The role of sulfate-rich fluids in Heavy Rare Earth enrichment at the Dashigou carbonatite deposit, Huanglongpu, China

Delia Cangelosi, Martin Smith, David Banks, Bruce Yardley

Research output: Contribution to journalArticlepeer-review

Abstract

The Huanglongpu carbonatites are located in the north-western part of the Qinling orogenic belt in central China. Calcite carbonatite dykes at the Dashigou open pit are unusual due to their enrichment in HREE relative to LREE, leading to a flat REE pattern, and in that the majority of dykes have a quartz core. They also host economic concentrations of molybdenite. The calcite carbonatite dykes show two styles of mineralogy according to the degree of hydrothermal reworking, and these are reflected in REE distribution and concentration. The REE in the little-altered calcite carbonatite occur mostly in magmatic REE minerals, mainly monazite-(Ce), and typically have ∑LREE/(HREE+Y) ratios from 9.9 to 17. In hydrothermally altered calcite carbonatites, magmatic monazite-(Ce) is partially to fully replaced by HREE-enriched secondary phases and the rocks have ∑LREE/(HREE+Y) ratios from 1.1 to 3.8. The fluid responsible for hydrothermal REE redistribution is preserved in fluid inclusions in the quartz lenses. The bulk of the quartz lacks fluid inclusions but is cut by two later hydrothermal quartz generations, both containing sulfate-rich fluid inclusions with sulfate often present as multiple trapped solids, as well as in solution. The estimated total sulfate content of fluid inclusions ranges from 6 to > 33 wt. % K2SO4 equivalent. We interpret these heterogeneous fluid inclusions to be the result of reaction of sulfate-rich fluids with the calcite carbonatite dykes. The final HREE enrichment is due to a combination of factors: a) the progressive HREE enrichment of later magmatic calcite created a HREE-enriched source; b) REE-SO42- complexing allowed the REE to be redistributed without fractionation; c) secondary REE mineralisation was dominated by minerals such as HREE-enriched fluorcarbonates, xenotime-(Y) and churchite-(Y) whose crystal structures tends to favour HREE.
Original languageEnglish
Pages (from-to)1-16
Number of pages16
JournalMineralogical Magazine
DOIs
Publication statusPublished - 11 Dec 2019

Bibliographical note

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Keywords

  • HREE
  • carbonatite
  • sulfate
  • Huanglongpu

Fingerprint

Dive into the research topics of 'The role of sulfate-rich fluids in Heavy Rare Earth enrichment at the Dashigou carbonatite deposit, Huanglongpu, China'. Together they form a unique fingerprint.

Cite this