TY - JOUR
T1 - Postnatal development of cochlear function in the mustached bat, Pteronotus parnellii
AU - Kössl, M.
AU - Feller, E.
AU - Drexl, M.
AU - Vater, M.
AU - Mora, E.
AU - Coro, F.
AU - Russell, I. J.
PY - 2003/10/1
Y1 - 2003/10/1
N2 - Postnatal development of the mustached bat's cochlea was studied by measuring cochlear microphonic and compound action potentials. In adults, a cochlear resonance is involved in enhanced tuning to the second harmonic constant frequency component (CF2) of their echolocation calls at ∼61 kHz. This resonance is present immediately after birth in bats that do not yet echolocate. Its frequency is lower (46 kHz) and the corresponding threshold minimum of cochlear microphonic potentials is broader than in adults. Long-lasting ringing of the cochlear microphonic potential after tone stimulus offset that characterizes the adult auditory response close to CF2 is absent in newborns. In the course of the first 5 postnatal weeks, there is a concomitant upward shift of CF2 and the frequency of cochlear threshold minima. Up to the end of the third postnatal week, sensitivity of auditory threshold minima and the Q value of the cochlear resonance increase at a fast rate. Between 2 and 4 wk of age, two cochlear microphonic threshold minima are found consistently in the CF2 range that differ in their level-dependent dynamic growth behavior and are 1.5-5.7 kHz apart from each other. In older animals, there is a single minimum that approaches adult tuning in its sharpness. The data provide evidence to show that during maturation of the cochlea, the frequency and the sensitivity of the threshold minimum associated with CF2 increases and that these increases are associated with the fusion of two resonances that are partly dissociated in developing animals.
AB - Postnatal development of the mustached bat's cochlea was studied by measuring cochlear microphonic and compound action potentials. In adults, a cochlear resonance is involved in enhanced tuning to the second harmonic constant frequency component (CF2) of their echolocation calls at ∼61 kHz. This resonance is present immediately after birth in bats that do not yet echolocate. Its frequency is lower (46 kHz) and the corresponding threshold minimum of cochlear microphonic potentials is broader than in adults. Long-lasting ringing of the cochlear microphonic potential after tone stimulus offset that characterizes the adult auditory response close to CF2 is absent in newborns. In the course of the first 5 postnatal weeks, there is a concomitant upward shift of CF2 and the frequency of cochlear threshold minima. Up to the end of the third postnatal week, sensitivity of auditory threshold minima and the Q value of the cochlear resonance increase at a fast rate. Between 2 and 4 wk of age, two cochlear microphonic threshold minima are found consistently in the CF2 range that differ in their level-dependent dynamic growth behavior and are 1.5-5.7 kHz apart from each other. In older animals, there is a single minimum that approaches adult tuning in its sharpness. The data provide evidence to show that during maturation of the cochlea, the frequency and the sensitivity of the threshold minimum associated with CF2 increases and that these increases are associated with the fusion of two resonances that are partly dissociated in developing animals.
UR - http://www.scopus.com/inward/record.url?scp=0142090659&partnerID=8YFLogxK
U2 - 10.1152/jn.00100.2003
DO - 10.1152/jn.00100.2003
M3 - Article
C2 - 14534266
AN - SCOPUS:0142090659
SN - 0022-3077
VL - 90
SP - 2261
EP - 2273
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 4
ER -