No association between ACE gene variation and endurance athlete status in Ethiopians

G.I. Ash, Robert A. Scott, M. Deason, T.A. Dawson, Bezabhe Wolde, S. Teka, Zeru Bekele, Yannis Pitsiladis

Research output: Contribution to journalArticlepeer-review


PURPOSE The most widely studied candidate gene for endurance performance is the angiotensin-converting enzyme (ACE) gene. The best endurance runners in the world hail from Kenya and Ethiopia, so the lack of association between the ACE gene and elite endurance athlete status we previously reported in Kenyans requires replication in Ethiopians. METHODS DNA was extracted from buccal swabs collected from subjects filling four groups: elite endurance runners from the Ethiopian national athletics team specializing in 5 km to marathon distances (n = 76), controls demographically matched to the elite endurance athletes (n = 410), controls representing the general Ethiopian population (n = 317), and sprint and power event athletes from the Ethiopian national athletics team (n = 38). ACE I/D and A22982G (rs4363) genotype frequencies were determined for each of these groups, and differences between groups were assessed using χ(2) tests. RESULTS There were no significant deviations from Hardy-Weinberg equilibrium in endurance athletes or either control group. Endurance athletes did not differ significantly in ACE I/D genotype frequency when compared with the endurance athlete-matched control group (P = 0.16), general controls (P = 0.076), or sprint and power athletes (P = 0.39) (endurance athletes: 15.8% II, endurance athlete-matched controls: 8.8% II, general controls: 7.6% II, sprint and power athletes: 10.5% II). Similarly, no significant differences were found in ACE A22982G genotype between groups (endurance athletes: 13.2% AA, endurance athlete-matched controls: 12.2% AA, general controls: 12.0% AA, sprint and power athletes: 13.2%; endurance athletes vs endurance athlete-matched controls: P = 0.97, endurance athletes vs general controls: P = 0.95, endurance athletes vs sprint and power athletes: P = 0.52). CONCLUSIONS As previously shown in elite Kenyan athletes, ACE I/D and A22982G polymorphisms are not associated with elite endurance athlete status in Ethiopians.
Original languageEnglish
Pages (from-to)590-597
Number of pages8
JournalMedicine and science in sports and exercise
Issue number4
Publication statusPublished - 30 Apr 2011


Dive into the research topics of 'No association between ACE gene variation and endurance athlete status in Ethiopians'. Together they form a unique fingerprint.

Cite this