Abstract

Up to 80% of the plastics in the oceans are believed to have been transferred from river networks. Microplastic contamination of river sediments has been found to be pervasive at the global scale and responsive to periods of flooding. However, the physical controls governing the storage, remobilization and pathways of transfer in fluvial sediments are unknown. This means it is not currently possible to determine the risks posed by microplastics retained within the world’s river systems. This problem will be further exacerbated in the future given projected changes to global flood risk and an increased likelihood of fluvial flooding.
Using controlled flume experiments we show that the evolution of the sediment bed surface and the flood wave characteristics controls the transition from rivers being ‘sinks’ to ‘sources’ of microplastics under flood conditions. By linking bed surface evolution with microplastic transport characteristics we show that similarities exist between granular transport phenomena and the behavior, and hence predictability, of microplastic entrainment during floods. Our findings are significant as they suggest that microplastic release from sediment beds can be managed by altering the timing and magnitude of releases in flow managed systems. As such it may be possible to remediate or remove legacy microplastics in future.
Original languageEnglish
Article number1865
Number of pages26
JournalScientific Reports
Volume10
DOIs
Publication statusPublished - 5 Feb 2020

Fingerprint

Sediments
Rivers
flooding
flood wave
flume experiment
remobilization
river
entrainment
fluvial deposit
alluvial deposit
sediment
river system
plastic
Contamination
ocean
Plastics
Experiments
world
contamination

Bibliographical note

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Keywords

  • Microplastic Behavior
  • Dynamics
  • Sediments
  • Rivers

Cite this

@article{76e276a816044fc4bae987e814f5ed77,
title = "Storm response of fluvial sedimentary microplastics",
abstract = "Up to 80{\%} of the plastics in the oceans are believed to have been transferred from river networks. Microplastic contamination of river sediments has been found to be pervasive at the global scale and responsive to periods of flooding. However, the physical controls governing the storage, remobilization and pathways of transfer in fluvial sediments are unknown. This means it is not currently possible to determine the risks posed by microplastics retained within the world’s river systems. This problem will be further exacerbated in the future given projected changes to global flood risk and an increased likelihood of fluvial flooding.Using controlled flume experiments we show that the evolution of the sediment bed surface and the flood wave characteristics controls the transition from rivers being ‘sinks’ to ‘sources’ of microplastics under flood conditions. By linking bed surface evolution with microplastic transport characteristics we show that similarities exist between granular transport phenomena and the behavior, and hence predictability, of microplastic entrainment during floods. Our findings are significant as they suggest that microplastic release from sediment beds can be managed by altering the timing and magnitude of releases in flow managed systems. As such it may be possible to remediate or remove legacy microplastics in future.",
keywords = "Microplastic Behavior, Dynamics, Sediments, Rivers",
author = "Annie Ockelford and Andrew Cundy and James Ebdon",
note = "This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.",
year = "2020",
month = "2",
day = "5",
doi = "10.1038/s41598-020-58765-2",
language = "English",
volume = "10",
journal = "Scientific Reports",
issn = "2045-2322",

}

Storm response of fluvial sedimentary microplastics. / Ockelford, Annie; Cundy, Andrew; Ebdon, James.

In: Scientific Reports, Vol. 10, 1865, 05.02.2020.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Storm response of fluvial sedimentary microplastics

AU - Ockelford, Annie

AU - Cundy, Andrew

AU - Ebdon, James

N1 - This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

PY - 2020/2/5

Y1 - 2020/2/5

N2 - Up to 80% of the plastics in the oceans are believed to have been transferred from river networks. Microplastic contamination of river sediments has been found to be pervasive at the global scale and responsive to periods of flooding. However, the physical controls governing the storage, remobilization and pathways of transfer in fluvial sediments are unknown. This means it is not currently possible to determine the risks posed by microplastics retained within the world’s river systems. This problem will be further exacerbated in the future given projected changes to global flood risk and an increased likelihood of fluvial flooding.Using controlled flume experiments we show that the evolution of the sediment bed surface and the flood wave characteristics controls the transition from rivers being ‘sinks’ to ‘sources’ of microplastics under flood conditions. By linking bed surface evolution with microplastic transport characteristics we show that similarities exist between granular transport phenomena and the behavior, and hence predictability, of microplastic entrainment during floods. Our findings are significant as they suggest that microplastic release from sediment beds can be managed by altering the timing and magnitude of releases in flow managed systems. As such it may be possible to remediate or remove legacy microplastics in future.

AB - Up to 80% of the plastics in the oceans are believed to have been transferred from river networks. Microplastic contamination of river sediments has been found to be pervasive at the global scale and responsive to periods of flooding. However, the physical controls governing the storage, remobilization and pathways of transfer in fluvial sediments are unknown. This means it is not currently possible to determine the risks posed by microplastics retained within the world’s river systems. This problem will be further exacerbated in the future given projected changes to global flood risk and an increased likelihood of fluvial flooding.Using controlled flume experiments we show that the evolution of the sediment bed surface and the flood wave characteristics controls the transition from rivers being ‘sinks’ to ‘sources’ of microplastics under flood conditions. By linking bed surface evolution with microplastic transport characteristics we show that similarities exist between granular transport phenomena and the behavior, and hence predictability, of microplastic entrainment during floods. Our findings are significant as they suggest that microplastic release from sediment beds can be managed by altering the timing and magnitude of releases in flow managed systems. As such it may be possible to remediate or remove legacy microplastics in future.

KW - Microplastic Behavior

KW - Dynamics

KW - Sediments

KW - Rivers

U2 - 10.1038/s41598-020-58765-2

DO - 10.1038/s41598-020-58765-2

M3 - Article

VL - 10

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

M1 - 1865

ER -