604 

study by Pastor-Guzman et al. (2018) focused on the phenology of mangroves using MODIS imagery 605 

along the coast of Yucatán peninsula in the nearby states of Yucatán and Quitana-Roo. The SoS 606 

modelled by the Pastor-Guzman et al. (2018) study occurred at DOY 184, 200 and 220 measured by 607 

EVI, NDVI and gNDVI respectively. The present study revealed very similar dates, with an average 608 

timing of SoS on DOY 223. Moreover, both studies show similarities in the timing of the growth peak. 609 

Pastor-Guzmán reported growth peak at DOY 332, 348 and 360 for EVI, NDVI and gNDVI respectively 610 

and an earliest and latest DOY of 280 and 40 detected by EVI. The present study revealed an average 611 

DOY of 29 across the study sites detected by NDVIre. These comparisons do not substitute a 612 

validation assessment, but show that the combination of NDVIre and HANTS yields results consistent 613 

with the phenology trends in the region.  614 

Another source of uncertainty within in this assessment was the description of a single-year 615 

phenology cycle. This decision was driven by the need to relate phenology patterns with the 616 

concentrations of trace elements and physicochemical parameters in 2019. Ideally, data on trace 617 

elements and physicochemical parameters would have been collected throughout several years and 618 

consequently related to multiple phenology cycles, therefore yielding a more complete overview of 619 

mangrove phenology responses at Isla del Carmen. However, long term mangrove phenology 620 

models could also reveal patterns of phenology change associated to mangrove vegetation 621 

dynamics, natural disturbances and climate change. In order to better focus on the effect of trace 622 

elements and physicochemical parameters in 2019, only one phenology cycle was addressed.  623 

4.4 Implications for management 624 

Phenology change detection in mangroves is important to assess broader ecosystem changes and 625 

for restoration planning (Upadhyay and Mishra, 2010). Alterations to phenology can have an 626 

influence on the productivity of mangroves as well as alter detrital deposition, which can have 627 

knock-on effects on carbon storage and the detrital food chain, highly valuable ecosystem services 628 

(Duke 1988, Wafar, 1997, Songsom 2019). While the mangroves in this current study are not shown 629 

to be highly degraded, trace elements have been shown to influence phenological characteristics, 630 

which is likely to be a precursor to ecosystem degradation should contamination levels increase. 631 

The evaluation of impacts on phenology in mangroves using remotely sensed data, could therefore 632 

be used as an early warning system for management intervention to initiate close monitoring to 633 

prevent large scale ecosystem degradation and potential associated loss of ecosystem service 634 

provision within the mangroves. 635 

5. Conclusions 636 

The results of this study revealed spatial patterns of trace elements contamination in mangroves at 637 

Isla del Carmen. Mangroves situated in urban environments as well as those located in the North 638 

East section of the island are contaminated by most trace elements under study (e.g. Pb and Cu). 639 

Clusters 2 and 3 presented the highest pollution levels and show distinct patterns, with Cluster 2 640 

encompassing the highest levels of Cr, Sr, Ba, and Zr and Cluster 3 the highest levels of V, Co, Ni, Cu, 641 

Zn, Pb, and Rb. HANTS smoothing algorithms in combination with GAMs were used to further extract 642 

phenology parameters and detect phenology shifts in relation to environmental variables and trace 643 

elements. The results suggest that the dominant mangrove flora at the study sites show a 644 

phenological response to physicochemical parameters in seawater and trace element 645 



concentrations in sediment. Among the various phenology shifts in mangroves at Isla del Carmen, 646 

the timing of the Start of the Season showed a linear delay in response to pH and a non-linear delay 647 

in response to Pb and Cu. The timing of the Peak of Season showed significant responses only to 648 

physicochemical parameters, while the growth peak decreased in response to increased Sr 649 

concentrations. The effect of trace element contamination and physicochemical parameters on the 650 

onset of the growth season and the growth peak in mangroves likely has an impact on the 651 

functioning of mangrove ecosystems, including a decrease in the ability to resist extreme weather 652 

events and reduced carbon storage and sequestration through decreases in autochthonous inputs   653 

This study also acknowledges the need to utilize ground truth data in order to select the most 654 

adequate vegetation indices and smoothing algorithms, as well as avoid potential uncertainties 655 

arising from the use of remote sensing data. It is also suggested to undertake a long-term monitoring 656 

scheme of trace elements in mangroves at Isla del Carmen and assess the effects of pollution on 657 

multi-annual mangrove phenology. 658 
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Tables and figures 

Table 1. Vegetation indices used in the study. 

Name Formula Reference 

Red Edge Normalized Difference Vegetation Index (NDVIre) 
𝑁𝐷𝑉𝐼𝑟𝑒 =  

𝑁𝐼𝑅𝐵8 − 𝑟𝑒𝑑𝑒𝑑𝑔𝑒𝐵5

𝑁𝐼𝑅𝐵8 + 𝑟𝑒𝑑𝑒𝑑𝑔𝑒𝐵5

 Gitleson and Merzylak (1994) 

Green Normalized Difference Vegetation Index (GNDVI) 
𝐺𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅𝐵8 − 𝐺𝑟𝑒𝑒𝑛𝐵3

𝑁𝐼𝑅𝐵8 + 𝐺𝑟𝑒𝑒𝑛𝐵3

 Gitelson et al. (1996) 

Two-band Enhanced Vegetation Index (EVI2) 
𝐸𝑉𝐼2 =  2.5

𝑁𝐼𝑅𝐵8 − 𝑅𝑒𝑑𝐵4

𝑁𝐼𝑅𝐵8 + 2.4 ∗ 𝑅𝑒𝑑𝐵4 + 1
 

Jiang et al. (2008) 

 

Table 2. Phenology metrics derived from the HANTS profiles use to characterize phenological 

patterns in Isla del Carmen mangroves. DOY = Day-of-Year 

Phenology parameter Units Method 

Start-of-season (SoS) DOY since 1st January, 2019  Maximum change ratio 

Length-of-season (LoS) Number of days between SoS 
and EoS 

Maximum change ratio 

Peak-of-season (PoS) DOY since 1st January, 2019 Timing of the maximum value 
in the HANTS curve 

Seasonal amplitude Unitless NDVIre values (from 
0 to 1) 

Difference between the 
minimum and maximum 
NDVIre values in the HANTS 
curve 

Growth peak Unitless NDVIre values (from 
0 to 1) 

Maximum value of the NDVIre 
in the HANTS curve during the 
season 

 

Table 3. PCA results, including loading coefficients, as well as percentage of variance and 

cumulative percentage of variance explained by each component. 

 PC1 PC2 PC3 

V (mg/kg) 0.934 0.117 0.294   

Cr (mg/kg) 0.243 -0.055 0.915   

Co (mg/kg) 0.915 0.240 0.204  

Ni (mg/kg) 0.934 -0.036 0.208  

Cu (mg/kg) 0   0.974 -0.014   

Zn (mg/kg) 0.115 0.954 -0.052   

Pb (mg/kg) 0.046 0.987 -0.002    

Rb (mg/kg) 0.916 -0.206 0.256 

Sr (mg/kg) -0.561 -0.317 0.461 

Ba (mg/kg) 0.064 0.449 0.822     

Zr (mg/kg) 0.302 
 

-0.271 
 

0.853 

% of variance 41.0 30.4 18.5 

Cumulative % of 
variance 

41.0 71.4 89.9 
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Table 4. Results of pariwise comparison of R2 fitting performance among three vegetation indices 

(NDVIre, GNDVI and EVI2) based on one-way ANOVA and Tukey HSD tests. The average R2 for 

NDVIre, GNDVI and EVI2 were 0.503, 0.356 and 0.357 respectively.  

VI 1 VI 2 Difference Lower 
Confidence 
Interval 

Upper 
Confidence 
Interval 

p-Value 

GNDVI EVI2 -0.001 -0.069 0.066 0.998 

NDVIre EVI2 0.145 0.077 0.213 5.2*10-6 

NDVIre GNDVI 0.147   
 

0.079 0.0215 
 

4.2*10-6 

 

 

Table 5. Percentage of deviance explained by each variable in single-variable GAMs. Significant 

contributions of covariates are highlighted in bold, where * indicates significant contribution at the 

0.01 level, ** indicates significant contribution at the 0.001 level and *** indicates significant 

contribution at the 0.0001 level . Rainfall Jun-Sep corresponds to the total rainfall during the rainy 

season (June to September).  

Variables Start of 
Season 
(SoS) 

Length of 
Season (LoS) 

Peak of 
Season (PoS) 

Seasonal 
amplitude 

Growth peak 

Rainfall Jun-Sep 16.8 13.1 10.8 5.76 15 

Salinity 43.9*** 26.5*   
 

40.2*** 0 
 

0 

ORP 0  
 

0.35 
 

0 
 

0.2 
 

15.1 
 pH 29.2* 23.5* 32.1** 7.51 

 

10.4 

% Gravel 0 1.43 
 

6.83 
 

0 
 

0 
 % Sand 7.39 

 
6.81 
 

9.48 
 

0 
 

1.72 
 % Silt 18.3  

 
14.3 19* 3.52 

 
6.58 

0 
 

V (mg/kg) 9.56 5.67 0    0 
 

0 

Cr (mg/kg) 10.4 
 

11.1 0   0 
 

0 

Co (mg/kg) 8.11 8.18 
 

0  0 
 

0 

Ni (mg/kg) 7.41 8.78 
 

0  0 
 

1.52 

Cu (mg/kg) 56.9***   56*** 19.6*   0 
 

3.49 

Zn (mg/kg) 36* 32.9* 
 

14.3   2.77 
 

0.78 

Pb (mg/kg) 49.3** 44.3** 
 

12.2    0 
 

1.4 

Rb (mg/kg) 3.73 
 

4.85 
 

0 0 
 

0 

Sr (mg/kg) 7.68 
 

10.4 
 

0 10.3 
 

33.9**  
 Ba (mg/kg) 17.4   21.2 

 

0     0 
 

5.46 

Zr (mg/kg) 9.11 
 

136 
 

3.19 8.01 
 

18.9 
 

 

 

 

 



Table 6. Description of the four GAMs fitted for Start-os-Season (SoS), Length-of-Season (LoS), 

Peak-of-Season (PoS) and growth peak, including the percentage of deviance explaine by each 

model and the adjusted R2. 

Model No. Phenology metric Smooth terms Deviance explained Adjusted R2 

Model 1 SoS s(Pb ) + s(Cu) + s(Salinity) + s(pH)  92.1% 0.88 
Model 2 LoS s(Cu) + s(Zn) + s(Salinity) + s(pH)  87.7% 0.81 
Model 3 PoS s(Salinity) + s(pH) + s(% Silt) 43.60% 0.4 
Model 4 Growth peak s(Sr) 33.90% 0.29 

 

 

 

 

 

 

 

 

 



 

Fig. 1. Location of Isla del Carmen within the Gulf of Mexico (a and b) and location of the thirty-six 

sampling sites. 



 

Figure 2. Average NDVIre values between May and July 2019 (A) and between January and February 

2020 (B). The NDVIre values were extracted and averaged in Google Earth Engine and correspond 

to the area defined as mangrove by CONABIO (2013).  

 

 

 

 



 

Figure 3. Phenology metrics used to characterize phenological at Isla del Carmen mangroves. The 

dark grey line represents a typical phenology profile at Isla del Carmen during 2019-2020 season. 

SoS: Start of season, PoS: Peak of season, EoS: End of season. A description of metrics can be found 

in table 1. 

 

Figure 4. K-means clustering algorithm results, showing the study sites grouped into 4 clusters. 

 

 

 

 

 

 



 

Figure 5. Phenological profiles reconstructed using HANTS algorithm at three study sites. Points 

show the original values of NDVIre calculated from Sentinel 2 imagery at available dates, whereas 

the solid lines correspond to the phenology profiles smoothed by the HANTS algorithm. 

 

 

 



 

Figure 6. GAMs describing the relationship between the start of season (SoS), two trace elements 

(Pb and Cu), salinity and pH. Shaded grey areas represent the 95% confidence interval. The fitted 

curves correspond to model 1. The points are color-coded according to their cluster membership. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. GAMs describing the relationship between the length of season (LoS, difference between 

start of season and end of season), two trace elements (Cu and Zn), salinity and pH. Shaded grey 

areas represent the 95% confidence interval. The fitted curves correspond to model 2. The points 

are color-coded according to their cluster membership. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. GAMs describing the relationship between peak of season (PoS) and salinity, pH and % 

silt, and between growth peak (Maximum value of the NDVIre in the phenology curve) and 

Sr.Shaded grey areas represent the 95% confidence interval. The fitted curves correspond to 

models 3 and 4. The points are color-coded according to their cluster membership. 
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