Abstract
Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and thenmaintaining the desired drug concentration for a sufficient time interval to be clinically effective for treat- ment. The blood–brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug–carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials includ- ing inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug trans-port across the BBB are reviewed, and the future directions of this area are fully discussed.
Original language | English |
---|---|
Pages (from-to) | 17-28 |
Number of pages | 12 |
Journal | Journal of Drug Targeting |
Volume | 25 |
Issue number | 1 |
DOIs | |
Publication status | Published - 19 May 2016 |
Keywords
- Blood–brain barrier
- drug delivery
- nanomaterials
Fingerprint
Dive into the research topics of 'Nano carriers for drug transport across the blood–brain barrier'. Together they form a unique fingerprint.Profiles
-
Susan Sandeman
- School of Applied Sciences - Professor of Biomaterials and Tissue Eng.
- Applied Chemical Sciences Research Excellence Group
- Centre for Lifelong Health
- Centre for Regenerative Medicine and Devices
Person: Academic