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Abstract

A new simple model for the puffing and micro-explosion of composite
multi-component water/liquid fuel droplets is suggested. This model is based
on the assumption that a spherical water sub-droplet is located in the cen-
tre of a spherical fuel droplet. The effects of droplet thermal swelling are
considered; the Abramzon and Sirignano model is applied for the analysis of
droplet heating and evaporation. It is assumed that puffing/micro-explosion
starts when the temperature at the water/liquid fuel interface becomes equal
to the water nucleation temperature. Assuming that the species diffusion
coefficient is constant at each time step, the equation for species diffusion
inside the droplet is solved analytically. Raoult’s law at the surface of the
droplet is used. The analytical solution to the equation for species diffusion
is incorporated into the numerical code alongside the previously obtained
analytical solution to the equation for heat transfer inside the droplet. Both
solutions are used at each time step in the calculations. The model is used
for the analysis of puffing/micro-explosion of kerosene/water droplets. The
experimentally observed and predicted times to puffing/micro-explosion are
shown to be reasonably close, decrease with increasing ambient gas tem-
peratures and increase with increasing initial droplet radii. Taking into ac-
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count the presence of multiple components in fuel leads to longer times to
puffing/micro-explosion compared to the case when kerosene is approximated
by cycloundecane (the dominant component in kerosene).

Keywords:
Composite droplets, puffing, micro-explosion, multi-component fuel, species
diffusion equation

Nomenclature

c specific heat capacity [J/(kg K)]
D diffusion coefficient [m2/s]
dh diameter of supporting cylinder [m]
F parameter defined by Expression (14) [-]
G parameter defined by Expression (15) [-]
h convective heat transfer coefficient [W/(m2 K)]
k thermal conductivity [W/(m K)]
K parameter defined by the second expression in (16) [1/m]
L heat of evaporation [J/(kg)]
` parameter defined by the first expression in (16) [m]
ṁd droplet evaporation rate [kg/s]
p pressure [Pa]
P radiation source term [K/s]
q parameter used in Expression (13) [m]
Q parameter used in Expression (13) [m]
R distance from the droplet centre [m]
SC contact area defined by Expression (23) [m2]
t time [s]
T temperature [K]
vn eigenfunction [-]
X molar fraction [-]
Y mass fraction [-]

Greek symbols
α parameter determined by Expression (10) [m/s]
ε parameter determined by Expression (12) [-]
κ thermal diffusivity [m2/s]
λn eigenvalue [-]

2



ρ density [kg/m3]
τp time to puffing/micro-explosion [s]

Subscripts
av average
c centre
d droplet
(e) evaporation
eff effective
f fuel
g gas
i fuel components
l liquid
s surface
sup support
v vapour
w water or water/fuel interface
0 initial condition
∞ ambient condition

1. Introduction

The importance of puffing (the partial ejection of the water outside fuel
droplets) and micro-explosion (the total break-up of droplets) in water/fuel
composite droplets to the improvement of internal combustion engine perfor-
mance has been commonly recognised (e.g. [1]). This stimulated numerous
experimental and theoretical studies of the phenomena some of which are
summarised in [2, 3].

The most advanced models of these processes suggested so far are based
on high-fidelity direct numerical simulations (DNS) from first principles [4,
5, 6, 7]. These models were supplemented by several simplified models of the
phenomena [8, 2, 9, 10, 11]. Without discussing the details of these models,
we mention that in all of them fuel was assumed to be mono-component; the
limitations of this approximation have been widely discussed [12].

The main objective of the new paper is to suggest a new simple model of
puffing/micro-explosion in which the effects of multiple components in liquid
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fuel are considered. The main ideas of the model described in [2] will be
incorporated in the new model.

Key equations/approximations used in the new model are summarised in
Section 2. The new numerical algorithm, developed based on this model, is
introduced in Section 3. Section 4 focuses on the summary of experimental
observations of puffing/micro-explosion in kerosene/water droplets, as exam-
ples of multi-component composite droplets. The application of the newly
developed model to the latter droplets is demonstrated in Section 5. The
most important results are presented in Section 6.

2. Basic equations and approximations

The new model is based on the same assumptions and equations as the
model described in [2], which are supplemented by new developments for
modelling the processes in multi-component fuels. A spherical water sub-
droplet of radius Rw is located in the centre of a spherical liquid fuel droplet
of radius Rd. The spatial and temporal evolution of the temperature inside
the composite droplet is described by the following transient heat transfer
equation:

∂T

∂t
= κ

(
∂2T

∂R2
+

2

R

∂T

∂R

)
+ P (R, t), (1)

where

κ =

{
κw = kw/(cwρw) for R ≤ Rw

κf = kf/(cfρf ) for Rw < R ≤ Rd,
(2)

kw(f), cw(f), and ρw(f) are the thermal conductivity, specific heat capacity, and
density of water (liquid fuel), respectively; R the distance from the centre
of the droplet, t time. P (R, t) describes the droplet internal heating (e.g.
heating by thermal radiation penetrating inside the droplet).

Equation (1) was solved analytically with the initial and boundary con-
ditions:

T (t = 0) =

{
Tw0(R) when R ≤ Rw

Tf0(R) when Rw < R ≤ Rd,
(3)

T |R=R−
w

= T |R=R+
w
, kw

∂T

∂R

∣∣∣∣
R=R−

w

= kf
∂T

∂R

∣∣∣∣
R=R+

w

, (4)
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h (Teff − T (Rd)) = kf
∂T

∂R

∣∣∣∣
R=Rd−0

, (5)

h is the convective heat transfer coefficient,

Teff = Tg +
ρfLṘd(e)

h
.

It is assumed that Tw0(Rw) = Tf0(Rw). Ṙd(e) ≡ dRd/dt
∣∣∣
ρf=const

takes into

account the change in Rd due to evaporation. The Abramzon and Sirignano
model [14] is used to estimate the evaporation rate and h.

The changes in droplet radii due to thermal swelling during individual
time steps are estimated as [2]:

∆Rd(s) ≡ Rd1 −Rd0 = Rd0

{[(
1− R3

w0

R3
d0

)
ρf0

ρf1

+
R3
w0

R3
d0

ρw0

ρw1

]1/3

− 1

}
, (6)

where subscripts 0 and 1 refer to the beginning and end of the time step,
respectively.

An explicit solution to Equation (1) subject to Conditions (2)-(4) is given
in [2]. This solution was incorporated into the numerical code and used at
each step in the calculation. In contrast to the model described in [2], the
model used in our analysis takes into account the multi-component nature
of fuel in the shell surrounding the water sub-droplet.

The following equations for mass fractions Yli ≡ Yli(t, R) inside the liquid
multi-component liquid fuel shell surrounding water sub-droplets were used:

∂Yli
∂t

= Dl

(
∂2Yli
∂R2

+
2

R

∂Yli
∂R

)
, (7)

where i ≥ 1, Dl is the liquid fuel mass diffusivity; this is assumed to be
constant for all species. Equation (7) is solved using the conditions at the
outer and inner boundaries of the shell:

α(εi − Ylis) = −Dl
∂Yli
∂R

∣∣∣∣
R=Rd−0

, (8)

∂Yli
∂R

∣∣∣∣
R=Rw+0

= 0, (9)
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where Ylis = Ylis(t) are mass fractions of components i at the droplet’s sur-
face,

α = |ṁd|
[
4πρlR

2
d

]−1
, (10)

ṁd is the rate of droplet evaporation, and the initial condition:

Yli(R, t)|t=0 ≡ Yli0(R). (11)

Equation (8) is a well known boundary condition for evaporating multi-
component droplets [13]. Equation (9) is a statement that no fuel species
penetrate from the fuel shell into water.

We assume that [13]:

εi =
Yvis∑
i Yvis

, (12)

where subscript v shows the vapour phase.
The analytical solution to Equation (7) subject to Conditions (8), (9),

and (11) was obtained as (see Appendix 1 for the details):

Yli = εi +
1

R

{
exp

[
Dl

(
λ0

Rd

)2

t

]}
[qi0 − εiQ0] v0

+
1

R

∞∑
n=1

{
exp

[
−Dl

(
λn
Rd

)2

t

]}
[qin − εiQn] vn, (13)

where eigenvalues λ0 and λn (n ≥ 1) are positive solutions to the following
equations:

F ≡

`K − Rw

(
λ0
Rd
`
)2

`

 tanh

(
λ0

Rd

`

)
=

(
λ0

Rd

`

)
(1−RwK), (14)

G ≡

`K +
Rw

(
λn
Rd
`
)2

`

 tan

(
λn
Rd

`

)
=

(
λn
Rd

`

)
(1−RwK), (n ≥ 1) (15)

` = Rd −Rw, K =
1

Rd

[
1 +

αRd

Dl

]
. (16)

v0 = sinh

(
λ0

Rd

(R−Rw)

)
+
λ0Rw

Rd

cosh

(
λ0

Rd

(R−Rw)

)
, (17)

6



vn = sin

(
λn
Rd

(R−Rw)

)
+
λnRw

Rd

cos

(
λn
Rd

(R−Rw)

)
, (n ≥ 1) (18)

qin =
1

||vn||2

∫ `

0

(R+Rw)Yli0(R+Rw)vn(R)dR, (n ≥ 0) (19)

Qn =
1

||vn||2

∫ `

0

(R+Rw)vn(R)dR, (n ≥ 0) (20)

R = R − Rw, εi are the initial values of this parameter at each time step,
expressions for norms ||vn||2 (n ≥ 0) are given by (72) and (73).

Solution (13) was obtained using the assumption that the processes are
spherically symmetric; the effect of droplet velocity was not considered. In
the case of homogeneous droplets, the latter effect could be considered using
the Effective Diffusivity model [13]. Unfortunately, in the case of composite
droplets this model cannot be combined with the model used in the paper
(the assumption about the central location of the water sub-droplet is not
consistent with the assumption of the formation of the Hill vortex used in
the ED model).

In our analysis Solution (13) is applied to both stationary and moving
droplets. For the corresponding analytical solution to Equation (1), a non-
self-consistent model suggested in [3] is used to describe the heating of moving
composite droplets. In this model, the rate of heating of droplets by the
gas takes into account the droplet’s movement but the processes inside the
droplet are assumed not to be affected by this movement.

The partial pressure of vapour component i at the droplet surface is found
from Raoult’s law:

pvsi = Xlsip
∗
vi, (21)

where Xlsi are the molar fractions of the ith liquid species in the immediate
vicinity of the droplet surface, p∗vi are the partial vapour pressures of the ith
species for Xlsi = 1.

The contribution of a droplet’s support on its heating is considered fol-
lowing the model described in [15]. In this model the effect of the support
is described via the introduction of the following approximation of P (R) in
Equation (1):

P (R) =
3kf (Tsup − Tc)

4πcfρfR4
d

SC , (22)

where Tsup and Tc are the temperature of the support and that at the droplet
centre, respectively, SC is the the area of the droplet that is in contact with
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the cylindrical support which is estimated as:

SC = πdhRd, (23)

dh is the diameter of the supporting cylinder.
The contribution of vapour to the transport/thermodynamic properties

of ambient gas is ignored. The effect of the relative diffusion of vapour
components is not considered. For in-depth discussion of the latter effect see
[16, 17]. The Abramzon and Sirignano model was applied to the analysis of
the droplet heating and evaporation [13].

Puffing/micro-explosion is assumed to start when the temperature at the
interface between water and liquid fuel (Tw) reaches the water nucleation
temperature (TN). The latter temperature is found from the boiling temper-
ature of water and the rate of change of the temperature at the water-fuel
interface with time (Ṫ ), applying one of the correlations suggested in [2] for
various ranges of Ṫ . The values of Ṫ at this interface were obtained at each
time step using the analytical solution to Equation (1) at each time step.
The time to puffing/micro-explosion was found as a point of intersection of
the curves Tw(t) and TN(t) (see [2] for the details). As in [2], the effect of
bubble growth on time to puffing/micro-explosion was not considered.

3. Numerical code

Both the analytical solution to the equation for species diffusion derived
earlier and the analytical solution to the equation for heat transfer derived
in [2] were implemented into the numerical code and used at each time step
of the calculations (see [13, 2] for the details).

Calculations were performed using Matlab R2020a. One hundred terms
were used in series (13) and 200 terms were used in the corresponding series
in the analytical solution for temperature (see Expression (11) in [2]); no
difference in the results was noticed when these numbers of terms increased
further. Time steps 50 µs and 0.1 s were used for the smallest and largest
droplets, respectively; 10,000 cells along the droplet radius were used to
calculate integrals for the parameters in (13) and Expression (11) in [2].

The roots of Equations (14) and (15) and the corresponding equation for
temperature (Equation (12) in [2]) were obtained using the bisection method
with absolute accuracy of 10−15. The graphical illustrations of solutions of
(14) and (15) are shown in Appendix 3.
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The results of calculations using the new code were verified by comparing
its predictions with those inferred from ANSYS Fluent, in which the analyt-
ical solution described in Section 2 in the limits Rw = 0 was implemented
via User Defined Functions (UDF) [18]. The details are shown in Appendix
4.

4. Kerosene droplets: experimental set-up

The model and numerical code described in Sections 1 and 2 were ap-
plied to the investigation of puffing/micro-explosion in composite kerosene
(JetA-1)/distilled water (Russian standard 6709-72) droplets which can be
considered as a typical example of multi-component composite droplets. The
volume fractions of kerosene and water used in the experiments were 90% and
10%, respectively. This choice of composite droplet parameters was based
on the previous investigation [19] where it was shown that for these parame-
ters puffing and micro-explosion were consistently observed for a wide range
of ambient temperatures (450-850 K) and initial droplet radii (0.5-1.0 mm).
The model is obviously applicable to any other multi-component fuel.

The methodology used for the generation of composite droplets was simi-
lar to the one described in [20]. Two electronic Finnpipette Novus dispensers,
designed to take in liquid volumes in the ranges 5 to 50 µl (with steps of 0.1
µl) and 0.5 to 12.5 µl (with steps of 0.01 µl), were used. These dispensers
were equipped with special replaceable tips for liquid intake. First, a water
droplet was generated and mounted on a holder. Then a fuel droplet was
generated which spread over the surface of the water droplet forming a film
of thickness 0.05 to 0.5 mm [21]. The ratio of the volumes of water and fuel
(1:9) was maintained with errors less than 3%. Planar Laser Induced Flu-
orescence (PLIF) was used to determine the thickness of kerosene films. A
Rhodamine B solution of 10000 µg/l was added to water; it was illuminated
by a laser sheet as in [21].

To investigate time to puffing/micro-explosion an experimental set-up
similar to the one described in [22] was used. The processes of compos-
ite droplet evaporation and disintegration were recorded using a high speed
Phantom Miro M310 video camera (Vision Research, USA, with the following
specifications: maximal speed 3260 frames per second (fps) at full resolution
1280x800 pixels; 12 bit depth; 1 µs minimum exposure; pixel size 20 µm; 12
Gb memory; image-based auto-trigger). The images were taken at frequen-
cies 1000 to 10000 fps with resolutions of 640x480 pixels. The video frames
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were processed using Phantom Camera Control software and the start of
droplet desintegration was identified. Systematic errors of determination of
times to puffing/micro-explosion did not exceed ±1 µs. The initial droplet
diameters were measured at the time instant when droplets were introduced
into the camera. These diameters were inferred by averaging droplet sizes in
two perpendicular directions.

Each measurement was performed at least 5-10 times with identical condi-
tions, including ambient temperatures, initial droplet sizes and volume frac-
tions of the components.

Figure 1: Typical images of puffing/micro-explosion observed in the experiments. A
kerosene/water composite droplet (initial radius Rd0 = 0.92 mm and volume fraction
of water Vw0 = 10% ) was placed in a muffle furnace at atmospheric pressure and ambient
temperature Tg = 723 K.

Typical video frames showing the evaporation and disintegration of com-
posite kerosene/water droplets are shown in Figure 1.

5. Modelling and experimental results

The kerosene composition presented in Table 1 of [23] was used for our
analysis. The transport/thermodynamic properties of kerosene components
shown in this table are presented in the Supplementary Material of [23] (see
also the Supplementary Material of [24]). Some corrections and more accu-
rate approximations of these properties are presented in the Supplementary
Material of this paper.
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The diffusion coefficient for liquid species is inferred from the Wilke-
Chang formula with the molar mass equal to the average molar mass of all
species [25]. It is assumed that kerosene vapour can be approximated by
the dominant component (cycloundecane), and the following formula for the
vapour diffusion coefficient (in m2/s) was used for atmospheric pressure [23]:

Dv =
[
−0.04025 + 2.4907× 10−4 × T + 3.1411× 10−7 × T 2

]
× 10−4, (24)

where T is the reference temperature of gas in K.
Liquid thermodynamic/transport properties were estimated at the droplet

average temperatures at specific time steps. The latent heat of evaporation
and saturated vapour pressure were estimated at the surface temperatures
of the droplets.

460 480 500 520 540 560 580 600 620 640
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t p
 (s

)

Tg (K)

Figure 2: Times to puffing/micro-explosion of water/kerosene droplets (τp) versus gas
temperatures Tg, observed experimentally (stars) and predicted by the model assuming
that puffing/micro-explosion starts when the temperature at the water/kerosene interface
becomes equal to the water nucleation temperature (Tw = TN ) (curves). The solid curve
shows the case when the contributions of all kerosene components were considered; the
dashed curve shows the case when kerosene was approximated by cycloundecane.

The observed times to puffing/micro-explosion τp versus gas temperatures
are shown in Figure 2. Our analysis was focused on kerosene/water compos-
ite droplets with initial temperature 300 K, radii 0.85 mm and volumetric
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water content 10% (Rw = 0.395 mm). The experiments were performed at
atmospheric pressure. In the same figure, the values of τp predicted by the
numerical code are shown. It was assumed that puffing and micro-explosion
start when the temperature at the water/kerosene interface (Tw) becomes
equal to the water nucleation temperature (TN). We followed the methodol-
ogy developed in [2] to find this time.

Two cases were investigated. Firstly, the contributions of all kerosene
components were considered using the model described in Section 2. Sec-
ondly, kerosene was approximated by cycloundecane and a much simpler
model described in [2] was used. As can be seen from Figure 2, in both cases
the predictions of the numerical code show the same trend of the reduction of
τp with an increase in ambient gas temperatures. The predictions of the code
using both approximations of kerosene are reasonably close to experimental
data. The code considering the contributions of all kerosene components
predicts longer τp than that in which kerosene was approximated by cycloun-
decane.

0.5 0.6 0.7 0.8 0.9 1.0
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Rd0 (mm)

Figure 3: The same as Figure 2 but for times to puffing or micro-explosion versus the
initial droplet radii.

The experimentally observed times to puffing/micro-explosion τp ver-
sus initial droplet radii are shown in Figure 3. Our analysis focused on
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kerosene/water composite droplets with volumetric water content 10% placed
in gas at temperature 548 K. Also as in Figure 2, in all cases the initial droplet
temperatures were 300 K. As in Figure 2, we considered the cases when the
contributions of all kerosene components were taken into account and when
kerosene was approximated by cycloundecane.

As can be seen from Figure 3, in both cases the prediction of the numeri-
cal code shows the same increase in τp with an increase in droplet initial radii
as observed experimentally. As in the case of Figure 2, the predictions of the
code using both approximations of kerosene are reasonably close. The code
considering the contributions of all kerosene components predicts longer τp
than in the case when kerosene was approximated by cycloundecane. Note
that our model tends to predict longer times to puffing/micro-explosion com-
pared with those observed experimentally as it uses the assumption that the
water sub-droplet is located in the centre of the kerosene droplet. See [2] for
further discussion of this matter.

6. Conclusions

A new simple model of puffing/micro-explosion of multi-component com-
posite water/liquid fuel droplets is suggested. This model uses the same
assumptions as the model described in [2] except that the effects of the multi-
component nature of the fuel are considered. Following [2], it is assumed that
a water sub-droplet is located in the centre of a spherical fuel droplet. The
analysis of the heating of a composite droplet is based on the heat conduction
equation. The Robin boundary condition at the droplet surface and conti-
nuity conditions at the water/liquid fuel interface are used. The analytical
solution to this equation is incorporated into the numerical code and used
for the analysis of puffing/micro-explosion in droplets at each time step. The
effects of droplet thermal swelling are considered. The Abramzon and Sirig-
nano model is applied to the analysis of droplet heating and evaporation. It is
assumed that puffing/micro-explosion are triggered when the temperature at
the water/fuel interface becomes equal to the water nucleation temperature.

In contrast to [2], the multi-component nature of the fuel is considered.
Making an assumption that the liquid diffusion coefficient is constant for all
species at each time step, the species diffusion equation inside the droplets is
solved analytically. In this solution it is taken into account that fuel species
do not penetrate into water. Raoult’s law is used at the surface of the droplet.
The relative diffusion of individual species in the gas phase is not taken into
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account. The analytical solution to the species diffusion equation in the
liquid phase is incorporated into the numerical code alongside the previously
obtained analytical solution for the distribution of temperature inside the
droplets. Both solutions are used at each time step of the calculation.

The model is used for the analysis of puffing/micro-explosion of kerosene/water
composite droplets. The results of experimental studies of these droplets are
presented. Their volumetric water content was taken equal to 10%. Droplets
with initial radii in the range 0.5 to 1 mm were investigated. The ambient
gas temperature in the experiments was in the range 450 to 850 K.

It is shown that both experimentally observed and predicted times to
puffing/micro-explosion are reasonably close, decreasing with increasing am-
bient gas temperatures and increasing with increasing initial droplet radii.
Considering the presence of multiple components in liquid fuel leads to an
increase in the time to puffing/micro-explosion compared to the case when
kerosene is approximated by a single component (cycloundecane).
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Appendix 1

Solution of Equation (7)

In this Appendix, the details of the solution of Equation (7) (Yli(t, R))
for t ≥ 0 and Rw ≤ R ≤ Rd are presented.

Let us rewrite Condition (8) as:(
∂Yli
∂R
− α

Dl

Yli

)∣∣∣∣
R=Rd

= −αεi(t)D−1
l . (25)
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We look for a solution to Equation (7) as:

Yli(t, R) = y(t, R) + ε(t), (26)

where subscript i at y and ε is hereafter omitted.
Having substituted (26) into Equation (7) and Conditions (25), (9) and

(11) we can rewrite this equation and the corresponding boundary and initial
conditions as:

∂y

∂t
= Dl

(
∂2y

∂R2
+

2

R

∂y

∂R

)
− dε(t)

dt
, (27)(

∂y

∂R
− α

Dl

y

)∣∣∣∣
R=Rd−0

= 0, (28)

∂y

∂R

∣∣∣∣
R=Rw+0

= 0, (29)

y(t = 0) = Yli0(R)− ε(0) ≡ Yli0(R)− ε0. (30)

Using new variable
R = R−Rw (31)

and ignoring the contribution of the term dε(t)
dt

in Equation (27)1, we can
rewrite (27)-(30) as:

∂y

∂t
= Dl

(
∂2y

∂R2
+

2

R+Rw

∂y

∂R

)
, (32)

(
∂y

∂R
− α

Dl

y

)∣∣∣∣
R=Rd−Rw

= 0, (33)

∂y

∂R

∣∣∣∣
R=0

= 0, (34)

y|t=0 = Yli0(R+Rw)− ε(0) ≡ Yli0(R+Rw)− ε0. (35)

1This assumption is consistent with other assumptions made in our analysis, remem-
bering that the final solution will be used during short time steps in the numerical codes,
including the assumption that Rd = const during individual time steps. The validity of
this assumption was confirmed using the numerical analysis of the evaporation in multi-
component droplets without water sub-droplets (Rw = 0) taking and not taking into
account this term in the analytical solution [18].
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Using new variable

u(t,R) = y(t,R)(R+Rw)

allows us to rewrite (32)-(35) as:

∂u

∂t
= Dl

∂2u

∂R2
, (36)(

∂u

∂R
−
(

1

Rd

+
α

D

)
u

)∣∣∣∣
R=Rd−Rw

= 0, (37)(
Rw

∂u

∂R
− u
)∣∣∣∣
R=0

= 0, (38)

u(R, 0) = (R+Rw) (Yli0(R+Rw)− ε0) . (39)

We look for a solution to Equation (36) as:

u =
∞∑
n=0

Θn(t)vn(R), (40)

where vn(R) is the full set of non-trivial solutions to the equation:

∂2v

∂R2
+ pv = 0, (41)

with the boundary conditions:(
∂v

∂R
−
(

1

Rd

+
α

D

)
v

)∣∣∣∣
R=Rd−Rw

= 0, (42)

(
Rw

∂v

∂R
− v
)∣∣∣∣
R=0

= 0. (43)

Note that p in this approach is dimensional and has units of 1/m2.
Equation (41) with boundary conditions (42) and (43) is the Sturm-

Liouville problem. We consider separately the cases when p < 0, p = 0,
and p > 0.
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Sturm-Liouville problem for p < 0

Assuming that p = − (λ/Rd)
2, the general solution to Equation (41) can

be presented as

v = A sinh

(
λR
Rd

)
+B cosh

(
λR
Rd

)
. (44)

Note that λ is dimensionless. Having substituted (44) into (42) and (43) we
obtain:

A

[
λ

Rd

cosh

(
λ`

Rd

)
−K sinh

(
λ`

Rd

)]
+B

[
λ

Rd

sinh

(
λ`

Rd

)
−K cosh

(
λ`

Rd

)]
= 0,

(45)

A
λRw

Rd

−B = 0, (46)

where

` = Rd −Rw, K =
1

Rd

[
1 +

αRd

Dl

]
. (47)

System (45) and (46) has a non-trivial solution if and only if its determi-
nant is equal to zero, which implies that:

∆(λ) =

(
Rwλ

2

R2
d

−K
)

sinh

(
λ`

Rd

)
+

λ

Rd

(1−RwK) cosh

(
λ`

Rd

)
= 0. (48)

Equation (48) can be simplified to

tanh

(
λ`

Rd

)
=

λ(1−RwK)

Rd

(
K − Rwλ2

R2
d

) . (49)

Equation (49) can be further rearranged to

F(λ̃) ≡

(
`K − Rwλ̃

2

`

)
tanh λ̃ = λ̃(1−RwK). (50)

where λ̃ = λ`/Rd. The graphical solution to Equation (50) is the inter-
section of F(λ̃) with the straight line described by the right hand side of
(50). Using the same input parameters as in Section 5 the details of this
solution are shown in Appendix 3. As follows from the analysis presented
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in this Appendix, Equation (50) has only one solution for these values of
parameters.

In the limit Rw = 0 Equation (50) reduces to Equation (H.15) of [13].
Solution λ̃ > 0 to Equation (50) will be referred to as λ̃0 which corresponds
to λ0.

Assuming that A = 1 we have from Equation (46) that B = λRw/Rd =
λ̃Rw/`. For λ = λ0, Solution (44) can be presented as:

v0 = sinh

(
λ0R
Rd

)
+
λ0Rw

Rd

cosh

(
λ0R
Rd

)
, (51)

where λ0 = λ̃0Rd/` is obtained from (50). Note that our assumption A = 1
does not affect the generality of the solution since the normalisation of u will
be obtained when calculating Θ.

Formula (51) can be presented in an alternative form:

v0 = AY 0 sinh

(
λ0R
Rd

+ ηY 0

)
. (52)

To obtain explicit expressions for coefficients AY and ηY we rewrite (52) as

v0 = AY 0 sinh

(
λ0R
Rd

)
cosh ηY 0 + AY 0 cosh

(
λ0R
Rd

)
sinh ηY 0, (53)

Comparing (51) and (53) we obtain:

cosh ηY 0 =
1

AY 0

; sinh ηY 0 =
λ0Rw

RdAY 0

; tanh ηY 0 =
λ0Rw

Rd

, (54)

Remembering that

cosh2 ηY 0 − sinh2 ηY 0 =

(
1

AY 0

)2

−
(
λ0Rw

RdAY 0

)2

= 1

we obtain:

AY 0 =

√
1−

(
λ0Rw

Rd

)2

. (55)
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Sturm-Liouville problem for p = 0

For p = 0 the general solution to Equation (41) can be presented as

v = AR+B. (56)

Having substituted (56) into (42) and (43) we obtain:

A(1−K`)−BK = 0, ARw −B = 0. (57)

The determinant of this system is equal to zero if and only if

K(`+Rw) = RdK = 1, (58)

which is not possible since K > 1/Rd.

Sturm-Liouville problem for p > 0

Assuming that p = (λ/Rd)
2, the general solution to Equation (41) can be

presented as

v = A sin

(
λR
Rd

)
+B cos

(
λR
Rd

)
. (59)

Having substituted (59) into (42) and (43) we obtain:

A

[
λ

Rd

cos

(
λ`

Rd

)
−K sin

(
λ`

Rd

)]
+B

[
− λ

Rd

sin

(
λ`

Rd

)
−K cos

(
λ`

Rd

)]
= 0,

(60)

A
λRw

Rd

−B = 0. (61)

System (60) and (61) has a non-trivial solution if and only if its determi-
nant is equal to zero, which implies that:

∆(λ) = −
(
Rwλ

2

R2
d

+K
)

sin

(
λ`

Rd

)
+

λ

Rd

(1−RwK) cos

(
λ`

Rd

)
= 0. (62)

Equation (62) can be simplified to

tan

(
λ`

Rd

)
=

λ(1−RwK)

Rd

(
K + Rwλ2

R2
d

) . (63)
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Equation (63) can be further rearranged to

G(λ̃) ≡

(
`K +

Rwλ̃
2

`

)
tan λ̃ = λ̃(1−RwK). (64)

The graphical solutions to this equation are the intersections of G(λ̃) with
the straight line described by the right hand side of (64). Using the same
input parameters as in Section 5 the details of this solution are shown in
Appendix 3.

For Rw = 0 Equation (64) reduces to Equation (H.20) of [13].
Equation (64) has a countable number of solutions (eigenvalues)

0 < λ1 < λ2 < ... < λn < ... (65)

For each of these eigenvalues Solutions (59) can be presented as:

vn = An sin

(
λnR
Rd

)
+Bn cos

(
λnR
Rd

)
, (66)

where n = 1, 2....
As in the case of p < 0 we assume that An = 1, which implies that

Bn = Rwλn/Rd, and rewrite (66) as:

vn = sin

(
λnR
Rd

)
+
Rwλn
Rd

cos

(
λnR
Rd

)
. (67)

Formula (67) can be presented in an alternative form:

vn = AY n sin

(
λnR
Rd

+ ηY n

)
. (68)

To obtain explicit expressions for coefficients AY n and ηY n we rewrite (68) as

vn = AY n sin

(
λnR
Rd

)
cos ηY n + AY n cos

(
λnR
Rd

)
sin ηY n. (69)

Comparing (67) and (69) we obtain:

cos ηY n =
1

AY n
, sin ηY n =

λnRw

AY nRd

, tan ηY n =
Rwλn
Rd

. (70)
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Remembering that

cos2 ηY n + sin2 ηY n =

(
1

AY n

)2

+

(
Rwλn
AY nRd

)2

= 1

we obtain

AY n =

√
1 +

(
Rwλn
Rd

)2

. (71)

For Rw = 0 Equations (67) and (68) reduce to Equation (H.21) of [13].

Orthogonality and norms of vn (n = 0, 1, 2....)

The orthogonality of vn for R in the range 0 to Rd − Rw can be proven
as in [13] for the case when Rw = 0. Also, it follows from the general
theory of the Sturm-Liouville boundary value problem [26]. Completeness of
these functions follows from the theory of the Sturm-Liouville boundary value
problem [26] remembering that we have found all solutions to this problem.

In what follows, the norms of v0 and vn (n ≥ 1) are calculated:

‖v0(R)‖2 =

∫ `

0

v2
0(R) dR = A2

Y 0

∫ `

0

sinh2

(
λ0R
Rd

+ ηY 0

)
dR

=
A2
Y 0

2

(
Rd

2λ0

sinh
(

2

(
λ0R
Rd

+ ηY 0

))
−R

)∣∣∣∣`
0

=
1−

(
λ0Rw

Rd

)2

2

Rd

λ0

tanh
(
λ0`
Rd

+ ηY 0

)
1− tanh2

(
λ0`
Rd

+ ηY 0

) − Rd

λ0

tanh ηY 0

1− tanh2 ηY 0

− `



=
1−

(
λ0Rw

Rd

)2

2

 K

K2 −
(
λ0
Rd

)2 −
Rw

1−
(
λ0Rw

Rd

)2 − `

 , (72)

‖vn(R)‖2 =

∫ `

0

v2
n(R) dR = A2

Y n

∫ `

0

sin2

(
λnR
Rd

+ ηY n

)
dR

=
A2
Y n

2

(
R− Rd

2λn
sin
(

2

(
λnR
Rd

+ ηY n

)))∣∣∣∣`
0
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=
1 +

(
λnRw

Rd

)2

2

`− Rd

λn

tan
(
λn`
Rd

+ ηY n

)
1 + tan2

(
λn`
Rd

+ ηY n

) +
Rd

λn

tan ηY n
1 + tan2 ηY n



=
1 +

(
λnRw

Rd

)2

2

[
`+

Rw

1 + (λnRw/Rd)
2 −

K
K2 + (λn/Rd)

2

]
. (73)

In the limit when Rw = 0 Equations (72) and (73) reduce to Expressions
(H.17) and (H.22) of [13], respectively.

Calculation of coefficients Θn in Expansion (40)

Having substituted (40) into (36) we obtain:

∞∑
n=0

Θ′n(t)vn(R) = Dl

∞∑
n=0

Θn(t)v′′n(R), (74)

where

Θ′n =
dΘn

dt
; v′′n(R) =

d2vn
dR2

.

Remembering that

∂2v0

∂R2
=

(
λ0

Rd

)2

v0,
∂2vn
∂R2

= −
(
λn
Rd

)2

vn (n ≥ 1), (75)

and the uniqueness of the Fourier expansion (Equation (74) is satisfied only
when it is satisfied for each term), the following equations for Θn are obtained:

Θ′0(t) = Dl

(
λ0

Rd

)2

Θ0(t), (76)

Θ′n(t) = −Dl

(
λn
Rd

)2

Θn(t), n ≥ 1. (77)

To solve Equations (76) and (77) we need to find the initial conditions
Θn(0) for n ≥ 0. To find Θn(0) we substitute (40) into (39) to obtain

∞∑
n=0

Θn(0)vn(R) = (R+Rw) (Yli0(R+Rw)− ε0) . (78)
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Expanding the right hand side of (78) into a Fourier series with respect to
functions vn we can rewrite the latter equation as:

∞∑
n=0

Θn(0)vn(R) =
∞∑
n=0

(qin − ε0Qn) vn(R), (79)

where

qin =
1

||vn||2

∫ `

0

(R+Rw)Yli0(R+Rw)vn(R)dR (80)

Qn =
1

||vn||2

∫ `

0

(R+Rw)vn(R)dR. (81)

The details of the derivation of the explicit expressions for Qn are pre-
sented in Appendix 2.

Equation (79) is satisfied if and only if it is satisfied for each term in the
Fourier series. Hence,

Θn(0) = qin − ε0Qn, n = 0, 1, 2, ..... (82)

Remembering (82), solutions to Equations (76) and (77) can be presented
as:

Θ0(t) = exp

[
Dl

(
λ0

Rd

)2

t

]
[qi0 − ε0Q0] , (83)

Θn(t) = exp

[
−Dl

(
λn
Rd

)2

t

]
[qin − ε0Qn] , n ≥ 1. (84)

Having substituted (83) and (84) into (40), using the definitions of u and
y the final solution to Equation (7), subject to boundary conditions (8)-(9)
and initial condition (11), is obtained as Expression (13).

In the limit when Rw = 0, R = R and Expression (13) reduces to Ex-
pression (5.18) of [13].

Solution (13) could also be obtained from the general solution to Equation
(36) subject to boundary and initial conditions (37)-(39) in the form [27]:

u(R, t) =

∫ `

0

Ψ(R, ξ, t)g(ξ) dξ, (85)

where

Ψ(R, ξ, t) =
∞∑
n=0

1

‖vn‖2
vn(R)vn(ξ) exp (Dpnt) , (86)
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g = (R+Rw)
(
Yli0(R+Rw)− ε0

)
,

vn are the eigenfunctions corresponding to eigenvalues pn of the Sturm–
Liouville problem (see Equation (41)) with the corresponding boundary con-
ditions.

Appendix 2

Calculations of the expressions for Qn based on (81)

Having substituted (51) into (81) we obtain:

Q0 =
1

‖v0‖2

∫ `

0

[
sinh

(
λ0R
Rd

)
+
λ0Rw

Rd

cosh

(
λ0R
Rd

)][
(R+Rw)

]
dR

=
−1

‖v0‖2

{
−Rd(Rd −Rw)

λ0

cosh
[ λ0

Rd

(Rd −Rw)
]

+

(
R2
d

λ2
0

−RwRd

)
sinh

[ λ0

Rd

(Rd −Rw)
]}

.

(87)
Having substituted (67) into (81) we obtain:

Qn =
1

‖vn‖2

∫ `

0

[
sin

(
λnR
Rd

)
+
λnRw

Rd

cos

(
λnR
Rd

)][
R+Rw

]
dR

=
1

‖vn‖2

{
−Rd(Rd −Rw)

λn
cos
[λn
Rd

(Rd −Rw)
]

+

(
R2
d

λ2
n

+RwRd

)
sin
[λn
Rd

(Rd −Rw)
]}

,

(88)
where n ≥ 1.

In the limit Rw = 0, Expressions (87) and (88) reduce to Expression
(H.29) of [13]. When reducing (87) and (88) to the latter expression we took
into account that for Rw = 0:

λ0

Rd

coshλ0 = K sinhλ0,

λn
Rd

cosλn = K sinλn n ≥ 1.

These formulae follow from boundary condition (37). Note that λ used in
Expression (H.29) of [13] corresponds to λ̃ used in our paper.
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Appendix 3

Graphical solutions of (14) and (15)

The aim of this Appendix is to present graphical illustrations of the so-
lutions of Equations (14) and (15) for the values of parameters typical for
kerosene droplet heating and evaporation in a heating chamber at atmo-
spheric pressure and ambient temperature 473 K. The initial droplet and
water sub-droplet radii are taken equal to 0.85 mm and 0.395 mm, which
corresponds to a water volume fraction equal to 10%. Thus ` = 0.455× 10−3

m. As in our analysis in Section 5 we assumed that Dl = 1.1043×10−9 m2/s.
Focusing on droplet evaporation at t = 0 we assumed that α = 8.2254×10−8

m/s, which leads to K = 1250.9562 1/m.
For these values of input parameters, the plots of the left (F) and right

hand sides of (14) versus λ are shown by dotted and solid curves in Figure
4(a), respectively. Note that the right hand side of this equation is a linear
function of λ. As can be seen in this figure, the curves intersect at one point;
at λ = 0.4617. Plots similar to those shown in Figure 4(a), but ignoring
the contribution of water (Rw = 0) are shown in Figure 4(b). Comparing
Figures 4(a) and 4(b), it can be seen that the curves are strongly affected by
the value of Rw, but the values of λ at which they intersect are rather close.
They intersect at λ = 0.4387 for the case shown in Figure 4(b).

Using the same values of input parameters, the plots of the left (G) and
right hand sides of (15) versus λ are shown by dotted and solid curves in
Figure 5(a), respectively. As in the case of Figure 4(a), the right hand side
of (15) is a linear function of λ. As can be seen in this figure, in contrast to
Figure 4(a), the curves intersect at an infinite number of points: λ1 = 6.1712,
λ2 = 11.8939 etc. Plots similar to those shown in Figure 5(a), but ignoring
the contribution of water (Rw = 0) are shown in Figure 5(b). In contrast
to the cases shown in Figure 4, the values of λ at which they intersect are
strongly affected by the presence of water. In the case shown in Figure 5(b)
the curves intersect at λ1 = 4.4793, λ2 = 7.7172 etc.

Appendix 4

Verification of the numerical code

Analytical solution (13) in the limit when Rw = 0 was implemented into
ANSYS Fluent via User Defined Functions (UDF) and used at each time
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Figure 4: The plots of the left (dashed) and right (solid) hand sides of Equation (14)
versus λ for typical kerosene droplets for the cases when Rw = 0.395 mm (a) and Rw = 0
(b).
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Figure 5: The same as Figure 4 but for Equation (15).
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step of the calculations performed by this software [18]. In what follows,
the results of these calculations are compared with those predicted by the
numerical code described in Section 3 in the limit when Rw = 0 for heat-
ing/cooling and evaporation of acetone/ethanol mixture droplets. The focus
will be on the case when the mass fractions of ethanol and acetone were 25%
and 75%, respectively. The input parameters used in calculations were the
same as shown in Table 1 of [18].

Figure 6: Time evolution of a 25% ethanol/75% acetone droplet surface (bottom curves),
average (middle curves) and central (top curves) temperatures (Ts, Tav and Tc) as predicted
by the customised version of ANSYS Fluent (dashed curves) and the new numerical code
(solid curves). The input parameters are shown in Table 1 of [18].

The time evolution of the surface, average and central temperatures of
ethanol/acetone droplets predicted by the customised version of ANSYS Flu-
ent and the newly developed numerical code is presented in Figure 6. As
follows from this figure the values of temperatures predicted by both codes
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are reasonably close. The deviation between the predicted temperatures does
not exceed 0.2218%. This is comparable with the deviation between the pre-
dictions of the customised version of ANSYS Fluent and the in-house code
in which the analytical solution for Rw = 0 was originally used (0.1636%)
[18]. Possible reasons for this deviation are discussed in [18].

Figure 7: Time evolution of surface mass fractions of ethanol (Yls,e) and acetone (Yls,a)
for the same droplet as in Figure 6, predicted by the customised version of ANSYS Fluent
(dashed curves) and the new numerical code (solid curves).

The results of calculation of the time evolution of mass fractions of ace-
tone and ethanol for the same droplets as in Figure 6 are presented in Figure
7. As follows from the latter figure, the results predicted by both codes
are reasonably close although the deviation between them is larger than in
the case shown in Figure 6 (0.3226%). This deviation is comparable with
the deviation between the predictions of the customised version of ANSYS
Fluent and the in-house code in which the analytical solution for Rw = 0
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was originally used (0.7933%) [18]. This allows us to conclude that our new
numerical code is verified in the limiting case of Rw = 0.
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