Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through pseudomonas aeruginosa biofilms

Geoff Hanlon, Stephen Denyer, C.J. Olliff, L.J. Ibrahim

Research output: Contribution to journalArticleResearchpeer-review

Abstract

To cause an infection, bacteriophages must penetrate the alginate exopolysaccharide of Pseudomonas aeruginosa to reach the bacterial surface. Despite a lack of intrinsic motility, phage were shown to diffuse through alginate gels at alginate concentrations up to 8% (wt/vol) and to bring about a 2-log reduction in the cell numbers in 20-day-old biofilms of P. aeruginosa. The inability of alginate to act as a more effective diffusional barrier suggests that phage may cause a reduction in the viscosity of the exopolysaccharide. Samples (n = 5) of commercial alginate and purified cystic fibrosis (CF) alginate were incubated with 2 × 108 purified phage per ml for 24 h at 37°C. After incubation the samples and controls were subjected to rheological analysis with a Carrimed controlled stress rheometer. The viscosities of phage-treated samples were reduced by up to 40% compared to those of controls incubated in the absence of phage. The experiment was repeated by using phage concentrations of 1010 and 1012 phage per ml and samples taken for analysis at intervals up to 4 h. The results indicated that there was a time- and concentration-dependent reduction in viscosity of up to 40% compared to the viscosities of the controls. Commercial and purified CF alginate samples, both phage treated and untreated, were subjected to gel filtration chromatography by using Sephacryl High Resolution S-400 medium in order to obtain evidence of degradation. The results demonstrated that alginate treated with phage had a lower molecular weight than untreated alginate. The data suggest that bacteriophage migration through P. aeruginosa biofilms may be facilitated by a reduction in alginate viscosity brought about by enzymic degradation and that the source of the enzyme may be the bacterial host itself.
Original languageEnglish
Pages (from-to)2746-2753
Number of pages8
JournalApplied and Environmental Microbiology
Volume67
Issue number6
Publication statusPublished - Jun 2001

Fingerprint

alginate
bacteriophage
biofilm
aid
penetration
viscosity
gel
degradation
motility
chromatography
incubation
enzyme

Cite this

Hanlon, Geoff ; Denyer, Stephen ; Olliff, C.J. ; Ibrahim, L.J. / Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through pseudomonas aeruginosa biofilms. In: Applied and Environmental Microbiology. 2001 ; Vol. 67, No. 6. pp. 2746-2753.
@article{4130f496fab646ca8f8bfd415f0dca94,
title = "Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through pseudomonas aeruginosa biofilms",
abstract = "To cause an infection, bacteriophages must penetrate the alginate exopolysaccharide of Pseudomonas aeruginosa to reach the bacterial surface. Despite a lack of intrinsic motility, phage were shown to diffuse through alginate gels at alginate concentrations up to 8{\%} (wt/vol) and to bring about a 2-log reduction in the cell numbers in 20-day-old biofilms of P. aeruginosa. The inability of alginate to act as a more effective diffusional barrier suggests that phage may cause a reduction in the viscosity of the exopolysaccharide. Samples (n = 5) of commercial alginate and purified cystic fibrosis (CF) alginate were incubated with 2 × 108 purified phage per ml for 24 h at 37°C. After incubation the samples and controls were subjected to rheological analysis with a Carrimed controlled stress rheometer. The viscosities of phage-treated samples were reduced by up to 40{\%} compared to those of controls incubated in the absence of phage. The experiment was repeated by using phage concentrations of 1010 and 1012 phage per ml and samples taken for analysis at intervals up to 4 h. The results indicated that there was a time- and concentration-dependent reduction in viscosity of up to 40{\%} compared to the viscosities of the controls. Commercial and purified CF alginate samples, both phage treated and untreated, were subjected to gel filtration chromatography by using Sephacryl High Resolution S-400 medium in order to obtain evidence of degradation. The results demonstrated that alginate treated with phage had a lower molecular weight than untreated alginate. The data suggest that bacteriophage migration through P. aeruginosa biofilms may be facilitated by a reduction in alginate viscosity brought about by enzymic degradation and that the source of the enzyme may be the bacterial host itself.",
author = "Geoff Hanlon and Stephen Denyer and C.J. Olliff and L.J. Ibrahim",
year = "2001",
month = "6",
language = "English",
volume = "67",
pages = "2746--2753",
journal = "Applied and Environmental Microbiology",
issn = "0099-2240",
number = "6",

}

Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through pseudomonas aeruginosa biofilms. / Hanlon, Geoff; Denyer, Stephen; Olliff, C.J.; Ibrahim, L.J.

In: Applied and Environmental Microbiology, Vol. 67, No. 6, 06.2001, p. 2746-2753.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through pseudomonas aeruginosa biofilms

AU - Hanlon, Geoff

AU - Denyer, Stephen

AU - Olliff, C.J.

AU - Ibrahim, L.J.

PY - 2001/6

Y1 - 2001/6

N2 - To cause an infection, bacteriophages must penetrate the alginate exopolysaccharide of Pseudomonas aeruginosa to reach the bacterial surface. Despite a lack of intrinsic motility, phage were shown to diffuse through alginate gels at alginate concentrations up to 8% (wt/vol) and to bring about a 2-log reduction in the cell numbers in 20-day-old biofilms of P. aeruginosa. The inability of alginate to act as a more effective diffusional barrier suggests that phage may cause a reduction in the viscosity of the exopolysaccharide. Samples (n = 5) of commercial alginate and purified cystic fibrosis (CF) alginate were incubated with 2 × 108 purified phage per ml for 24 h at 37°C. After incubation the samples and controls were subjected to rheological analysis with a Carrimed controlled stress rheometer. The viscosities of phage-treated samples were reduced by up to 40% compared to those of controls incubated in the absence of phage. The experiment was repeated by using phage concentrations of 1010 and 1012 phage per ml and samples taken for analysis at intervals up to 4 h. The results indicated that there was a time- and concentration-dependent reduction in viscosity of up to 40% compared to the viscosities of the controls. Commercial and purified CF alginate samples, both phage treated and untreated, were subjected to gel filtration chromatography by using Sephacryl High Resolution S-400 medium in order to obtain evidence of degradation. The results demonstrated that alginate treated with phage had a lower molecular weight than untreated alginate. The data suggest that bacteriophage migration through P. aeruginosa biofilms may be facilitated by a reduction in alginate viscosity brought about by enzymic degradation and that the source of the enzyme may be the bacterial host itself.

AB - To cause an infection, bacteriophages must penetrate the alginate exopolysaccharide of Pseudomonas aeruginosa to reach the bacterial surface. Despite a lack of intrinsic motility, phage were shown to diffuse through alginate gels at alginate concentrations up to 8% (wt/vol) and to bring about a 2-log reduction in the cell numbers in 20-day-old biofilms of P. aeruginosa. The inability of alginate to act as a more effective diffusional barrier suggests that phage may cause a reduction in the viscosity of the exopolysaccharide. Samples (n = 5) of commercial alginate and purified cystic fibrosis (CF) alginate were incubated with 2 × 108 purified phage per ml for 24 h at 37°C. After incubation the samples and controls were subjected to rheological analysis with a Carrimed controlled stress rheometer. The viscosities of phage-treated samples were reduced by up to 40% compared to those of controls incubated in the absence of phage. The experiment was repeated by using phage concentrations of 1010 and 1012 phage per ml and samples taken for analysis at intervals up to 4 h. The results indicated that there was a time- and concentration-dependent reduction in viscosity of up to 40% compared to the viscosities of the controls. Commercial and purified CF alginate samples, both phage treated and untreated, were subjected to gel filtration chromatography by using Sephacryl High Resolution S-400 medium in order to obtain evidence of degradation. The results demonstrated that alginate treated with phage had a lower molecular weight than untreated alginate. The data suggest that bacteriophage migration through P. aeruginosa biofilms may be facilitated by a reduction in alginate viscosity brought about by enzymic degradation and that the source of the enzyme may be the bacterial host itself.

M3 - Article

VL - 67

SP - 2746

EP - 2753

JO - Applied and Environmental Microbiology

JF - Applied and Environmental Microbiology

SN - 0099-2240

IS - 6

ER -