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S1. [bookmark: _Toc355102154][bookmark: _Ref336844250][bookmark: _Toc343784226]
Definition of SRZ
Fig. S1.1 shows the loadings of first three the rainfall Principal Components (PC 1-3) over all grid cells south of 10°S where ≥66% of annual precipitation falls in the ONDJFM season. Fig. S1.2 shows the spatial correlations of PC 1-3. Table S1.1 lists the fraction of total variance explained by PC 1-3, together with the fraction of grid cells that display significant correlations with
PC 1-3.
[image: ][image: ][image: ]
Fig. S1.1: Spatial distributions of the loadings to the first three PCs of ONDJFM rainfall. Only grid cells with ≥66% of annual precipitation falling during the ONDJFM season are used.

[image: ] [image: ] [image: ]
Fig. S1.2: Spatial distributions of ONDJFM rainfall correlations with the first three PCs. Only grid cells with ≥66% of annual precipitation falling during the ONDJFM season are used.



Table S1.1: ev: Explained variance of total rainfall variability over the area with ≥66% of annual precipitation falling during the ONDJFM season by PC 1-3. Fsig: Fraction of grid cells with significant correlation with PC 1-3. Fsig.pos: Same as Fsig but counting only significant positive correlations.

	
	ev
	Fsig
	Fsig.pos

	PC 1
	26
	77
	67

	PC 2
	10
	51
	13

	PC 3
	9
	26
	26





S2. [bookmark: _Ref355083362][bookmark: _Toc355102155]Documentary data: extension to present
S2.1. [bookmark: _Toc343784227][bookmark: _Toc355102156]Rationale
The five documentary-based rainfall index-time series available from southern Africa (see main text and Table S2.2 below) cover a period of 76-85 years within the 19th century. None of these records extend into the 20th century, making calibration with instrumental data impossible. To allow inclusion in our multi-proxy rainfall reconstruction, these records needed to be extended to the present day. There are two ways in which it is possible to perform such an extension:
a) “Real documentaries”: Using the same or comparable sources that were used to derive the 19th-century documentary records to obtain rainfall indices for the 20th century;
b) “Pseudo-documentaries”: Degrading instrumental data to generate pseudo-documentary indices, which mimic the properties of a “real” documentary time series.
Both approaches are described in further detail in Neukom et al. (2009). Whereas approach (a) would yield more robust records of true documentary nature, it would be extremely time consuming and would require years of additional archive work to derive full-length 20th century documentary time series for all five regions. Given that 20th century instrumental data are available for southern Africa, the outcome of this approach would not provide any new information or benefit except for the possibility of calibrating the documentary records against instrumental data. Neukom et al. (2009) have shown that the results of a rainfall reconstruction using “real” and “pseudo” documentaries are very similar. Furthermore, pseudo-documentaries are able to mimic realistically the statistical properties of a documentary time series, if the correlation between documentary and instrumental data can be estimated (Neukom et al. 2009). Therefore, we applied approach (b) here, to extend the southern Africa rainfall records to the present day. The methods we used are based on Neukom et al. (2009) and are described in detail in the following paragraphs.
S2.2. [bookmark: _Toc343784228][bookmark: _Toc355102157]Instrumental records used for the extension
First, we needed to identify which instrumental rainfall station data adequately represented the five regional documentary records. Candidate stations needed to extend further back than AD 1900 in order to have an overlap period with the documentary data. Table S2.1 summarises the available data for each region.
For all calculations, anomalies relative to the 1901-1990 period were used for the instrumental data. For larger regions, the available station data were grouped into sub-groups using cluster analysis (k-means method). Various combinations of composite time-series among individual stations and clusters were tested to obtain the optimal target data to derive the pseudo-documentaries for each region. We used the temporal coverage of the stations and Spearman correlation coefficients with the documentary data in the overlap period as selection criteria. Details for each region are provided in the following paragraphs. Table S2.2 summarises the instrumental target data for each region.
Kalahari (original annual indices and all calculations based on July-June rain-years)
We used the mean of the stations Barkly West and Kimberley as the instrumental target composite.
Namaqualand (calendar years)
We used the Springbok time series. Two years with missing values (1880 and 1993) were infilled with linear regression from the Port Nolloth station.
Lesotho (July-June rain-years)
We used a composite of all available stations.
Southern Cape (calendar years)
Cluster analysis resulted in a cluster from the inland/north region (Clanwilliam, Malmesbury and Worcester), separated from the other records. This cluster has a correlation of 0.34 with the documentary record in the overlap period. Given that the Clanwilliam station alone has higher correlations and the best temporal coverage of the three records from the cluster, Clanwilliam was used as the target time series. Missing values (seven years between 1880 and 1910) were infilled using multiple linear regression from Malmesbury and Worcester.
Eastern Cape (calendar years)
[bookmark: _Ref336268664]Cluster analysis yielded four clearly separated clusters, which also matched the geographical distribution of the stations: northeastern stations (Steynsburg and Tarkastad), eastern stations (Grahamstown, Fort Beaufort, King William’s Town, Somerset East and Alicedale) southeastern/ coastal stations (Port Elizabeth, Uitenhage and Humansdorp) and western stations (Oudtshoorn, Prince Albert, Calitzdorp and Willowmore). Only the eastern (r=0.49, p<0.01) and southeastern/ coastal (r=0.42, p<0.01) clusters showed significant correlations with the documentary data in the overlap period; the northeastern (r=0.10, p=0.71) and western (r=0.34, p=0.12) show a clearly weaker relationship to the documentary data. This result also reflected the distribution of locations from which historical information used in the construction of documentary time series was derived; predominantly sites within 100km of the coast. The average of the eastern and southeastern/coastal composites has a correlation of 0.51 (p<0.001) with the documentary time series, a higher value than the individual composites from the two regions, suggesting that both regions contribute to the data derived from the historical archives. We used this average of the eastern and southeastern/coastal composites as the target time series. All composites were calculated after standardising all stations, in order to account for differences in variance among the stations.

Table S2.1: Instrumental data available for each region (Peterson and Vose 1997). Station names, coordinates, time period covered, Spearman correlation with documentary data in the overlap period (cor) and length of the overlap period (n). Temporal coverage of the documentary data for each region in brackets.
	 Region/station name
	Lat (°S)
	Long (°E)
	Start
	End
	cor
	n

	Kalahari (1815-1900)
	
	
	
	
	
	

	Barkly West 
	28.30
	24.55
	1884
	1998
	0.67
	11

	Kimberley
	28.80
	24.77
	1877
	2008
	0.61
	23

	Namaqualand (1817-1900)
	
	
	
	
	 
	

	Pella
	29.00
	19.10
	1878
	1981
	0.08
	14

	Port Nolloth
	29.23
	16.87
	1879
	1997
	0.51
	13

	Springbok
	29.67
	17.88
	1878
	1997
	0.62
	20

	Lesotho (1824-1900)
	
	
	
	
	
	

	Leribe
	28.88
	28.05
	1886
	1996
	0.67
	12

	Ladybrand
	29.17
	27.43
	1879
	1993
	0.75
	11

	Maseru Airport
	29.45
	27.57
	1888
	1996
	NAa
	2

	Quthing
	30.42
	27.72
	1887
	1996
	0.58
	13

	Aliwal North
	30.80
	26.90
	1866
	1993
	0.37
	29

	Southern Cape (1821-1900)
	
	
	
	
	
	

	Clanwilliam
	32.18
	18.90
	1869
	1997
	0.52
	24

	Malmesbury
	33.45
	18.73
	1877
	1995
	0.27
	15

	Wellington
	33.65
	19.00
	1876
	2000
	0.09b
	23

	Worcester
	33.65
	19.43
	1880
	1995
	0.32
	21

	Groot Drakenstein
	33.80
	19.00
	1865
	1975
	0.31c
	22

	Royal Observatory
	33.93
	18.48
	1850
	2000
	0.27
	50

	Bredasdorp
	34.53
	20.03
	1869
	1997
	0.22
	22

	Eastern Cape (1821-1900)
	
	
	
	
	
	

	Steynsburg
	31.30
	25.83
	1877
	1997
	-0.02
	13

	Tarkastad
	32.00
	26.27
	1877
	1995
	-0.01
	15

	Somerset East
	32.72
	25.58
	1870
	1997
	0.24
	25

	Fort Beaufort
	32.78
	26.63
	1877
	1997
	0.43
	16

	King William’s Town
	32.80
	27.40
	1868
	1997
	0.49
	29

	Prince Albert
	33.22
	22.03
	1877
	1997
	0.43
	19

	Willowmore
	33.28
	23.50
	1877
	2000
	0.39
	18

	Grahamstown
	33.30
	26.53
	1854
	1997
	0.43
	32

	Alicedale
	33.32
	26.08
	1877
	1995
	0.17
	11

	Calitzdorp
	33.53
	21.68
	1877
	1995
	0.36
	17

	Oudtshoorn
	33.58
	22.20
	1878
	1997
	0.28
	17

	Uitenhage
	33.80
	25.40
	1859
	1999
	0.42
	37

	Port Elizabeth
	34.00
	25.60
	1867
	2008
	0.32
	17

	Humansdorp
	34.03
	24.77
	1878
	1997
	-0.03
	17


a Only two overlapping years, both with a documentary index of 0;
b This time series has variance issues and many missing values and is therefore not used;
c This time series has an artificial shift in its mean between the 19th and 20th centuries (change in mean of 2.45 standard deviations) and is therefore not used.

Table S2.2: Properties of the instrumental target data used for each region: Number and period of the overlapping years with the documentary record and Spearman correlation over this period (cor); start and end years of the combined documentary/pseudo-documentary time series.
	Region
	Years overlap
	cor
	Start
	End

	Kalahari
	23 (1877-1899)
	0.66
	1815
	2002

	Namaqualand
	21 (1878-1900)
	0.65
	1817
	1996

	Lesotho
	33 (1866-1899)
	0.54
	1824
	1995

	Southern Cape
	29 (1870-1900)
	0.56
	1821
	1996

	Eastern Cape
	46 (1854-1900)
	0.51
	1821
	2007




S2.3. [bookmark: _Toc355102158]Methods to calculate the pseudo-documentaries
The selected instrumental target rainfall series of all regions were degraded to pseudo-documentaries using the approach of Neukom et al. (2009), as illustrated in the workflow shown in Fig. S2.1. First, the overlap period correlation between the documentary data and instrumental rainfall series was calculated and used to derive the signal-to-noise ratio for the degrading process (Mann et al. 2007). The corresponding amount of white noise was then added to the instrumental data. This was needed to obtain a time series with realistic amounts of noise, to avoid over- or under-weighting the documentary data in the climate reconstruction relative to the proxy records from other archives, and to obtain realistic reconstruction verification and uncertainty measures.
Next, the degraded instrumental data needed to be categorised to the index categories of the documentary data. All southern African documentary rainfall records consist of five index categories: -2 (very dry), -1 (dry), 0 (normal), +1 (wet), +2 (very wet). A major difficulty in quantitative analyses of documentary data is allocating these categories to absolute rainfall values (Brazdil et al. 2005; Pfister et al. 2008; Do brovolny et al. 2009). Pfister (1999) uses thresholds based on deviations from the climatological mean: ±0.65 standard deviations (std.dev.) for the category ±1, and ±1.3 std.dev. for the category ±2. Note that the definition of the zero value (a normal year) is also not trivial as it depends strongly on the reference period chosen. Given the nature of documentary sources, the distribution of the index categories is often skewed, and “normal” years (index 0) are often less frequent than wet (+1) or dry (-1) years.
The use of such std.dev.-based and symmetric thresholds for the categories may not be ideal, leading to pseudo-documentaries with very different distributions of categories compared to the “original” documentary data, most probably not reflecting real climatic shifts. We therefore used a slightly different approach to define the categories, making use of the available but short overlap periods of instrumental and documentary data. We defined the thresholds in a way that the fraction of years allocated to each category remained the same for the original documentary data and the categorised instrumental data. For example, in the case of Lesotho, three years of the overlap period have the category -2 in the documentary data, reflecting a fraction of 9%. The other categories -1, 0, +1 and +2 have fractions of 35%, 26%, 21% and 9%, respectively. The percentiles of each category in the overlap periods of all regions are shown in Table S2.3. In the example of Lesotho, all years with rainfall anomalies smaller than -52mm (with respect to 1901-1990; representing the 9th percentile of rainfall amounts in the 1866-1899 overlap period) were allocated to the category -2. Years with anomalies between -52mm and 55mm (representing the 44th percentile (9th + 35th percentile)) were allocated to an index of -1. Accordingly, the thresholds of 121mm, representing the 70th percentile (100-21-9) and 238mm, representing the 91st percentile (100-9) were used as thresholds for the categories +1 and +2, respectively. 
Note that we used the raw and non-degraded instrumental data to define the category-thresholds, whereas the allocation to categories for the pseudo-documentaries was calculated after adding white noise to the instrumental data. The disadvantage of this percentile-based categorisation approach is that it depends strongly on the overlap periods, which are relatively short, so that each individual year can affect the outcome (such as outliers or problematic years in terms of amount or coherence of the available documentary information). The categorisation can have a substantial influence on the relation of the pseudo-documentaries to the original instrumental data. To avoid biases introduced by this step, we repeated the white noise degrading and categorisation until three criteria were fulfilled:
i) Realistic target correlation - The correlation of the pseudo-documentaries with the original instrumental data must be within ±0.05 of the target correlation calculated within the overlap period;
ii) No artificial trend - The residuals between the original instrumental data and the white noise-degraded rainfall amounts must not have a significant (p<0.05) trend over the full period of instrumental data availability, as assessed by the Mann-Kendall test (Mann 1945); 
iii) No variance bias - The ratio of the standard deviations between the overlap period (sdo) and the full period of instrumental data availability (sdl) must remain stable. For the documentary data we used the standard deviation of the original documentary data in the overlap period (sdodocu) and the standard deviation of the pseudo-documentaries over the full period of instrumental data availability (sdlpseudo). Their ratio must not exceed 1±0.15 times the same ratio of the instrumental data (the value of 0.15 reflects a subjective choice based on the trade-off between calculating too many iterations and allowing too large variance biases):	

To assess the importance of the definition of the categories, we repeated the calculation of the pseudo-documentaries using two other approaches. First, we used the method of Pfister (1999) using ±0.65 and ±1.3 standard deviations from the “normal” value for the categories ±1 and ±2, respectively. Instead of an average to define “normal” years, we used the maximum value of the distribution function of rainfall amounts over the full period of instrumental data availability (Neukom et al. 2009). Note that none of the instrumental composites has a significant trend, except for Lesotho with a negative trend of -0.9mm/year, making the choice of the reference period less important. Second, we applied a scaling approach where the thresholds were identified by scaling the documentary data to the mean and standard deviation of the instrumental data over the overlap period, and with the resulting rainfall amounts used as thresholds for each category.
Fig. S2.2 compares the reconstruction outcomes of the three approaches. The reconstructions are very similar but the approach of Pfister (1999) yields systematically lower rainfall amounts during the 19th century (Fig. S2.2a). This is because the method of Pfister (1999) does not account for the unequal distribution of positive and negative indices in the original documentary data. These are all slightly skewed towards dry extremes (Figs. S2.3-S2.7; Table S2.3). As a consequence, the method of Pfister (1999) yielded a too large fraction of positive indices in the 20th century pseudo-documentaries relative to the original data from the 19th century (Fig. S2.2b), leading to a relatively drier 19th century reconstruction. The other two approaches are able to deal with the unequal distribution of indices in the documentaries and yielded more realistic results. The use of standard deviation-based methods for categorisation is therefore not ideal because of the non-normal distribution of most documentary-based time series.
The pseudo-documentaries (starting in the first year after the overlap period) were then spliced together with the original historical indices to obtain the documentary time series used in the rainfall reconstructions. The entire routine was repeated 1000 times to obtain an ensemble of pseudo-documentaries. For each reconstruction ensemble member, one of the 1000 pseudo-documentary records was selected for each region. Figs S2.3-S2.7 show the documentary records (grey bars), instrumental composites (black) and one example of a pseudo-documentary time series (red bars) for each region.
[image: ]
Fig. S2.1: Workflow of the process of generating pseudo-documentaries
[bookmark: _GoBack][image: D:\Eigene Dateien\Postdoc\S_Africa_precip\Plots\Revisions\Degrading_comparisons_recons_boxplots.png]
[bookmark: _Ref340582570]Fig. S2.2: (a) Comparison of SRZ (top) and WRZ (bottom) rainfall reconstructions based on different methods to allocate rainfall data to index categories. Blue: Same fraction of years in each category during the overlap period. This approach was used for the final reconstructions (see text). Blue shading represents the reconstruction uncertainties as in Figs 2 and 3 in the main text. Red: Standard deviation-based thresholds as defined by Pfister (1999). Green: Scaling of indices to mean and standard deviation of instrumental data in the overlap period. (b) Fraction of years allocated to each index category. Grey lines: Values from the original documentary data of the 19th century for each of the five regions. Coloured boxplots: Fraction of years allocated to each category over all regions and noise-iterations (1000 per region) in the 20th century pseudo-documentaries. Colours same as in (a)

Table S2.3: Percentiles of each index category of the documentary data in the overlap period with instrumental data.

	Category
	-2
	-1
	0
	1
	2

	Kalahari
	26
	22
	13
	30
	9

	Namaqualand
	38
	24
	14
	24
	0

	Lesotho
	9
	35
	26
	21
	9

	Southern Cape
	13
	35
	26
	13
	13

	Eastern Cape
	17
	30
	24
	15
	13



[image: D:\Eigene Dateien\Postdoc\Data\Documentary\Lesotho\Kalahari_PP_Docu_Instr.png]
Fig. S2.3: Kalahari documentary record (grey bars), instrumental composite (black line) and one realisation of pseudo-documentary indices (red bars)

[image: D:\Eigene Dateien\Postdoc\Data\Documentary\Lesotho\Namaqualand_PP_Docu_Instr.png]
Fig. S2.4: Same as Fig. S2.3 but for the Namaqualand region.
[image: D:\Eigene Dateien\Postdoc\Data\Documentary\Lesotho\Lesotho_PP_Docu_Instr.png]
Fig. S2.5: Same as Fig. S2.3 but for the Lesotho region
[image: D:\Eigene Dateien\Postdoc\Data\Documentary\Lesotho\S-Cape_PP_Docu_Instr.png]
Fig. S2.6: Same as Fig. S2.3 but for the Southern Cape region
[bookmark: _Ref340582606][image: D:\Eigene Dateien\Postdoc\Data\Documentary\Lesotho\E-Cape_PP_Docu_Instr.png]
Fig. S2.7: Same as Fig. S2.3 but for the Eastern Cape region
[bookmark: _Ref336336166]

S3. [bookmark: _Toc355102159]Correlation between proxy and instrumental data
Table S3.1 shows the correlations of our SRZ and WRZ rainfall proxies with the corresponding reconstruction targets. Correlations were calculated over the 1911-1995 period. This period was chosen because before and after these years the coverage with instrumental station data in the Global Historical Climatology Network (GHCN) database (Peterson and Vose 1997) is clearly reduced (Fig. S3.1).
Fig. S3.2 shows an alternative illustration of Fig.1 in the main text but showing only significant (p<0.05) correlations in panels c and d.

Table S3.1: Pearson correlation coefficients with the instrumental targets (cor) and an indicator of selection (sel) are provided for all proxy records and both seasons.

	 
	ONDJFM
	AMJJAS

	Name
	cor
	sel
	cor
	sel

	Mayotte
	0.21
	1
	 0.11
	 

	Ifaty1 d18O
	0.25
	1
	 0.11
	 

	Ifaty1 Sr/Ca
	-0.21
	1
	 0.06
	 

	Ifaty4 d18O
	-0.28
	1
	 -0.25
	 

	Ifaty4 Sr/Ca
	-0.20
	1
	 -0.21
	 

	Zimbabwe precipitation reconstruction
	0.47
	1
	 0.10
	 

	Die Bos
	0.12
	 
	0.27
	1

	Kalahari precipitation reconstruction
	0.35
	1
	0.12
	 

	Namaqualand precipitation reconstruction
	0.21
	 
	0.26
	1

	Lesotho precipitation reconstruction
	0.35
	1
	0.11
	 

	Eastern Cape precipitation reconstructiona
	0.20
	1
	0.25
	1

	Southern Cape precipitation reconstruction
	0.10
	 
	0.41
	1

	Royal Observatoryb
	0.20
	 
	0.68
	1


a 	The area covered by the Eastern Cape documentaries includes the transition zone between the SRZ and WRZ and the record is therefore used for both regions;


[image: D:\Eigene Dateien\Postdoc\S_Africa_precip\GHCN_Stations_SAfrica.png]
Fig. S3.1: Temporal evolution of rainfall station data coverage in southern Africa. The curve shows the number of rainfall stations within GHCNv2 (Peterson and Vose 1997), with measurements available for each year within the domain 10°S-35°S/10°E-55°E. The period used for calibration/verification in our reconstruction is dark brown shaded (1921-1995, at least 160 stations with data available for each year), the early verification period is light brown shaded (1911-1920, 133-152 stations available)

[image: ]
Fig. S3.2: Same as Fig. 1 in the main text, but showing only significant (p<0.05) correlations in panels c and d.
S4. [bookmark: _Toc355102160]
Description of reconstruction method
S4.1. [bookmark: _Toc355102161]Rainfall reconstruction
We used an ensemble-based nested principal component regression (PCR) to reconstruct southern African rainfall (Luterbacher et al. 2002; Neukom et al. 2010; Neukom et al. 2011; Gergis et al. in review). In this approach, principal components of the rainfall predictor data were regressed against the instrumental target over the calibration period to establish a transfer function. This transfer function was then applied to the proxy-PCs over their full temporal coverage to obtain reconstructed rainfall values. This step was repeated for each existing combination of proxy records during the reconstruction period (nested approach). Given that objective selection criteria for a number of reconstruction parameters are largely missing, we performed an ensemble of 3000 reconstructions with randomly chosen parameters for each ensemble member (Neukom et al. 2010; Gergis et al. in review). Randomisation was applied to the following reconstruction parameters for each member:
· One of the nine (five) proxies for SRZ (WRZ) rainfall was removed from the proxy nest;
· The percentage of total variance of the predictor matrix explained by the retained PCs was varied between 50% and 95% by varying the number of PCs included in the regression analysis;
· A calibration period of 35–50 (non-successive) years between 1921–1995 was selected, and the remaining 25–40 years used for verification;
· The weight of each proxy record in the PC analysis was scaled with a factor of 0.67 to 1.5;
· For the documentary proxy records, one of the 1000 realisations of pseudo-documentary data was chosen (see section S2).
Of the resulting 3000 reconstructions, we considered the ensemble mean the most probable outcome and used it as our best estimate reconstruction. An assessment of the influence of the range of the different ensemble parameters is presented in Gergis et al. (in review). Fig. S3.1 shows a workflow with all steps of the reconstruction.
S4.2. [bookmark: _Toc355102162]Reconstruction uncertainties
An advantage of the ensemble approach is that it makes it possible to quantify not only the traditional regression residual-based uncertainties, referred to as ‘calibration error’ (e.g. Cook and Kairiukstis 1990), but also the spread of the ensemble members generated from the random selection of the reconstruction parameters, described as the ‘ensemble error’ (Gergis et al. in review). The total reconstruction confidence interval was defined as the combined calibration and ensemble standard error (SE), calculated as  with σres denoting the standard deviation of the regression residuals (calibration error) and σens the standard deviation of the ensemble members (ensemble error). Uncertainties of the filtered curves were calculated the same way using the residuals of the filtered data and standard deviation between the filtered ensemble members.
S4.3. [bookmark: _Toc355102163]Reconstruction skill
We assessed the reconstruction skill based on different variations of the reduction of error measure (RE; Cook et al. 1994). The RE is defined as [image: ][image: ], with xinst denoting instrumental values and xrecon the reconstructed values for each year i of the verification period. xcalib is the calibration period mean of the instrumental data. The aim of the RE is to test whether the reconstruction has more predictive potential than the calibration period climatology (xcalib). If the reconstruction has skill, then its RE values lie between 0 and 1 (a hypothetically perfect reconstruction), while RE values <0 have no predictive skill. While we calculated an RE value for each ensemble member over its individual verification period (blue shading in Figs 3c and 4c), the skill of the ensemble mean, which we considered our best estimate reconstruction, was assessed using two variations of the RE.

Ensemble mean RE
The ensemble mean RE was calculated over the 1921-1995 period based on verification years only. This means that for each ensemble member, we used only the years that were withheld for verification and were therefore independent from the calibration period. Because the years used for calibration and verification were randomly chosen for each of the 3000 ensemble members and between 33% and 53% of the years were used for verification, for each year of the 1921-1995 period around 1000-1600 values were available for verification. These values were averaged to obtain a validation ensemble mean, which was then used together with the instrumental target data to calculate the ensemble mean RE (see above). This RE value is slightly different from the traditional RE statistic because the verification years (covered by xinst and xrecon) and the calibration years (represented by xcalib) are both drawn from the same 1921–1990 period (Gergis et al. in review).
Early verification RE
To calculate the early verification RE, the ensemble mean reconstruction (in this case based on the full 3000 member ensemble) was verified against the instrumental target over the 1911-1920 pre-calibration period.
[image: ]
[bookmark: _Ref336846527]Fig. S4.1: Workflow of the rainfall reconstruction method
S5. [bookmark: _Toc355102164]
Climate index and SST comparison plots
S5.1. [bookmark: _Toc355102165]Reconstruction vs. indices
In addition to the running correlations shown in Figs 3d and 4d in the main text, Fig. S5.1 (Fig. S5.2) shows a direct comparison of our SRZ (WRZ) reconstruction with the selected climate indices.
[image: ]
[bookmark: _Ref336335176]Fig. S5.1: Comparison of the SRZ rainfall reconstruction with independent climate indices. Top: interannual and 30-year loess-filtered reconstruction (black with shaded uncertainties) and 30-year filtered SAM reconstructions (solid blue; Villalba et al. 2012 and dashed blue; Jones et al. 2009), SOI reconstruction (red; Stahle et al. 1998) and Indian Ocean PC2 (green). The lower three panels compare the unfiltered reconstruction with the unfiltered indices (same colours as above, correlations over the full period of overlap are indicated in parentheses for each index). Data for the indices were scaled to the mean and standard deviation of the SRZ reconstruction over the period 1921-1995. Indian Ocean SST PC2 curves are inverted for clearer comparison
[bookmark: _Ref336335376][image: ]Fig. S5.2: Same as Fig. S5.1 but for the WRZ and Southern Ocean SST PC1 instead of Indian Ocean SST PC2. SAM and Southern Ocean SST PC1 curves are inverted for clearer comparison

S5.2. [bookmark: _Toc355102166]Running correlations regional SSTs vs. ENSO indices
Alternative running correlations to Figs. 3d and 4d in the main text, are provided in Figs. S5.3 and S5.4. They include also the instrumental and reconstructed NINO3.4 running correlations with SRZ and WRZ rainfall, respectively. Fig. S5.3 illustrates the very similar relation of SRZ rainfall to the SOI, NINO3.4 and Indian Ocean SSTs.

[image: D:\Eigene Dateien\Postdoc\S_Africa_precip\Plots\Revisions\IOPC_SOI_Li_runcors.png] Fig. S5.3: 30-year running correlations between the SRZ rainfall and SST indices. a) Running correlations between instrumental SRZ (reconstruction target) and instrumental Indian Ocean SST PC2 (IOPC2; green), SOI (red) and NINO3.4 (blue) indices. b) Running correlations between reconstructed SRZ rainfall and reconstructed indices. For the IOPC2 correlations, instrumental (HadISST) data are used. NINO3.4 and IOPC2 correlations are inverted for improved comparison. The red and green lines in panel a (b) correspond to the solid (dotted) red and green lines in Fig. 3 in the main text.

 [image: D:\Eigene Dateien\Postdoc\S_Africa_precip\Plots\Revisions\SOPC_SOI_Li_runcors.png] Fig. S5.4: Same as Fig. S5.3 but for the WRZ and using Southern Ocean PC1 (SOPC1) as regional SST index (green). NINO3.4 and SOPC1 correlations are inverted. The red and green lines in panel a (b) correspond to the solid (dotted) red and green lines in Fig. 4 in the main text.

S6. [bookmark: _Toc355102167]
CLIWOC/ICOADS-based rainfall reconstructions
Prior to the reconstructions, the gridded CLIWOC/ICOADS wind speed data series were screened for suitability as rainfall predictors by correlating them against the seasonal reconstruction targets over the 1911-1995 period. For all correlations, significance was tested using a t-distribution, with the degrees of freedom adjusted for auto-correlation at lag 1 using the method of Bretherton et al. (1999). Only grid cells with a maximum distance of 1000 km from the SRZ and WRZ areas were considered.
Table S6.1 lists the cells of the gridded wind speed data that are available in the southern African domain of the CLIWOC/ICOADS data set (Küttel et al. 2010) and their correlation with SRZ and WRZ rainfall. The cells that were selected for the reconstructions are indicated in Table S6.1 and shown in Fig. S6.1. 

 [image: ]

[bookmark: _Ref336336902]Fig. S6.1: Same as Fig. 1 in the main text but including the CLIWOC/ICOADS cells (Küttel et al. 2010) that were selected for the independent reconstruction
[bookmark: _Ref336336362]
Table S6.1: Results of the proxy screening procedure for the SRZ (ONDJFM) and WRZ (AMJJAS) reconstructions for the CLIWOC/ICOADS data. Pearson correlations coefficients (cor) and an indicator of selection (sel) are provided for both seasons. “U” (“V”) denotes the zonal (meridional) direction of the wind vectors and the coordinates indicate the centre of the 8°x8° grid cells. No correlations are provided if the record is outside the search radius of 1000km (from the closest grid cell corresponding to the SRZ and WRZ respectively). Some of the grid cells surrounding southern Africa are not considered because they do not have sufficient data coverage in the respective season (Küttel et al. 2010). Note that the degrees of freedom for the correlations are dependent on the data coverage and lag-1 autocorrelation of each individual record.
	 
	ONDJFM
	AMJJAS
	 
	ONDJFM
	AMJJAS

	Name
	cor
	sel
	cor
	sel
	Name
	cor
	sel
	cor
	sel

	CLIWOC U 4°E / 4°S
	-0.16
	 
	 
	 
	CLIWOC U 60°E / 28°S
	0.13
	 
	 
	 

	CLIWOC U 12°E / 4°S
	0.04
	 
	 
	 
	CLIWOC V 20°E / 28°S
	
	 
	-0.24
	 

	CLIWOC U 44°E / 4°S
	0.29
	 
	 
	 
	CLIWOC V 28°E / 28°S
	-0.14
	 
	0.12
	 

	CLIWOC V 12°E / 4°S
	-0.15
	 
	 
	 
	CLIWOC V 36°E / 28°S
	0.18
	 
	 
	 

	CLIWOC V 44°E / 4°S
	-0.13
	 
	 
	 
	CLIWOC V 44°E / 28°S
	0.03
	 
	 
	 

	CLIWOC U 12°E / 12°S
	0.22
	 
	-0.26
	 
	CLIWOC V 52°E / 28°S
	-0.22
	1
	 
	 

	CLIWOC U 44°E / 12°S
	-0.26
	1
	 
	 
	CLIWOC U 4°E / 36°S
	-0.12
	 
	0.19
	 

	CLIWOC V 12°E / 12°S
	-0.09
	 
	0.24
	 
	CLIWOC U 12°E / 36°S
	-0.24
	 
	0.16
	 

	CLIWOC V 44°E / 12°S
	0.12
	 
	 
	 
	CLIWOC U 20°E / 36°S
	-0.22
	1
	0.30
	 

	CLIWOC U 4°E / 20°S
	0.22
	 
	 
	 
	CLIWOC U 28°E / 36°S
	0.09
	 
	0.29
	1

	CLIWOC U 36°E / 20°S
	0.07
	 
	 
	 
	CLIWOC U 36°E / 36°S
	0.06
	 
	 
	 

	CLIWOC U 44°E / 20°S
	-0.16
	 
	 
	 
	CLIWOC U 44°E / 36°S
	-0.23
	1
	 
	 

	CLIWOC U 52°E / 20°S
	-0.09
	 
	 
	 
	CLIWOC V 4°E / 36°S
	0.09
	 
	-0.06
	 

	CLIWOC V 4°E / 20°S
	-0.23
	 
	 
	 
	CLIWOC V 12°E / 36°S
	0.27
	1
	0.15
	 

	CLIWOC V 36°E / 20°S
	-0.12
	 
	 
	 
	CLIWOC V 20°E / 36°S
	0.03
	 
	-0.17
	 

	CLIWOC V 44°E / 20°S
	-0.37
	1
	 
	 
	CLIWOC V 28°E / 36°S
	0.20
	 
	0.16
	 

	CLIWOC V 52°E / 20°S
	-0.30
	1
	 
	 
	CLIWOC V 36°E / 36°S
	0.14
	 
	 
	 

	CLIWOC U 4°E / 28°S
	-0.17
	 
	0.14
	 
	CLIWOC V 44°E / 36°S
	0.20
	 
	 
	 

	CLIWOC U 12°E / 28°S
	-0.13
	 
	-0.08
	 
	CLIWOC U 12°E / 44°S
	 
	 
	-0.27
	 

	CLIWOC U 20°E / 28°S
	 
	 
	-0.08
	 
	CLIWOC U 20°E / 44°S
	-0.15
	 
	-0.17
	 

	CLIWOC U 28°E / 28°S
	-0.15
	 
	-0.15
	 
	CLIWOC U 28°E / 44°S
	0.09
	 
	0.38
	 

	CLIWOC U 36°E / 28°S
	0.28
	1
	 
	 
	CLIWOC U 36°E / 44°S
	-0.13
	 
	 
	 

	CLIWOC U 44°E / 28°S
	0.09
	 
	 
	 
	CLIWOC V 12°E / 44°S
	 
	 
	-0.21
	 

	CLIWOC U 52°E / 28°S
	0.15
	 
	 
	 
	CLIWOC V 20°E / 44°S
	0.19
	 
	0.39
	 

	CLIWOC V 4°E / 28°S
	0.15
	 
	0.05
	 
	CLIWOC V 28°E / 44°S
	0.25
	 
	0.30
	 

	CLIWOC V 12°E / 28°S
	-0.07
	 
	-0.17
	 
	CLIWOC V 36°E / 44°S
	0.11
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1. Read instrumental target data
I

2. Read historical documentary data from the 19t century

3. Calculate correlation of the instrumental and documentary data in the overlap
period: regrger

4. Calculate the signal to noise ratio (snr) for the generation of the random noise:

2 05
Ttarget
snr=|——p—
1 —Target

5. Define the thresholds for the index categories -2 to +2:

The threshold are chosen in a way that the number of years allocated to each index
is stable in the overlap period. To achieve this, the percentiles of the documentary
data representing each index category are calculated. The same percentiles in the

instrumental target data are used as thresholds for the index categories after
degrading

6. Generate white noise time series with the same length as the instrumental target
data and a standard deviation of sd,,,/snr with sd,, denoting the standard
deviation of the instrumental target data

7. Add white noise time series to instrumental target data to obtain the degraded
instrumental data

8. Allocate each value of the degraded instrumental data to an index category based
on the thresholds identified in step 5 to obtain the pseudo-documentary index time
series

9. Repeat steps 6-8 until the following criteria are fulfilled:
i)  Correlation of the pseudo-documentary index time series with the instrumental
target data is within r;;g, +0.05
ii) The residuals between the original and degraded instrumental target data do
not have a significanttrend (calculated using the Mann Kendall test using a
significance level of a=0.05)

iii) No variance bias between overlap period and 20th century: The ratio between
the standard deviations of the overlap period (sdo) and the full period of the
instrumental target data (sd/) for the indices must remain within 1+0.15 times

the same ratio for the instrumental data:

Sdlpseudo
Sd0docu
Sdlinser
sdogser

0.85 < <115

10. Splice the original documentary index time series (including the overlap period)
and the pseudo-documentary index time series (starting in the firstyear after the
overlap period) together.

11. Repeat steps 6-10 1000 times to obtain an ensemble of pseudo-documentary
time series to be used for the climate reconstructions
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