Regulation of ciliary beat frequency in respiratory tract cells

Michael J. Sanderson, Alison Lansley, Ellen R. Dirksen

Research output: Contribution to journalArticle

Abstract

A major function of respiratory tract (RT) epithelial cells is the maintenance of unobstructed airways, a goal achieved by mucociliary clearance. Ciliary activity provides the driving force for mucus propulsion, but the nature of the stimulus-response coupling that regulates ciliary beat frequency is not well understood. The possibility that mechanical interaction between the mucus and ciliated cell may act as a specific control signal was evaluated by examining the effect of mechanical stimulation on cultured RT cells while monitoring ciliary beat frequency with a photoelectronic technique.1 Mechanical stimulation of the apical surface of a single ciliated cell in culture with a glass microprobe elevated the ciliary beat frequency, not only of the stimulated cell, but also of adjacent cells. This resulted in a wave of increased beat frequency spreading across the culture.2,3 The increase in beat frequency of each cell occurred after a lag-phase that was proportional to the distance of the cell from the stimulated cell. Stimulation of a nonciliated cell also initiated an increase in beat frequency of adjacent ciliated cells. Preliminary evidence suggested that these responses were mediated by elevations in [Ca2+]i.2 Consequendy, video imaging techniques were used to monitor the fluorescence of the Ca2+-specific dye fura-2 to quantitate the spatial-temporal changes in [Ca2+]i.4 A single mechanical stimulus to either a ciliated or nonciliated cell immediately induced an increase in [Ca2+]i at the site of contact that then spread throughout the cell. After a short delay of about 0.5 s, a wave of increasing [Ca2+]i occurred in adjacent cells, spreading from one end of the cell to the other. This increase in [Ca2+], or Ca2+ wave, continued to spread through the cell culture in a cell-by-cell manner travelling across 4 to 7 cells in all directions (Fig 1, a). The increase in [Ca2+]i was correlated with, but always preceded, the increase in ciliary beat frequency.
Original languageEnglish
Pages (from-to)69-71
Number of pages3
JournalChest
Volume101
Issue number3
DOIs
Publication statusPublished - 31 Mar 1992

Fingerprint

Respiratory System
Mucus
Cell Culture Techniques
Mucociliary Clearance
Fura-2
Glass
Fluorescence

Cite this

Sanderson, Michael J. ; Lansley, Alison ; Dirksen, Ellen R. / Regulation of ciliary beat frequency in respiratory tract cells. In: Chest. 1992 ; Vol. 101, No. 3. pp. 69-71.
@article{5b2242d0893348c9b57441608011054a,
title = "Regulation of ciliary beat frequency in respiratory tract cells",
abstract = "A major function of respiratory tract (RT) epithelial cells is the maintenance of unobstructed airways, a goal achieved by mucociliary clearance. Ciliary activity provides the driving force for mucus propulsion, but the nature of the stimulus-response coupling that regulates ciliary beat frequency is not well understood. The possibility that mechanical interaction between the mucus and ciliated cell may act as a specific control signal was evaluated by examining the effect of mechanical stimulation on cultured RT cells while monitoring ciliary beat frequency with a photoelectronic technique.1 Mechanical stimulation of the apical surface of a single ciliated cell in culture with a glass microprobe elevated the ciliary beat frequency, not only of the stimulated cell, but also of adjacent cells. This resulted in a wave of increased beat frequency spreading across the culture.2,3 The increase in beat frequency of each cell occurred after a lag-phase that was proportional to the distance of the cell from the stimulated cell. Stimulation of a nonciliated cell also initiated an increase in beat frequency of adjacent ciliated cells. Preliminary evidence suggested that these responses were mediated by elevations in [Ca2+]i.2 Consequendy, video imaging techniques were used to monitor the fluorescence of the Ca2+-specific dye fura-2 to quantitate the spatial-temporal changes in [Ca2+]i.4 A single mechanical stimulus to either a ciliated or nonciliated cell immediately induced an increase in [Ca2+]i at the site of contact that then spread throughout the cell. After a short delay of about 0.5 s, a wave of increasing [Ca2+]i occurred in adjacent cells, spreading from one end of the cell to the other. This increase in [Ca2+], or Ca2+ wave, continued to spread through the cell culture in a cell-by-cell manner travelling across 4 to 7 cells in all directions (Fig 1, a). The increase in [Ca2+]i was correlated with, but always preceded, the increase in ciliary beat frequency.",
author = "Sanderson, {Michael J.} and Alison Lansley and Dirksen, {Ellen R.}",
year = "1992",
month = "3",
day = "31",
doi = "10.1378/chest.101.3_Supplement.69S",
language = "English",
volume = "101",
pages = "69--71",
journal = "Chest",
issn = "0012-3692",
number = "3",

}

Regulation of ciliary beat frequency in respiratory tract cells. / Sanderson, Michael J.; Lansley, Alison; Dirksen, Ellen R.

In: Chest, Vol. 101, No. 3, 31.03.1992, p. 69-71.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Regulation of ciliary beat frequency in respiratory tract cells

AU - Sanderson, Michael J.

AU - Lansley, Alison

AU - Dirksen, Ellen R.

PY - 1992/3/31

Y1 - 1992/3/31

N2 - A major function of respiratory tract (RT) epithelial cells is the maintenance of unobstructed airways, a goal achieved by mucociliary clearance. Ciliary activity provides the driving force for mucus propulsion, but the nature of the stimulus-response coupling that regulates ciliary beat frequency is not well understood. The possibility that mechanical interaction between the mucus and ciliated cell may act as a specific control signal was evaluated by examining the effect of mechanical stimulation on cultured RT cells while monitoring ciliary beat frequency with a photoelectronic technique.1 Mechanical stimulation of the apical surface of a single ciliated cell in culture with a glass microprobe elevated the ciliary beat frequency, not only of the stimulated cell, but also of adjacent cells. This resulted in a wave of increased beat frequency spreading across the culture.2,3 The increase in beat frequency of each cell occurred after a lag-phase that was proportional to the distance of the cell from the stimulated cell. Stimulation of a nonciliated cell also initiated an increase in beat frequency of adjacent ciliated cells. Preliminary evidence suggested that these responses were mediated by elevations in [Ca2+]i.2 Consequendy, video imaging techniques were used to monitor the fluorescence of the Ca2+-specific dye fura-2 to quantitate the spatial-temporal changes in [Ca2+]i.4 A single mechanical stimulus to either a ciliated or nonciliated cell immediately induced an increase in [Ca2+]i at the site of contact that then spread throughout the cell. After a short delay of about 0.5 s, a wave of increasing [Ca2+]i occurred in adjacent cells, spreading from one end of the cell to the other. This increase in [Ca2+], or Ca2+ wave, continued to spread through the cell culture in a cell-by-cell manner travelling across 4 to 7 cells in all directions (Fig 1, a). The increase in [Ca2+]i was correlated with, but always preceded, the increase in ciliary beat frequency.

AB - A major function of respiratory tract (RT) epithelial cells is the maintenance of unobstructed airways, a goal achieved by mucociliary clearance. Ciliary activity provides the driving force for mucus propulsion, but the nature of the stimulus-response coupling that regulates ciliary beat frequency is not well understood. The possibility that mechanical interaction between the mucus and ciliated cell may act as a specific control signal was evaluated by examining the effect of mechanical stimulation on cultured RT cells while monitoring ciliary beat frequency with a photoelectronic technique.1 Mechanical stimulation of the apical surface of a single ciliated cell in culture with a glass microprobe elevated the ciliary beat frequency, not only of the stimulated cell, but also of adjacent cells. This resulted in a wave of increased beat frequency spreading across the culture.2,3 The increase in beat frequency of each cell occurred after a lag-phase that was proportional to the distance of the cell from the stimulated cell. Stimulation of a nonciliated cell also initiated an increase in beat frequency of adjacent ciliated cells. Preliminary evidence suggested that these responses were mediated by elevations in [Ca2+]i.2 Consequendy, video imaging techniques were used to monitor the fluorescence of the Ca2+-specific dye fura-2 to quantitate the spatial-temporal changes in [Ca2+]i.4 A single mechanical stimulus to either a ciliated or nonciliated cell immediately induced an increase in [Ca2+]i at the site of contact that then spread throughout the cell. After a short delay of about 0.5 s, a wave of increasing [Ca2+]i occurred in adjacent cells, spreading from one end of the cell to the other. This increase in [Ca2+], or Ca2+ wave, continued to spread through the cell culture in a cell-by-cell manner travelling across 4 to 7 cells in all directions (Fig 1, a). The increase in [Ca2+]i was correlated with, but always preceded, the increase in ciliary beat frequency.

U2 - 10.1378/chest.101.3_Supplement.69S

DO - 10.1378/chest.101.3_Supplement.69S

M3 - Article

VL - 101

SP - 69

EP - 71

JO - Chest

JF - Chest

SN - 0012-3692

IS - 3

ER -