Abstract
How can Euler diagrams support non-consequence inferences? Although an inference to non-consequence, in which people are asked to judge whether no valid conclusion can be drawn from the given premises (e.g., All B are A; No C are B), is one of the two sides of logical inference, it has received remarkably little attention in research on human diagrammatic reasoning; how diagrams are really manipulated for such inferences remains unclear. We hypothesized that people naturally make these inferences by enumerating possible diagrams, based on the logical notion of self-consistency, in which every (simple) Euler diagram is true (satisfiable) in a set-theoretical interpretation. The work is divided into three parts, each exploring a particular condition or scenario. In condition 1, we asked participants to directly manipulate diagrams with size-fixed circles as they solved syllogistic tasks, with the result that more reasoners used the enumeration strategy. In condition 2, another type of size-fixed diagram was used. The diagram layout change interfered with accurate task performances and with the use of the enumeration strategy; however, the enumeration strategy was still dominant for those who could correctly perform the tasks. In condition 3, we used size-scalable diagrams (with the default size as in condition 2), which reduced the interfering effect of diagram layout and enhanced participants' selection of the enumeration strategy. These results provide evidence that non-consequence inferences can be achieved by diagram enumeration, exploiting the self-consistency of Euler diagrams. An alternate strategy based on counter-example construction with Euler diagrams, as well as effects of diagram layout in inferential processes, are also discussed.
Original language | English |
---|---|
Pages (from-to) | 61-77 |
Number of pages | 17 |
Journal | Journal of Logic, Language and Information |
Volume | 27 |
Issue number | 1 |
DOIs | |
Publication status | Published - 11 Sept 2017 |