The impact of non-equilibrium flow on the structure of turbulence over river dunes

Chris Unsworth, Dan Parsons, Rich Hardy, Arjan Reesink, Jim Best, Philip Ashworth, Gareth Keevil

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Most past experimental investigations of flow over river dunes have focused on conditions that match semi-empirical flow-depth scaling laws, yet such equilibrium conditions are of limited value because they rarely occur in natural channels. This paper quantifies the structure of mean and turbulent flow over fixed 2D laboratory dunes across a range of non-equilibrium conditions within the dune flow regime. The flow field was quantified using 2D Particle Imaging Velocimetry for 12 conditions, including flows that are too deep, too shallow, too fast, or too slow for the size of the fixed dunes. The results demonstrate major departures in the patterns of the mean flow and structure of turbulence when compared to dunes formed under equilibrium flow conditions. The length of flow reattachment scales linearly with the ratio of mean depth-averaged streamwise velocity to shear velocity at the dune crest (U ̅_c⁄(u_c^* )), which provides a new predictive measure for flow reattachment length. Depth-averaged vertical velocities at the dune crest (V ̅_c) show a parabolic relationship with U ̅_c, peaking at U ̅_c ~0.60 ms-1, which matches the relationship of dune aspect ratio with transport stage present in mobile bed conditions. The spatial location of the turbulent wake was found to vary with flow depth and velocity, with lower U ̅_c and greater flow depths causing the wake to rise towards the free surface. Deeper flows are likely to show less flow convergence over the crests of dunes due to reduced interaction of turbulence with the free surface, resulting in a reduction of transport stage.
Original languageEnglish
JournalWater Resources Research
DOIs
Publication statusPublished - 24 Aug 2018

Fingerprint

dune
turbulence
river
turbulent flow
flow field

Bibliographical note

© 2018. American Geophysical Union. All Rights Reserved.

Keywords

  • Dune
  • River
  • Turbulence
  • Quadrant structure
  • Coherent Flow Structures
  • Non-equilibrium
  • Shear Velocity

Cite this

Unsworth, Chris ; Parsons, Dan ; Hardy, Rich ; Reesink, Arjan ; Best, Jim ; Ashworth, Philip ; Keevil, Gareth. / The impact of non-equilibrium flow on the structure of turbulence over river dunes. In: Water Resources Research. 2018.
@article{2f7253a17e754eab8a18a7330dfeff00,
title = "The impact of non-equilibrium flow on the structure of turbulence over river dunes",
abstract = "Most past experimental investigations of flow over river dunes have focused on conditions that match semi-empirical flow-depth scaling laws, yet such equilibrium conditions are of limited value because they rarely occur in natural channels. This paper quantifies the structure of mean and turbulent flow over fixed 2D laboratory dunes across a range of non-equilibrium conditions within the dune flow regime. The flow field was quantified using 2D Particle Imaging Velocimetry for 12 conditions, including flows that are too deep, too shallow, too fast, or too slow for the size of the fixed dunes. The results demonstrate major departures in the patterns of the mean flow and structure of turbulence when compared to dunes formed under equilibrium flow conditions. The length of flow reattachment scales linearly with the ratio of mean depth-averaged streamwise velocity to shear velocity at the dune crest (U ̅_c⁄(u_c^* )), which provides a new predictive measure for flow reattachment length. Depth-averaged vertical velocities at the dune crest (V ̅_c) show a parabolic relationship with U ̅_c, peaking at U ̅_c ~0.60 ms-1, which matches the relationship of dune aspect ratio with transport stage present in mobile bed conditions. The spatial location of the turbulent wake was found to vary with flow depth and velocity, with lower U ̅_c and greater flow depths causing the wake to rise towards the free surface. Deeper flows are likely to show less flow convergence over the crests of dunes due to reduced interaction of turbulence with the free surface, resulting in a reduction of transport stage.",
keywords = "Dune, River, Turbulence, Quadrant structure, Coherent Flow Structures, Non-equilibrium, Shear Velocity",
author = "Chris Unsworth and Dan Parsons and Rich Hardy and Arjan Reesink and Jim Best and Philip Ashworth and Gareth Keevil",
note = "{\circledC} 2018. American Geophysical Union. All Rights Reserved.",
year = "2018",
month = "8",
day = "24",
doi = "10.1029/2017WR021377",
language = "English",
journal = "Water Resources Research",
issn = "0043-1397",

}

The impact of non-equilibrium flow on the structure of turbulence over river dunes. / Unsworth, Chris; Parsons, Dan ; Hardy, Rich; Reesink, Arjan; Best, Jim; Ashworth, Philip; Keevil, Gareth.

In: Water Resources Research, 24.08.2018.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - The impact of non-equilibrium flow on the structure of turbulence over river dunes

AU - Unsworth, Chris

AU - Parsons, Dan

AU - Hardy, Rich

AU - Reesink, Arjan

AU - Best, Jim

AU - Ashworth, Philip

AU - Keevil, Gareth

N1 - © 2018. American Geophysical Union. All Rights Reserved.

PY - 2018/8/24

Y1 - 2018/8/24

N2 - Most past experimental investigations of flow over river dunes have focused on conditions that match semi-empirical flow-depth scaling laws, yet such equilibrium conditions are of limited value because they rarely occur in natural channels. This paper quantifies the structure of mean and turbulent flow over fixed 2D laboratory dunes across a range of non-equilibrium conditions within the dune flow regime. The flow field was quantified using 2D Particle Imaging Velocimetry for 12 conditions, including flows that are too deep, too shallow, too fast, or too slow for the size of the fixed dunes. The results demonstrate major departures in the patterns of the mean flow and structure of turbulence when compared to dunes formed under equilibrium flow conditions. The length of flow reattachment scales linearly with the ratio of mean depth-averaged streamwise velocity to shear velocity at the dune crest (U ̅_c⁄(u_c^* )), which provides a new predictive measure for flow reattachment length. Depth-averaged vertical velocities at the dune crest (V ̅_c) show a parabolic relationship with U ̅_c, peaking at U ̅_c ~0.60 ms-1, which matches the relationship of dune aspect ratio with transport stage present in mobile bed conditions. The spatial location of the turbulent wake was found to vary with flow depth and velocity, with lower U ̅_c and greater flow depths causing the wake to rise towards the free surface. Deeper flows are likely to show less flow convergence over the crests of dunes due to reduced interaction of turbulence with the free surface, resulting in a reduction of transport stage.

AB - Most past experimental investigations of flow over river dunes have focused on conditions that match semi-empirical flow-depth scaling laws, yet such equilibrium conditions are of limited value because they rarely occur in natural channels. This paper quantifies the structure of mean and turbulent flow over fixed 2D laboratory dunes across a range of non-equilibrium conditions within the dune flow regime. The flow field was quantified using 2D Particle Imaging Velocimetry for 12 conditions, including flows that are too deep, too shallow, too fast, or too slow for the size of the fixed dunes. The results demonstrate major departures in the patterns of the mean flow and structure of turbulence when compared to dunes formed under equilibrium flow conditions. The length of flow reattachment scales linearly with the ratio of mean depth-averaged streamwise velocity to shear velocity at the dune crest (U ̅_c⁄(u_c^* )), which provides a new predictive measure for flow reattachment length. Depth-averaged vertical velocities at the dune crest (V ̅_c) show a parabolic relationship with U ̅_c, peaking at U ̅_c ~0.60 ms-1, which matches the relationship of dune aspect ratio with transport stage present in mobile bed conditions. The spatial location of the turbulent wake was found to vary with flow depth and velocity, with lower U ̅_c and greater flow depths causing the wake to rise towards the free surface. Deeper flows are likely to show less flow convergence over the crests of dunes due to reduced interaction of turbulence with the free surface, resulting in a reduction of transport stage.

KW - Dune

KW - River

KW - Turbulence

KW - Quadrant structure

KW - Coherent Flow Structures

KW - Non-equilibrium

KW - Shear Velocity

U2 - 10.1029/2017WR021377

DO - 10.1029/2017WR021377

M3 - Article

JO - Water Resources Research

JF - Water Resources Research

SN - 0043-1397

ER -