TY - JOUR
T1 - The role of discharge variability in determining alluvial stratigraphy
AU - Nicholas, A.P.
AU - Sambrook-Smith, G.H.
AU - Amsler, M.L.
AU - Ashworth, Philip
AU - Best, J.L.
AU - Hardy, R.J.
AU - Lane, S.N.
AU - Orfeo, O.
AU - Parsons, D.R.
AU - Reesink, A.J.H.
AU - Sandbach, S.D.
AU - Simpson, C.J.
AU - Szupiany, R.N.
N1 - © 2015 Geological Society of America. Gold Open Access. This paper is published under the terms of the CC-BY license.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - We illustrate the potential for using physics-based modeling to link alluvial stratigraphy to large river morphology and dynamics. Model simulations, validated using Ground Penetrating Radar data from the Río Paraná, Argentina, demonstrate a strong relationship between bar-scale set thickness and channel depth, which applies across a wide range of river patterns and bar types. We show that hydrologic regime, indexed by discharge variability and flood duration, exerts a first-order influence on morphodynamics and hence bar set thickness, and that planform morphology alone may be a misleading variable for interpreting deposits. Indeed, our results illustrate that rivers evolving under contrasting hydrologic regimes may have verysimilar morphology, yet be characterized by marked differences in stratigraphy. This realization represents an important limitation on the application of established theory that links river topography to alluvial deposits, and highlights the need to obtain field evidence of discharge variability when developing paleoenvironmental reconstructions. Model simulations demonstrate the potential for deriving such evidence using metrics of paleocurrent variance.
AB - We illustrate the potential for using physics-based modeling to link alluvial stratigraphy to large river morphology and dynamics. Model simulations, validated using Ground Penetrating Radar data from the Río Paraná, Argentina, demonstrate a strong relationship between bar-scale set thickness and channel depth, which applies across a wide range of river patterns and bar types. We show that hydrologic regime, indexed by discharge variability and flood duration, exerts a first-order influence on morphodynamics and hence bar set thickness, and that planform morphology alone may be a misleading variable for interpreting deposits. Indeed, our results illustrate that rivers evolving under contrasting hydrologic regimes may have verysimilar morphology, yet be characterized by marked differences in stratigraphy. This realization represents an important limitation on the application of established theory that links river topography to alluvial deposits, and highlights the need to obtain field evidence of discharge variability when developing paleoenvironmental reconstructions. Model simulations demonstrate the potential for deriving such evidence using metrics of paleocurrent variance.
U2 - 10.1130/G37215.1
DO - 10.1130/G37215.1
M3 - Article
SN - 0091-7613
VL - 44
SP - 3
EP - 6
JO - Geology
JF - Geology
IS - 1
ER -