## Abstract

The use of diagrams in mathematics has traditionally been restricted to guiding intuition and communication. With rare exceptions such as Peirce's α and β systems, purely diagrammatic formal reasoning has not been in the mathematician's or logician's toolkit. This paper develops a purely diagrammatic reasoning system of ‘spiderdiagrams' that builds on Euler, Venn and Peirce diagrams.The system is known to be expressively equivalent to first-order monadic logic with equality. Two levels of diagrammatic syntax have been developed: an ‘abstract' syntax that captures the structure of diagrams,and a ‘concrete' syntax that captures topological properties of drawn diagrams. A number of simple diagrammatic transformation rules are given, and the resulting reasoning system is shown to be sound and complete.

Original language | English |
---|---|

Pages (from-to) | 145-194 |

Number of pages | 50 |

Journal | LMS Journal of Computation and Mathematics |

Volume | 8 |

DOIs | |

Publication status | Published - 1 Jan 2005 |