TY - JOUR
T1 - Performance updating of concrete structures using proactive health monitoring systems: a sytems approach
AU - Rafiq, Muhammad
N1 - Copyright © 2012 M. Imran Rafiq. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
PY - 2012/1/1
Y1 - 2012/1/1
N2 - Uncertainties in predictive models for concrete structures performance can influence adversely the timing of management activities. A methodology has been developed that uses data obtained through proactive health monitoring to increase the confidence in predicted performance by reducing the associated uncertainties. Due to temporal and spatial variations associated with climatic changes, exposure conditions, workmanship, and concrete quality, the actual performance could vary at different locations of the member. In this respect, the use of multiple sensors may be beneficial, notwithstanding cost and other constraints. Two distinct cases are identified for which an updating methodology based on data from multiple sensors needs to be developed. In the first case the interest lies in improving the performance prediction for an entire member (or a structure) incorporating spatial and temporal effects. For this purpose, the member is divided into small zones with the assumption that a sensor can be located in each zone. In the second case, the objective is to minimise uncertainties in performance prediction, or to increase the redundancy of health monitoring systems, at critical locations. The development of updating methodologies for the above-mentioned scenarios is described in this paper. Its implications on the management activities, for example, establishing the timing of principal inspections, are evaluated and discussed.
AB - Uncertainties in predictive models for concrete structures performance can influence adversely the timing of management activities. A methodology has been developed that uses data obtained through proactive health monitoring to increase the confidence in predicted performance by reducing the associated uncertainties. Due to temporal and spatial variations associated with climatic changes, exposure conditions, workmanship, and concrete quality, the actual performance could vary at different locations of the member. In this respect, the use of multiple sensors may be beneficial, notwithstanding cost and other constraints. Two distinct cases are identified for which an updating methodology based on data from multiple sensors needs to be developed. In the first case the interest lies in improving the performance prediction for an entire member (or a structure) incorporating spatial and temporal effects. For this purpose, the member is divided into small zones with the assumption that a sensor can be located in each zone. In the second case, the objective is to minimise uncertainties in performance prediction, or to increase the redundancy of health monitoring systems, at critical locations. The development of updating methodologies for the above-mentioned scenarios is described in this paper. Its implications on the management activities, for example, establishing the timing of principal inspections, are evaluated and discussed.
U2 - 10.5402/2012/926412
DO - 10.5402/2012/926412
M3 - Article
SN - 2090-5114
VL - 2012
SP - 1
EP - 10
JO - ISRN Civil Engineering Journal
JF - ISRN Civil Engineering Journal
ER -