Abstract
A soybean-rich diet was shown to reduce the incidence of osteoporosis in Eastern countries; its effect on bone metabolism was ascribed to the action of the soybean isoflavones such as genistein. Although many studies have shown isoflavone-induced osteoblast differentiation, its preventative action on bone mass loss has not been clarified. Here, the osteogenetic effects of genistein on human cell line MG63 osteoblasts were elucidated using a variety of approaches. In particular, phalloidin-rhodamine staining revealed that genistein-treated osteoblasts possessed a more organized cytoskeleton, and genistein's inhibitory effect upon cell proliferation was associated with exposure of phosphatidylserines on the external plasmalemma surface. Although this phosphatidylserine exposure is considered a typical apoptotic marker, scanning and transmission electron microscopy revealed that genistein-treated osteoblasts released matrix vesicles and showed no evidence of chromatin condensation. Assays, stainings, and scanning electron microscopy showed that genistein-treated osteoblasts synthesized relatively high levels of collagen and alkaline phosphatase and, even in a nonosteogenic growth medium, formed mineralized bone noduli. A clear pattern of genistein-induced osteoblast activation therefore emerges, in which all of the essential components required for the rapid production of mineralized bone extracellular matrix are stimulated by this soybean isoflavone.
| Original language | English |
|---|---|
| Pages (from-to) | 1166-1170 |
| Number of pages | 5 |
| Journal | Journal of Nutrition |
| Volume | 136 |
| Issue number | 5 |
| Publication status | Published - May 2006 |
Keywords
- soybean isoflavones
- genistein
- osteoblast differentiation
- bone formation
- mineralization